期刊文献+
共找到29,867篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental realization of fractal fretwork metasurface for sound anomalous modulation
1
作者 何佳杰 于书萌 +1 位作者 江雪 他得安 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期473-478,共6页
Natural creatures and ancient cultures are full of potential sources to provide inspiration for applied sciences.Inspired by the fractal geometry in nature and the fretwork frame in ancient culture,here we design the ... Natural creatures and ancient cultures are full of potential sources to provide inspiration for applied sciences.Inspired by the fractal geometry in nature and the fretwork frame in ancient culture,here we design the acoustic metasurface to realize sound anomalous modulation,which manifests itself as an incident-dependent propagation behavior:sound wave propagating in the forward direction is allowed to transmit with high efficiency while in the backward direction is obviously suppressed.We quantitatively investigate the dependences of asymmetric transmission on the propagation direction,incident angle and operating frequency by calculating sound transmittance and energy contrast.This compact fractal fretwork metasurface for acoustic anomalous modulation would promote the development of integrated acoustic devices and expand versatile applications in acoustic communication and information encryption. 展开更多
关键词 acoustic metasurface fractal geometry sound anomalous modulation
下载PDF
Fractal analysis of major faults and fractal dimension of lineaments in the Indo-Gangetic Plain on a regional scale
2
作者 Vipin Chauhan Jagabandhu Dixit 《Earthquake Science》 2024年第2期107-121,共15页
The Indo-Gangetic Plain(IGP)is one of the most seismically vulnerable areas due to its proximity to the Himalayas.Geographic information system(GIS)-based seismic characterization of the IGP was performed based on the... The Indo-Gangetic Plain(IGP)is one of the most seismically vulnerable areas due to its proximity to the Himalayas.Geographic information system(GIS)-based seismic characterization of the IGP was performed based on the degree of deformation and fractal dimension.The zone between the Main Boundary Thrust(MBT)and the Main Central Thrust(MCT)in the Himalayan Mountain Range(HMR)experienced large variations in earthquake magnitude,which were identified by Number-Size(NS)fractal modeling.The central IGP zone experienced only moderate to low mainshock levels.Fractal analysis of earthquake epicenters reveals a large scattering of earthquake epicenters in the HMR and central IGP zones.Similarly,the fault fractal analysis identifies the HMR,central IGP,and south-western IGP zones as having more faults.Overall,the seismicity of the study region is strong in the central IGP,south-western IGP,and HMR zones,moderate in the western and southern IGP,and low in the northern,eastern,and south-eastern IGP zones. 展开更多
关键词 geospatial analysis fractal modeling seismicity pattern fractal dimension
下载PDF
Fractal Study on the Evolution of Micro-Pores in Concrete Under Freeze-Thaw
3
作者 孙浩然 邹春霞 +2 位作者 XU Deru GUO Xiaosong HUANG Kun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期109-117,共9页
After exposure to freeze-thaw cycles, scanning electron microscopy(SEM) and nuclear magnetic resonance(NMR) were used to test the four mixtures. The microstructure is qualitatively analyzed from the 2D SEM image and t... After exposure to freeze-thaw cycles, scanning electron microscopy(SEM) and nuclear magnetic resonance(NMR) were used to test the four mixtures. The microstructure is qualitatively analyzed from the 2D SEM image and the 3D pore distribution curve before and after freezing and thawing. The fractal dimension is utilized to characterize the two-dimensional topography image and the three-dimensional pore distribution, quantitatively. The results reveal that the surface porosity and volume porosity increase as the freeze-thaw action increases. Self-similarity characteristics exist in micro-damage inside the concrete. In the fractal dimension, it is possible to characterize pore evolution quantitatively. The fractal dimension correlates with pore damage evolution. The fractal dimension effectively quantitatively characterizes micro-damage features at various scales from the local to the global level. 展开更多
关键词 fractal dimension freeze-thaw cycle CONCRETE SEM NMR
下载PDF
A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics
4
作者 Qian Zhang Wen-Dong Wang +4 位作者 Yu-Liang Su Wei Chen Zheng-Dong Lei Lei Li Yong-Mao Hao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期327-342,共16页
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes... A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation. 展开更多
