期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Substituent Effects on 13C NMR and 1H NMR Chemical Shifts of CH=N in Multi-substituted Benzylideneanilines
1
作者 曹朝暾 王琳艳 曹晨忠 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第1期45-51,I0001,共8页
Fifty-three samples of multi-substituted benzylideneanilines XArCH=NArYs (abbreviated XBAYs) were synthesized and their NMR spectra were determined. An extensional study of substituent effects on the 1H NMR chemical... Fifty-three samples of multi-substituted benzylideneanilines XArCH=NArYs (abbreviated XBAYs) were synthesized and their NMR spectra were determined. An extensional study of substituent effects on the 1H NMR chemical shifts (δH(CH=N)) and 13C NMR chemical shifts (δc(CH=N)) of the CH=N bridging group from di-substituted to multi-substituted XBAYs was made based on a total of 182 samples of XBAYs, together with the NMR data of other 129 samples of di-substituted XBAYs quoted from literatures. The results show thatthe substituent specific cross-interaction effect parameter (△(∑σ)2) plays an important role in quantifying the δc(CH=N) values of XBAYs, but it is negligible for quantifying the δH (CH=N) values; the other substituent parameters also present different influences on the δc (CH=N) and (δH (CH=N). On the whole, the contributions of X and Y to the δc (CH=N) of XBAYs are balanced, but the δH(CH=N) values of XBAYs mainly rely on the contributions of X. 展开更多
关键词 Multi-substituted benzylideneanilines Substituent effects 1H NMR chemicalshifts 13c NMR chemical shifts Substituent specific cross-interaction effect
下载PDF
DFT Studies on Thermal Stabilities,Electronic Structures,and ^(13)C Chemical Shifts of C_(24)O_2 Based on Fullerene C_(24)(D_6) 被引量:2
2
作者 王振 张静 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2011年第5期666-671,共6页
Quantum chemical calculations on some possible equilibrium geometries of C24O2 isomers derived from C24 (D6) and C24O have been performed using density functional theory (DFT) method. The geometric and electronic ... Quantum chemical calculations on some possible equilibrium geometries of C24O2 isomers derived from C24 (D6) and C24O have been performed using density functional theory (DFT) method. The geometric and electronic structures as well as the relative energies and thermal stabilities of various C24O2 isomers at the ground state have been calculated at the B3LYP/6-31G(d) level of theory. And the 1,4,2,5-C24O2 isomer was found to be the most stable geometry where two oxygen atoms were added to the longest carbon-carbon bonds in the same pentagon from a thermodynamic point of view. Based on the optimized neutral geometries, the vertical ionization potential and vertical electron affinity have been obtained. Meanwhile, the vibrational frequencies, IR spectrum, and 13C chemical shifts of various C24O2 isomers have been calculated and analyzed. 展开更多
关键词 C24O2 thermal stabilities 13c chemical shifts B3LYP/6-31G(d)
下载PDF
Prediction of the ^(13)C NMR Chemical Shifts of Stilbene Analogues by GIAO Method 被引量:2
3
作者 XIE Hui-ding LI Yu-peng QIU Kai-xiong LIU Bo CHEN Ya-ping 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第6期1016-1019,共4页
After the geometry optimization at B3LYP/6-31+G(d,p) level,the calculations of the NMR chemical shifts of a series of stilbene analogues were carried out by means of Gauge Including Atomic Orbitals(GIAO) method a... After the geometry optimization at B3LYP/6-31+G(d,p) level,the calculations of the NMR chemical shifts of a series of stilbene analogues were carried out by means of Gauge Including Atomic Orbitals(GIAO) method at HF/6-31+G(d) level and B3LYP/6-311G+(2d,p) level,respectively.The 13C NMR chemical shifts calculated at both HF/6-31+G(d) and B3LYP/6-31+G(d,p) levels are in agreement with the observed values.By virtue of a series of linear correction equations(δpred.=a+bδcalcd.) of the 13C chemical shifts,accurate prediction of 13C chemical shifts was achieved for the new stilbene compounds.For the 13C NMR chemical shifts calculated at HF/6-31+G(d) level,the linear correlation of δpred.with δexptl.is excellent,and the square of correlation coefficient,r2,is 0.9985.The maximum absolute difference between δpred.and δexptl.,Δδ,is 2.3,and the root-mean-square error between δpred.and δexptl.is 0.98.In the meantime,for those obtained at B3LYP/6-31+G(d,p) level,the linear correlation of δpred.with δexptl.is also excellent,and the square of correlation coefficient,r2,is up to 0.9987.The maximum absolute difference between δpred.and δexptl.,Δδ,is 2.2,and the root-mean-square error between δpred.and δexptl.is only 0.88. 展开更多
