期刊文献+
共找到101,331篇文章
< 1 2 250 >
每页显示 20 50 100
Towards carbon neutrality of calcium carbide-based acetylene production with sustainable biomass resources 被引量:2
1
作者 Peng Jiang Guanhan Zhao +4 位作者 Hao Zhang Tuo Ji Liwen Mu Xiaohua Lu Jiahua Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1068-1078,共11页
Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but a... Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but also the raw material for CaC_(2) synthesis is from coal.Here,a comprehensive biomass-to-acetylene process was constructed that integrated several units including biomass pyrolysis,oxygen-thermal CaC_(2) fabrication and calcium looping.For comparison,a coal-to-acetylene process was also established by using coal as feedstock.The carbon efficiency,energy efficiency and environmental impacts of the bio-based calcium carbide acetylene(BCCA)and coal-based calcium carbide acetylene(CCCA)processes were systematically analyzed.Moreover,the environmental impacts were further evaluated by applying thermal integration at system level and energy substitution in CaC_(2) furnace.Even though the BCCA process showed lower carbon efficiency and energy efficiency than that of the CCCA process,life cycle assessment demonstrated the BCCA(1.873 kgCO_(2eq) kg-prod^(-1))a lower carbon footprint process which is 0.366 kgCO_(2eq) kg-prod^(-1) lower compared to the CCCA process.With sustainable energy(biomass power)substitution in CaC_(2) furnace,an even lower GWP value of 1.377 kgCO_(2eq) kg-prod^(-1) can be achieved in BCCA process.This work performed a systematic analysis on integrating biomass into industrial acetylene production,and revealed the positive role of biomass as raw material(carbon)and energy supplier. 展开更多
关键词 Biomass pyrolysis CO_(2)mitigation calcium carbide ACETYLENE calcium loop
下载PDF
Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment 被引量:4
2
作者 Jianghao Wen Di Lan +4 位作者 Yiqun Wang Lianggui Ren Ailing Feng Zirui Jia Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1701-1712,共12页
Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed ... Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed on biomass Tremella using the swelling induction method,leading to the preparation of a three-dimensional network-structured hierarchical porous carbon(HPC)through carbonization.The achieved microwave absorption intensity is robust at-47.34 dB with a thin thickness of 2.1 mm.Notably,the widest effective absorption bandwidth,reaching 7.0 GHz(11–18 GHz),is attained at a matching thickness of 2.2 mm.The exceptional broadband and reflection loss performance are attributed to the 3D porous networks,interface effects,carbon network defects,and dipole relaxation.HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant.The uniform pore structures considerably optimize the impedance-matching performance of the material,while the abundance of interfaces and defects enhances the dielectric loss,thereby improving the attenuation constant.Furthermore,the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated.This research presents a strategy for preparing absorbing materials using biomass-derived HPC,showcasing considerable potential in the field of electromagnetic wave absorption. 展开更多
关键词 BIOMASS hierarchical porous carbon dielectric loss electromagnetic wave absorption
下载PDF
Enhancing Low-Frequency Microwave Absorption Through Structural Polarization Modulation of MXenes 被引量:2
3
作者 Bo Shan Yang Wang +1 位作者 Xinyi Ji Yi Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期435-452,共18页
Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over pol... Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over polarization response mecha-nisms and ambiguous resonance behavior.In this study,we pro-pose a novel approach to enhance absorption efficiency in aligned three-dimensional(3D)MXene/CNF(cellulose nanofibers)cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture.This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band,leading to a remarkable reflection loss value of-47.9 dB in the low-frequency range.Furthermore,our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties.The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation,while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method. 展开更多
关键词 Hierarchical structure MXene Microwave absorption LOW-FREQUENCY
下载PDF
MXene Hollow Spheres Supported by a C–Co Exoskeleton Grow MWCNTs for Efficient Microwave Absorption 被引量:2