关键词 Multi-scale coupled flow Stress sensitivity Shale oil Micro-scale effect fractal theory
下载PDF
Damage Characteristics Analysis and Fractal Study of Shale With Prefabricated Fractures under Thermal-mechanical Coupling
5
作者 张辉 邬忠虎 +3 位作者 SONG Huailei WANG Wentao TANG Motian CUI Hengtao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期570-586,共17页
To study the damage and failure of shale with different fracture inclination angles under uniaxial compression loading,in this work,RFPA2D-Thermal,a two-dimensional real failure process analysis software,was used for ... To study the damage and failure of shale with different fracture inclination angles under uniaxial compression loading,in this work,RFPA2D-Thermal,a two-dimensional real failure process analysis software,was used for numerical simulation.Numerical simulation results show that quartz in shale mainly affects the tensile and compressive strength of shale by increasing rock brittleness.The coupling of temperature and pressure will cause lateral and volume destruction of shale,which enables the shale body to be more easily broken.Fracture inclination is the key factor affecting shale damage patterns.The failure mode of shale with low-and high-angle fractures is mainly shear failure,and the compressive strength does not vary with crack inclination.The damage mode of obliquely intersecting fractured shale is slip damage along the fracture face,the compressive strength decreases and then increases with the fracture inclination,and a minimum value exists.The acoustic emission simulation results of the damage process effectively reflect the accumulated internal damage and macroscopic crack appearance until fracture instability when the prefabricated fractured shale is subjected to uniaxial compressive loading.The crack inclinations of 0°and 120℃ corresponds to the most complex"N"shape damage mode.The crack inclinations of 30°and 60°,and the damage mode is an inverted"λ"shape. 展开更多
关键词 SHALE temperature and pressure numerical simulation fracture dip angle fractal dimension
下载PDF
Microstructure Characterization of Bubbles in Gassy Soil Based on the Fractal Theory
6
作者 WU Chen LIN Guoqing +3 位作者 LIU Lele LIU Tao LI Chengfeng GUO Zhenqi 《Journal of Ocean University of China》 CAS CSCD 2024年第1期129-137,共9页
The microscopic characterization of isolated bubbles in gassy soil plays an important role in the macroscopic physical properties of sediments and is a key factor in the study of geological hazards in gas-bearing stra... The microscopic characterization of isolated bubbles in gassy soil plays an important role in the macroscopic physical properties of sediments and is a key factor in the study of geological hazards in gas-bearing strata.Based on the box-counting method and the pore fractal features in porous media,a fractal model of bubble microstructure parameters in gassy soil under different gas con-tents and vertical load conditions is established by using an industrial X-ray CT scanning system.The results show that the fractal di-mension of bubbles in the sample is correlated with the volume fraction of bubbles,and it is also restricted by the vertical load.The three-dimensional fractal dimension of the sample is about 1 larger than the average two-dimensional fractal dimension of all the slices from the same sample.The uniform porous media fractal model is used to test the equivalent diameter,and the results show that the variation of the measured pore diameter ratio is jointly restricted by the volume fraction and the vertical load.In addition,the measured self-similarity interval of the bubble area distribution is tested by the porous media fractal capillary bundle model,and the fitting curve of measured pore area ratio in a small loading range is obtained in this paper. 展开更多
关键词 gassy soil bubble microstructure parameters fractal dimension vertical load
下载PDF
Experimental investigation on coal pore-fracture variation and fractal characteristics synergistically affected by solvents for improving clean gas extraction
7
作者 Feilin Han Sheng Xue +3 位作者 Chunshan Zheng Zhongwei Chen Guofu Li Bingyou Jiang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期413-425,共13页
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal... Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology. 展开更多
关键词 Clean gas extraction Chemical solvent Experimental investigation fractal characteristics Pore fracture
下载PDF
CLASSIFICATIONS OF DUPIN HYPERSURFACES IN LIE SPHERE GEOMETRY
8
作者 Thomas E.CECIL 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期1-36,共36页