4
作者 Ze Wu Xiuli Tan +4 位作者 Jianqiao Wang Youqiang Xing Peng Huang Bingjue Li Lei Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期76-94,共19页
High-performance microwave absorption(MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow ... High-performance microwave absorption(MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow MXene spheres loaded with C–Co frameworks, was prepared to develop multiwalled carbon nanotubes(MWCNTs). A high impedance and suitable morphology were guaranteed by the C–Co exoskeleton, the attenuation ability was provided by the MWCNTs endoskeleton, and the material performance was greatly enhanced by the layered core–shell structure. When the thickness was only 2.04 mm, the effective absorption bandwidth was 5.67 GHz, and the minimum reflection loss(RLmin) was-70.70 d B. At a thickness of 1.861 mm, the sample calcined at 700 ℃ had a RLmin of-63.25 d B. All samples performed well with a reduced filler ratio of 15 wt%. This paper provides a method for making lightweight core–shell composite MA materials with magnetoelectric synergy. 展开更多
关键词 MXene C-Co skeleton MWCNTS Microwave absorption
下载PDF
Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption 被引量:3
5
作者 Kaili Zhang Yuhao Liu +5 位作者 Yanan Liu Yuefeng Yan Guansheng Ma Bo Zhong Renchao Che Xiaoxiao Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期79-96,共18页
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the... Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials. 展开更多
关键词 Reduced graphene oxide Fe nanosheets Dielectric loss Electromagnetic wave absorption
下载PDF
Nitrogen‑Doped Magnetic‑Dielectric‑Carbon Aerogel for High‑Efficiency Electromagnetic Wave Absorption 被引量:2
6
作者 Shijie Wang Xue Zhang +5 位作者 Shuyan Hao Jing Qiao Zhou Wang Lili Wu Jiurong Liu Fenglong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期313-327,共15页
Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facil... Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facile construction method of component design with carbon-based aerogels for high-efficiency electromagnetic wave absorption(EWA)materials with a broad effective absorption bandwidth(EAB)and strong absorption yet hits some snags.Herein,the nitrogen-doped magnetic-dielectric-carbon aerogel was obtained via ice template method followed by carbonization treatment,homogeneous and abundant nickel(Ni)and manganese oxide(MnO)particles in situ grew on the carbon aerogels.Thanks to the optimization of impedance matching of dielectric/magnetic components to carbon aerogels,the nitrogen-doped magnetic-dielectric-carbon aerogel(Ni/MnO-CA)suggests a praiseworthy EWA performance,with an ultra-wide EAB of 7.36 GHz and a minimum reflection loss(RLmin)of−64.09 dB,while achieving a specific reflection loss of−253.32 dB mm−1.Furthermore,the aerogel reveals excellent radar stealth,infrared stealth,and thermal management capabilities.Hence,the high-performance,easy fabricated and multifunctional nickel/manganese oxide/carbon aerogels have broad application aspects for electromagnetic protection,electronic devices and aerospace. 展开更多
关键词 Electromagnetic wave absorption Wide bandwidth Dielectric-magnetic synergy MULTIFUNCTION
下载PDF
Interface Engineering of Titanium Nitride Nanotube Composites for Excellent Microwave Absorption at Elevated Temperature 被引量:3
7
作者 Cuiping Li Dan Li +4 位作者 Shuai Zhang Long Ma Lei Zhang Jingwei Zhang Chunhong Gong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期147-160,共14页
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently... Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering. 展开更多
关键词 TiN nanotubes Interface engineering Polarization loss Impedance matching Electromagnetic wave absorption performance
下载PDF
Achieving Ultra-Broad Microwave Absorption Bandwidth Around Millimeter-Wave Atmospheric Window Through an Intentional Manipulation on Multi-Magnetic Resonance Behavior 被引量:2
8
作者 Chuyang Liu Lu Xu +6 位作者 Xueyu Xiang Yujing Zhang Li Zhou Bo Ouyang Fan Wu Dong‑Hyun Kim Guangbin Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期291-307,共17页
The utilization of electromagnetic waves is rapidly advancing into the millimeter-wave frequency range,posing increasingly severe challenges in terms of electromagnetic pollution prevention and radar stealth.However,e... The utilization of electromagnetic waves is rapidly advancing into the millimeter-wave frequency range,posing increasingly severe challenges in terms of electromagnetic pollution prevention and radar stealth.However,existing millimeter-wave absorbers are still inadequate in addressing these issues due to their monotonous magnetic resonance pattern.In this work,rare-earth La^(3+)and non-magnetic Zr^(4+)ions are simultaneously incorporated into M-type barium ferrite(BaM)to intentionally manipulate the multi-magnetic resonance behavior.By leveraging the contrary impact of La^(3+)and Zr^(4+)ions on magnetocrystalline anisotropy field,the restrictive relationship between intensity and frequency of the multi-magnetic resonance is successfully eliminated.The magnetic resonance peak-differentiating and imitating results confirm that significant multi-magnetic resonance phenomenon emerges around 35 GHz due to the reinforced exchange coupling effect between Fe^(3+)and Fe^(2+)ions.Additionally,Mosbauer spectra analysis,first-principle calculations,and least square fitting collectively identify that additional La^(3+)doping leads to a profound rearrangement of Zr^(4+)occupation and thus makes the portion of polarization/conduction loss increase gradually.As a consequence,the La^(3+)-Zr^(4+)co-doped BaM achieves an ultra-broad bandwidth of 12.5+GHz covering from 27.5 to 40+GHz,which holds remarkable potential for millimeter-wave absorbers around the atmospheric window of 35 GHz. 展开更多
关键词 Microwave absorption Ultra-broad bandwidth M-type barium ferrite Magnetocrystalline anisotropy field Multimagnetic resonance
下载PDF
Elaidic acid leads to mitochondrial dysfunction via mitochondria-associated membranes triggers disruption of mitochondrial calcium fluxes 被引量:2
9
作者 Hui Liu Xuenan Li +4 位作者 Ziyue Wang Lu Li Yucai Li Haiyang Yan Yuan Yuan 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期287-298,共12页
Elaidic acid(EA)stimulation can lead to endoplasmic reticulum stress(ERS),accompanied by a large release of Ca^(2+),and ultimately the activation of NLRP3 inflammasome in Kupffer cells(KCs).Mitochondrial instability o... Elaidic acid(EA)stimulation can lead to endoplasmic reticulum stress(ERS),accompanied by a large release of Ca^(2+),and ultimately the activation of NLRP3 inflammasome in Kupffer cells(KCs).Mitochondrial instability or dysfunction may be the key stimulating factors to activate NLRP3 inflammasome,and sustained Ca^(2+)transfer can result in mitochondrial dysfunction.We focused on KCs to explore the damage to mitochondria by EA.After EA stimulation,cells produced an oxidative stress(OS)response with a significant increase in ROS release.Immunoprecipitation experiments and the addition of inhibitors revealed that the increase in the level of intracellular Ca^(2+)led to Ca^(2+)accumulation in the mitochondrial matrix via mitochondria-associated membranes(MAMs).This was accompanied by a significant release of m ROS,loss of MMP and ATP,and a significant increase in mitochondrial permeability transition pore opening,ultimately leading to mitochondrial instability.These findings confirmed the mechanism that EA induced mitochondrial Ca^(2+)imbalance in KCs via MAM,ultimately leading to mitochondrial dysfunction.Meanwhile,EA induced OS and the decrease of MMP and ATP in rat liver,and significant lesions were found in liver mitochondria.Swelling of the inner mitochondrial cristae and mitochondrial vacuolization occurred,with a marked increase in lipid droplets. 展开更多
关键词 Elaidic acid(EA) Mitochondria-associated membranes(MAMs) calcium Endoplasmic reticulum Mitochondria dysfunction
下载PDF
Calmodulins and calmodulin-like proteins-mediated plant organellar calcium signaling networks under abiotic stress 被引量:1
10
作者 Shuang Liu Liyan Zhao +4 位作者 Maozi Cheng Jinfeng Sun Xiaomeng Ji Aman Ullah Guosheng Xie 《The Crop Journal》 SCIE CSCD 2024年第5期1321-1332,共12页
Plant calmodulins(CaMs)and calmodulin-like proteins(CMLs)mediate Ca~(2+)signaling in response to abiotic stresses.Manipulation of this signaling in crops could increase stress tolerance.We review methods for detecting... Plant calmodulins(CaMs)and calmodulin-like proteins(CMLs)mediate Ca~(2+)signaling in response to abiotic stresses.Manipulation of this signaling in crops could increase stress tolerance.We review methods for detecting Ca~(2+)signals,regulatory roles of Ca Ms and CMLs,binding targets,and Ca~(2+)networks under abiotic stress in organelles. 展开更多
关键词 Abiotic stress CALMODULIN Calmodulin-like protein Organellar calcium signaling pathway
下载PDF