This is a survey of local and global classification results concerning Dupin hypersurfaces in S^(n)(or R^(n))that have been obtained in the context of Lie sphere geometry.The emphasis is on results that relate Dupin h... This is a survey of local and global classification results concerning Dupin hypersurfaces in S^(n)(or R^(n))that have been obtained in the context of Lie sphere geometry.The emphasis is on results that relate Dupin hypersurfaces to isoparametric hypersurfaces in spheres.Along with these classification results,many important concepts from Lie sphere geometry,such as curvature spheres,Lie curvatures,and Legendre lifts of submanifolds of S^(n)(or R^(n)),are described in detail.The paper also contains several important constructions of Dupin hypersurfaces with certain special properties. 展开更多
关键词 Dupin hypersurfaces isoparametric hypersurfaces Lie sphere geometry Lie sphere transformations Lie curvatures
下载PDF
Modeling and Performance Analysis of UAV-Aided Millimeter Wave Cellular Networks with Stochastic Geometry
9
作者 Li Junruo Wang Yuanjie +2 位作者 Cui Qimei Hou Yanzhao Tao Xiaofeng 《China Communications》 SCIE CSCD 2024年第6期146-162,共17页
UAV-aided cellular networks,millimeter wave(mm-wave)communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G)and even 6G communications.By leveraging the power o... UAV-aided cellular networks,millimeter wave(mm-wave)communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G)and even 6G communications.By leveraging the power of stochastic geometry,this paper aims at providing an effective framework for modeling and analyzing a UAV-aided heterogeneous cellular network,where the terrestrial base stations(TBSs)and the UAV base stations(UBSs)coexist,and the UBSs are provided with mm-wave and multi-antenna techniques.By modeling the TBSs as a PPP and the UBSs as a Matern hard-core point pro-´cess of type II(MPH-II),approximated but accurate analytical results for the average rate of the typical user of both tiers are derived through an approximation method based on the mean interference-to-signal ratio(MISR)gain.The influence of some relevant parameters is discussed in detail,and some insights into the network deployment and optimization are revealed.Numerical results show that some trade-offs are worthy of being considered,such as the antenna array size,the altitude of the UAVs and the power control factor of the UBSs. 展开更多
关键词 average rate DOWNLINK millimeter wave point process theory SIR stochastic geometry UAVaided cellular networks
下载PDF
Estimation of surface geometry on combustion characteristics of AP/HTPB propellant under rapid depressurization
10
作者 Kaixuan Chen Zhenwei Ye +1 位作者 Xiaochun Xue Yonggang Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期546-558,共13页
The 2D sandwich model serves as a potent tool in exploring the influence of surface geometry on the combustion attributes of Ammonium perchlorate/Hydroxyl-terminated polybutadiene(AP/HTPB)propellant under rapid pressu... The 2D sandwich model serves as a potent tool in exploring the influence of surface geometry on the combustion attributes of Ammonium perchlorate/Hydroxyl-terminated polybutadiene(AP/HTPB)propellant under rapid pressure decay.The thickness of the sandwich propellant is derived from slicing the 3D random particle packing,an approach that enables a more effective examination of the micro-flame structure.Comparative analysis of the predicted burning characteristics has been performed with experimental studies.The findings demonstrate a reasonable agreement,thereby validating the precision and soundness of the model.Based on the typical rapid depressurization environment of solid rocket motor(initial combustion pressure is 3 MPa and the maximum depressurization rate is 1000 MPa/s).A-type(a flatter surface),B-type(AP recesses from the combustion surface),and C-type(AP protrudes from the combustion surface)propellant combustion processes are numerically simulated.Upon comparison of the evolution of gas-phase flame between 0.1 and 1 ms,it is discerned that the flame strength and form created by the three sandwich models differ significantly at the beginning stage of depressurization,with the flame structures gradually becoming harmonized over time.Conclusions are drawn by comparison extinction times:the surface geometry plays a pivotal role in the combustion process,with AP protrusion favoring combustion the most. 展开更多
关键词 AP/HTPB propellant BDP model Rapid pressure decay Burning surface geometry
下载PDF
The Effects of the Geometry of a Current Collector with an Equal Open Ratio on Output Power of a Direct Methanol Fuel Cell
11
作者 Yingli Zhu Jiachi Xie +2 位作者 Mingwei Zhu Jun Zhang Miaomiao Li 《Energy Engineering》 EI 2024年第5期1161-1172,共12页
The open ratio of a current collector has a great impact on direct methanol fuel cell(DMFC)performance.Although a number of studies have investigated the influence of the open ratio of DMFC current collectors,far too ... The open ratio of a current collector has a great impact on direct methanol fuel cell(DMFC)performance.Although a number of studies have investigated the influence of the open ratio of DMFC current collectors,far too little attention has been given to how geometry(including the shape and feature size of the flow field)affects a current collector with an equal open ratio.In this paper,perforated and parallel current collectors with an equal open ratio of 50%and different feature sizes are designed,and the corresponding experimental results are shown to explain the geometry effects on the output power of the DMFC.The results indicate that the optimal feature sizes are between 2 and 2.5 mm for both perforated and parallel flow field in the current collectors with an equal open ratio of 50%.This means that for passive methanol fuel cells,to achieve the highest output power,the optimal feature size of the flow field in both anode and cathode current collectors is between 2 and 2.5 mm under the operating mode of this experiment.The effects of rib and channel position are also investigated,and the results indicate that the optimum pattern depends on the feature sizes of the flow field. 展开更多
关键词 Direct methanol fuel cell geometry open ratio current collector POSITION
下载PDF
A Compact UHF Antenna Based on Hilbert Fractal Elements and a Serpentine Arrangement for Detecting Partial Discharg
12
作者 Xiang Lin Jian Fang +4 位作者 Ming Zhang Kuang Yin Yan Tian Yingfei Guo Qianggang Wang 《Energy Engineering》 EI 2024年第5期1127-1141,共15页
Efforts to protect electric power systems from faults have commonly relied on the use of ultra-high frequency(UHF)antennas for detecting partial discharge(PD)as a common precursor to faults.However,the effectiveness o... Efforts to protect electric power systems from faults have commonly relied on the use of ultra-high frequency(UHF)antennas for detecting partial discharge(PD)as a common precursor to faults.However,the effectiveness of existing UHF antennas suffers from a number of challenges such as limited bandwidth,relatively large physical size,and low detection sensitivity.The present study addresses these issues by proposing a compact microstrip patch antenna with fixed dimensions of 100 mm×100 mm×1.6 mm.The results of computations yield an optimized antenna design consisting of 2nd-order Hilbert fractal units positioned within a four-layer serpentine arrangement with a fractal unit connection distance of 3.0 mm.Specifically,the optimized antenna design achieves a detection bandwidth for which the voltage standing wave ratio is less than 2 that is approximately 97.3%of the UHF frequency range(0.3–3 GHz).Finally,a prototype antenna is fabricated using standard printed circuit board technology,and the results of experiments demonstrate that the proposed antenna is capable of detecting PD signals at a distance of 8 m from the discharge source. 展开更多
关键词 Power system fault partial discharge UHF antenna fractal antenna micro-strip antenna
下载PDF
Galerkin-based quasi-smooth manifold element(QSME)method for anisotropic heat conduction problems in composites with complex geometry
13
作者 Pan WANG Xiangcheng HAN +2 位作者 Weibin WEN Baolin WANG Jun LIANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期137-154,共18页
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ... The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations. 展开更多
关键词 anisotropic heat conduction quasi-smooth manifold element(QSME) composite with complex geometry numerical simulation finite element method(FEM)
下载PDF
Computational Quantification of Map Projection Distortion by Fractal Dimension of Coastlines
14
作者 Franklin Lee 《Journal of Applied Mathematics and Physics》 2024年第5期1890-1903,共14页
Maps, essential tools for portraying the Earth’s surface, inherently introduce distortions to geographical features. While various quantification methods exist for assessing these distortions, they often fall short w... Maps, essential tools for portraying the Earth’s surface, inherently introduce distortions to geographical features. While various quantification methods exist for assessing these distortions, they often fall short when evaluating actual geographic features. In our study, we took a novel approach by analyzing map projection distortion from a geometric perspective. We computed the fractal dimensions of different stretches of coastline before and after projection using the divide-and-conquer algorithm and image processing. Our findings revealed that map projections, even when preserving basic shapes, inevitably stretch and compress coastlines in diverse directions. This analysis method provides a more realistic and practical way to measure map-induced distortions, with significant implications for cartography, geographic information systems (GIS), and geomorphology. By bridging the gap between theoretical analysis and real-world features, this method greatly enhances accuracy and practicality when evaluating map projections. 展开更多