Reinforcing effects of polypropylene on energy absorption and fracturing of cement-based tailings backfill under impact loading 被引量:1
11
作者 Jiajian Li Shuai Cao Erol Yilmaz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期650-664,共15页
Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits su... Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill. 展开更多
关键词 cement-based tailings fiber-reinforced backfills FRACTURE energy absorption impact loading
下载PDF
Structural Engineering of Hierarchical Magnetic/Carbon Nanocomposites via In Situ Growth for High-Efficient Electromagnetic Wave Absorption 被引量:1
12
作者 Xianyuan Liu Jinman Zhou +1 位作者 Ying Xue Xianyong Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期262-278,共17页
Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative stru... Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption.Particularly,hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials,providing immense potential for creating versatile electromagnetic wave absorption materials.Herein,an exceptional multi-dimensional hierarchical structure was meticulously devised,unleashing the full microwave attenuation capabilities through in situ growth,selfreduction,and multi-heterogeneous interface integration.The hierarchical structure features a three-dimensional carbon framework,where magnetic nanoparticles grow in situ on the carbon skeleton,creating a necklace-like structure.Furthermore,magnetic nanosheets assemble within this framework.Enhanced impedance matching was achieved by precisely adjusting component proportions,and intelligent integration of diverse interfaces bolstered dielectric polarization.The obtain Fe_(3)O_(4)-Fe nanoparticles/carbon nanofibers/Al-Fe_(3)O_(4)-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss(RLmin)value of−59.3 dB and an effective absorption bandwidth(RL≤−10 dB)extending up to 5.6 GHz at 2.2 mm.These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials. 展开更多
关键词 Electromagnetic wave absorption Hierarchical structure In situ growth Self-reduction
下载PDF
Remote sensing of air pollution incorporating integrated-path differential-absorption and coherent-Doppler lidar 被引量:1
13
作者 Ze-hou Yang Yong Chen +5 位作者 Chun-li Chen Yong-ke Zhang Ji-hui Dong Tao Peng Xiao-feng Li Ding-fu Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期594-601,共8页
An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption l... An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety. 展开更多
关键词 Differential absorption LIDAR COHERENT Doppler lidar Remoting sensing Atmospheric pollution
下载PDF
Preparation of CIP@TiO_(2) composite with broadband electromagnetic wave absorption properties 被引量:1
14
作者 Qiang Su Hanqun Wang +3 位作者 Yunfei He Dongdong Liu Xiaoxiao Huang Bo Zhong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期197-205,共9页
Scholars aim for the improved impedance matching (Z) of materials while maintaining their excellent wave absorption properties. Based on the hydrolysis characteristics of isopropyl titanate, a simple preparation proce... Scholars aim for the improved impedance matching (Z) of materials while maintaining their excellent wave absorption properties. Based on the hydrolysis characteristics of isopropyl titanate, a simple preparation process for the coating of carbonyl iron powder(CIP) with TiO_(2) was designed. Given the TiO2coating, the Z of the CIP@TiO_(2) composite was adjusted well by decreasing the dielectric constant. Moreover, the interfacial polarization of CIP@TiO_(2) was enhanced. Ultimately, the electromagnetic-wave (EMW) absorption property of the CIP@TiO_(2)composite was improved substantially, the minimum reflection loss reached-46.07 dB, and the effective absorption bandwidth can reach 8 GHz at the composite thickness of 1.5 mm. Moreover, compared with CIP, the oxidation resistance of CIP@TiO_(2)showed remarkable improvement. The results revealed that the oxidation starting temperature of CIP@TiO_(2) as about 400℃,whereas the uncoated CIP had an oxidation starting temperature of approximately 250℃. Moreover, the largest oxidation rate temperature of CIP@TiO_(2) increased to around 550℃. This work opens up a novel strategy for the production of high-performance EMW absorbers via structural design. 展开更多
关键词 carbonyl iron@titanium dioxide electromagnetic-wave absorption impedance matching oxidation resistance
下载PDF
Calcium-fortified fresh milk ameliorates postmenopausal osteoporosis via regulation of bone metabolism and gut microbiota in ovariectomized rats 被引量:1