关键词 Map Projection Distortion COASTLINE fractal Dimension CARTOGRAPHY Geographic Information Systems
下载PDF
Outage Probability Analysis for D2D-Enabled Heterogeneous Cellular Networks with Exclusion Zone:A Stochastic Geometry Approach
15
作者 Yulei Wang Li Feng +3 位作者 Shumin Yao Hong Liang Haoxu Shi Yuqiang Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期639-661,共23页
Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices... Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices reuse the cellular spectrum.To alleviate the interference,an efficient interference management way is to set exclusion zones around the cellular receivers.In this paper,we adopt a stochastic geometry approach to analyze the outage probabilities of cellular and D2D users in the D2D-enabled HetCNets.The main difficulties contain three aspects:1)how to model the location randomness of base stations,cellular and D2D users in practical networks;2)how to capture the randomness and interrelation of cellular and D2D transmissions due to the existence of random exclusion zones;3)how to characterize the different types of interference and their impacts on the outage probabilities of cellular and D2D users.We then run extensive Monte-Carlo simulations which manifest that our theoretical model is very accurate. 展开更多
关键词 Device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets) exclusion zone stochastic geometry(SG) Matérn hard-core process(MHCP)
下载PDF
Fractal Analysis on Methane Hydrate Formation in Porous Media
16
作者 Xinfang Cao Peizhuo Mo 《Journal of Electronic Research and Application》 2024年第3期207-212,共6页
The study of the hydrate formation process in porous media is of great significance for hydrate application.In this work,the formation process of methane hydrate in porous media was monitored in situ by a low-field ma... The study of the hydrate formation process in porous media is of great significance for hydrate application.In this work,the formation process of methane hydrate in porous media was monitored in situ by a low-field magnetic resonance imaging(MRI)system.The formation characteristics of methane hydrate in porous media and the change of fractal dimension of pore space were studied through the change of residual water saturation and T2 relaxation time distribution.The experimental results show that the hydrate formation process is divided into two stages:fast and slow.During the formation process,the water in the pores is continuously consumed and transformed into hydrate,and the overall T2 distribution gradually shifts to the left.In the formation process of hydrate,the pore space becomes more complex,the change of fractal dimension from top to bottom of the reactor gradually increases,and the hydrate formation rate also gradually increases. 展开更多
关键词 MRI experiment Water saturation fractal dimension
下载PDF
Seismic Activity and Fractal Geometry of Kareh Bas Fault System in Zagros, South of Iran 被引量:21
17
作者 Mehran Arian Hamideh Noroozpour 《Open Journal of Geology》 2015年第5期291-299,共9页
Kareh Bas is one the transverse fault systems in Zagros fold-thrust belt. Kareh Bas Transcurrent Fault System with a total length of 200 Km is situated about 80 Km east of the Borazjan segment (a part of Kazerun fault... Kareh Bas is one the transverse fault systems in Zagros fold-thrust belt. Kareh Bas Transcurrent Fault System with a total length of 200 Km is situated about 80 Km east of the Borazjan segment (a part of Kazerun fault zone) and 40 Km west of Shiraz. It is a nearly N-S trending right-lateral linked strike-slip fault system, and several anticlinal axes have been displaced by it. Strike separation (109 Km) of Mountain Front Fault/Flexure (MFF) of Zagros is the most important function of Kareh Bas Transcurrent Fault System. According to fractal analysis (Box-counting method) on space image maps (1:50,000) prepared from Spot data, fault related surface ruptures have non-linear patterns and fault segments have nearly plane form fractal dimensions;specially at north and south terminations. It means that, the north and south terminations of Kareh Bas Transcurrent Fault System are active (earthquake fault segments) and latter case is more active, because it is coinciding on Zagros mountain front faults (MFF). 展开更多
关键词 fractal Fault Kareh BAS ZAGROS TRANSVERSE Iran
下载PDF
Prediction of heat transfer of nanofluid on critical heat flux based on fractal geometry 被引量:1
18
作者 肖波齐 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期344-349,共6页
Analytical expressions for nucleate pool boiling heat transfer of nanofluid in the critical heat flux (CHF) region are derived taking into account the effect of nanoparticles moving in liquid based on the fractal ge... Analytical expressions for nucleate pool boiling heat transfer of nanofluid in the critical heat flux (CHF) region are derived taking into account the effect of nanoparticles moving in liquid based on the fractal geometry theory. The proposed fractal model for the CHF of nanofluid is explicitly related to the average diameter of the nanoparticles, the volumetric nanoparticle concentration, the thermal conductivity of nanoparticles, the fractal dimension of nanoparticles, the fractal dimension of active cavities on the heated surfaces, the temperature, and the properties of the fluid. It is found that the CHF of nanofluid decreases with the increase of the average diameter of nanoparticles. Each parameter of the proposed formulas on CHF has a clear physical meaning. The model predictions are compared with the existing experimental data, and a good agreement between the model predictions and experimental data is found. The validity of the present model is thus verified. The proposed fractal model can reveal the mechanism of heat transfer in nanofluid. 展开更多
关键词 NANOFLUID fractal geometry heat transfer
下载PDF
FRACTAL GEOMETRY STUDY OF CORRELATION BETWEEN IMPACT TOUGHNESS OF STEEL AND PARAMETERS OF FREE-CUTTING PHASE 被引量:1
19
作者 JIANG Laizhu CUI Kun Huazhong University of Science and Technology,Wuhan,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1992年第4期250-255,共6页
Studies were made of the calculation of fractal dimension of transverse impact fracture sur- face,and of the correlation between impact toughness of steel and parameters of free-cutting phase by means of the developed... Studies were made of the calculation of fractal dimension of transverse impact fracture sur- face,and of the correlation between impact toughness of steel and parameters of free-cutting phase by means of the developed fractal geometry model of crack propagation.It is believed that the area fraction,f,of free-cutting phase is negligibly influential to the longitudinal im- pact toughness,as f1 .While the aspect ratio,saying ratio of length to width,of free-cut. ting phase is inversely influential to the transverse impact toughness.This may .be the reason why the transverse impact toughness of free-cutting steel containing more rare earth contrast to sulphur is even higher than the low sulphur containing steel. 展开更多
关键词 fractal geometry impact toughness free-cutting phase
下载PDF
Synthesis of fractal geometry and CAGD models for multi-scale topography modelling of functional surfaces 被引量:3
20
作者 王清辉 李静蓉 +2 位作者 陈彦政 潘敏强 汤勇 《Journal of Central South University》 SCIE EI CAS 2011年第5期1493-1501,共9页
In order to support the functional design and simulation and the final fabrication processes for functional surfaces,it is necessary to obtain a multi-scale modelling approach representing both macro geometry and micr... In order to support the functional design and simulation and the final fabrication processes for functional surfaces,it is necessary to obtain a multi-scale modelling approach representing both macro geometry and micro details of the surface in one unified model.Based on the fractal geometry theory,a synthesized model is proposed by mathematically combining Weierstrass-Mandelbrot fractal function in micro space and freeform CAGD model in macro space.Key issues of the synthesis,such as algorithms for fractal interpolation of freeform profiles,and visualization optimization for fractal details,are addressed.A prototype of the integration solution is developed based on the platform of AutoCAD's Object ARX,and a few multi-scale modelling examples are used as case studies.With the consistent mathematic model,multi-scale surface geometries can be represented precisely.Moreover,the visualization result of the functional surfaces shows that the visualization optimization strategies developed are efficient. 展开更多
关键词 分形几何理论 多尺度建模 功能表面 设计模型 计算机辅助 合成 WEIERSTRASS OBJECTARX
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部