15
作者 Qishan Wang Bin Liu +5 位作者 Xianping Li Junying Zhao Zongshen Zhang Weicang Qiao Xinyue Wei Lijun Chen 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1258-1270,共13页
The aging of the global population has made postmenopausal osteoporosis prevention essential;however,pharmacological treatments are limited.Herein,we evaluate the effect of calcium-fortified fresh milk(FM)in ameliorat... The aging of the global population has made postmenopausal osteoporosis prevention essential;however,pharmacological treatments are limited.Herein,we evaluate the effect of calcium-fortified fresh milk(FM)in ameliorating postmenopausal osteoporosis in a rat model established using bilateral ovariectomy.After 3 months of FM(containing vitamin D,and casein phosphopeptides,1000 mg Ca/100 g)or control milk(110 mg Ca/100 g milk)supplementation,bone changes were assessed using dual-energy X-ray absorptiometry,microcomputed tomography,and bone biomechanical testing.The results revealed that FM can regulate bone metabolism and gut microbiota composition,which act on bone metabolism through pathways associated with steroid hormone biosynthesis,relaxin signaling,serotonergic synapse,and unsaturated fatty acid biosynthesis.Furthermore,FM administration significantly increased bone mineral content and density in the lumbar spine and femur,as well as femoral compressive strength,while improving femoral trabecular bone parameters and microarchitecture.Mechanistically,we found that the effects may be due to increased levels of estrogen,bone formation marker osteocalcin,and procollagen typeⅠN-propeptide,and decreased expression of the bone resorption marker C-telopiptide and tartrate-resistant acid phosphatase 5b.Overall,the findings suggest that FM is a potential alternative therapeutic option for ameliorating postmenopausal osteoporosis. 展开更多
关键词 Dairy products calcium Vitamin D Bone turnover markers Gut microbiota Postmenopausal osteoporosis
下载PDF
NiCoZn/C@melamine sponge-derived carbon composites with highperformance electromagnetic wave absorption 被引量:1
16
作者 Xiubo Xie Heshan Wang +3 位作者 Hideo Kimura Cui Ni Wei Du Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2274-2286,共13页
NiMZn/C@melamine sponge-derived carbon(MSDC)composites(M=Co,Fe,and Mn)were prepared by a vacuum pump-ing solution method followed by carbonization.A large number of carbon nanotubes(CNTs)homogeneously attached to the ... NiMZn/C@melamine sponge-derived carbon(MSDC)composites(M=Co,Fe,and Mn)were prepared by a vacuum pump-ing solution method followed by carbonization.A large number of carbon nanotubes(CNTs)homogeneously attached to the surfaces of the three-dimensional cross-linked of the sponge-derived carbon in the NiCoZn/C@MSDC composite,and CNTs were detected in the NiFeZn/C@MSDC and NiMnZn/C@MSDC composites.Ni_(3)ZnC_(0.7),Ni_(3)Fe,and MnO in-situ formed in the NiFeZn/C@MSDC and NiMnZn/C@MSDC composites.The CNTs in the NiCoZn/C@MSDC composite efficiently modulated its complex permittivity.Thus,the composite exhibited the best performance among the composites,with the minimum reflection loss(RL_(min))of-33.1 dB at 18 GHz and thickness of 1.4 mm.The bandwidth for RL of≤-10 dB was up to 5.04 GHz at the thickness of 1.7 mm and loading of 25wt%.The op-timized impedance matching,enhanced interfacial and dipole polarization,remarkable conduction loss,and multiple reflections and scat-tering of the incident microwaves improved the microwave absorption performance.The effects of Co,Ni,and Fe on the phase and mor-phology provided an alternative way for developing highly efficient and broadband microwave absorbers. 展开更多
关键词 microwave absorption carbon nanotube element substitution melamine sponge-derived carbon
下载PDF
Rapid and stable calcium-looping solar thermochemical energy storage via co-doping binary sulfate and Al–Mn–Fe oxides 被引量:1
17
作者 Changjian Yuan Xianglei Liu +8 位作者 Xinrui Wang Chao Song Hangbin Zheng Cheng Tian Ke Gao Nan Sun Zhixing Jiang Yimin Xuan Yulong Ding 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1290-1305,共16页
Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffe... Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffer from slow reaction kinetics,poor stability,and low solar absorptance.Here,we successfully realized high power density and highly stable solar thermochemical energy storage/release by synergistically accelerating energy storage/release via binary sulfate and promoting cycle stability,mechanical strength,and solar absorptance via Al–Mn–Fe oxides.The energy storage density of proposed CaCO_(3)pellets is still as high as 1455 kJ kg^(-1)with only a slight decay rate of 4.91%over 100 cycles,which is higher than that of state-of-the-art pellets in the literature,in stark contrast to 69.9%of pure CaCO_(3)pellets over 35 cycles.Compared with pure CaCO_(3),the energy storage power density or decomposition rate is improved by 120%due to lower activation energy and promotion of Ca^(2+)diffusion by binary sulfate.The energy release or carbonation rate rises by 10%because of high O^(2-)transport ability of molten binary sulfate.Benefiting from fast energy storage/release rate and high solar absorptance,thermochemical energy storage efficiency is enhanced by more than 50%under direct solar irradiation.This work paves the way for application of direct solar thermochemical energy storage techniques via achieving fast energy storage/release rate,high energy density,good cyclic stability,and high solar absorptance simultaneously. 展开更多
关键词 calcium looping(CaL) Solar thermochemical Energy storage Binary sulfate Fast reaction kinetics
下载PDF
Rational construction of heterointerfaces in biomass sugarcane-derived carbon for superior electromagnetic wave absorption 被引量:1
18
作者 Shijie Zhang Di Lan +7 位作者 Jiajun Zheng Ailing Feng Yaxing Pei Shichang Cai Suxuan Du Xingliang Chen Guanglei Wu Zirui Jia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2749-2759,共11页
The pervasive adoption of 5th generation mobile communication technology propels electromagnetic wave(EW)absorbents to achieve high-level performance.The heterointerface construction is crucial to the improvement of a... The pervasive adoption of 5th generation mobile communication technology propels electromagnetic wave(EW)absorbents to achieve high-level performance.The heterointerface construction is crucial to the improvement of absorption ability.Herein,a series of ultralight composites with rational heterointerfaces(Co/ZnO@N-doped C/layer-stacked C,MSC)is fabricated by calcination with ration-al construction of sugarcane and CoZn-zeolitic imidazolate framework(ZIF).The components and structures of as-prepared composites were investigated,and their electromagnetic parameters could be adjusted by the content of CoZn-ZIFs.All composites possess excellent EW absorption performance,especially MSC-3.The optimal minimum reflection loss and effective absorption band of MSC-3 can reach−42 dB and 7.28 GHz at the thickness of only 1.6 mm with 20wt%filler loading.This excellent performance is attributed to the syner-gistic effect of dielectric loss stemming from the multiple heterointerfaces and magnetic loss induced by magnetic single Co.The sugar-cane-derived layer-stacked carbon has formed consecutive conductive networks and has further dissipated the electromagnetic energy through multiple reflection and conduction losses.Moreover,the simulated radar cross section(RCS)technology manifests that MSC-3 possesses outstanding EW attenuation capacity under realistic far-field conditions.This study provides a strategy for building efficient ab-sorbents based on biomass. 展开更多
关键词 sugarcane-derived carbon heterointerfaces bimetallic metal-organic frameworks EW absorption radar cross section
下载PDF
Efficient Electromagnetic Wave Absorption and Thermal Infrared Stealth in PVTMS@MWCNT Nano‑Aerogel via Abundant Nano‑Sized Cavities and Attenuation Interfaces 被引量:1
19
作者 Haoyu Ma Maryam Fashandi +5 位作者 Zeineb Ben Rejeb Xin Ming Yingjun Liu Pengjian Gong Guangxian Li Chul B.Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期370-383,共14页
Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT... Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work. 展开更多
关键词 Nano-pore size Heterogeneous interface Electromagnetic wave absorption Thermal infrared stealth Nano-aerogel
下载PDF
Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption 被引量:1
20
作者 Zhiqiang Guo Di Lan +6 位作者 Zirui Jia Zhenguo Gao Xuetao Shi Mukun He Hua Guo Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期507-527,共21页
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con... Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments. 展开更多
关键词 Electrostatic spinning Component regulation Heterogeneous interfaces Electromagnetic wave absorption Corrosion protection
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部