关键词 Stilbene analogue ^13c NMR chemical shift PREDICTION
下载PDF
Prediction of the ^(13)C NMR Chemical Shifts of Fluorenone Analogues by the GIAO Method 被引量:2
4
作者 李玉鹏 谢惠定 +2 位作者 黄燕 郭蕴苹 章小丽 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第5期682-685,共4页
After the geometry optimization at B3LYP/6-31+G(d,p) level,the NMR calcula-tions of a series of fluorenone analogues have been carried out by GIAO method at HF/6-31+G(d) level and B3LYP/6-311G+(2d,p) level,re... After the geometry optimization at B3LYP/6-31+G(d,p) level,the NMR calcula-tions of a series of fluorenone analogues have been carried out by GIAO method at HF/6-31+G(d) level and B3LYP/6-311G+(2d,p) level,respectively.The 13C NMR chemical shifts calculated at HF/6-31+G(d) level show better agreement with the observed values.By a series of linear correction equations (δpred=a + bδcalc),accurate prediction of 13C chemical shifts was achieved for the new fluorenone compound.The linear correlation of δpred with δexptl is excellent,and the square of correlation coefficient,r2,is up to 0.994.The maximum absolute difference between δpred and δexptl,Δδ,is 4.6 ppm,and the root-mean-square error between δpred and δexptl is only 2.6 ppm. 展开更多
关键词 fluorenone analogues 13c NMR chemical shifts PREDICTION
下载PDF
Prediction of the ^(13)C NMR Chemical Shifts of 9,10-Dihydrophenanthrene Analogues by the GIAO Method
5
作者 谢惠定 李玉鹏 +2 位作者 邱开雄 简虹 付继军 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2011年第11期1537-1542,共6页
After the geometry optimizations at the B3LYP/6-31+G(d,p) level, the NMR calculations of a series of 9,10-dihydrophenanthrene analogues have been carried out by GIAO method at the HF/6-31+G(d) level. The calcula... After the geometry optimizations at the B3LYP/6-31+G(d,p) level, the NMR calculations of a series of 9,10-dihydrophenanthrene analogues have been carried out by GIAO method at the HF/6-31+G(d) level. The calculated ^13C NMR chemical shifts are in agreement with the observed values. By a series of linear correlation equations (δpred = a + bδcal.c) of the ^13C chemical shifts, accurate prediction of ^13C chemical shifts was achieved for the new 9,10- dihydrophenanthrene compound, for which the predicted ^13C NMR chemical shifts are in quite good agreement with the experimental values. The linear correlation between δpred and δexptl is excellent, and the square of correlation coefficient, r^2, is up to 0.9973. The maximum absolute difference between δpred and δexptl, △δ, is 4.5 ppm, and the rms error between δpred and δexpt is 2.55 ppm. In the meantime, according to the theoretical predicted result, we could confirm that the new 9,10-dihydrophenanthrene analogue is erianthridin (2,7-dihydroxy-3,4-dimethoxy-9,10-dihydro- phenanthrene). 展开更多
关键词 9 10-dihydrophenanthrene analogues ^13c NMR chemical shifts PREDICTION
下载PDF
SUBSTITUENT CHEMICAL SHIFT (SCS) AND THE SEQUENCE STRUCTURE OF ETHYLENE-VINYL ALCOHOL COPOLYMERS
6
作者 周子南 田文晶 +4 位作者 吴盛容 戴莹琨 冯之榴 沈联芳 袁汉珍 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1992年第4期299-303,共5页
Three ethylene-vinyl alcohol copolymers were studied by means of the substituent chemical shift (SCS) method. The SCS parameters of hydroxy (-OH) in two different solvents were obtained: in deuterium oxide/phenol (20/... Three ethylene-vinyl alcohol copolymers were studied by means of the substituent chemical shift (SCS) method. The SCS parameters of hydroxy (-OH) in two different solvents were obtained: in deuterium oxide/phenol (20/80 W/W ) the parameters are S_1 = 42.77±0.08ppm, S_2 = 7.15±0.06 ppm, S_3 (s)= -4.08±0.02ppm, S_3 (t) =-3.09±0.20ppm,S_4 = 0.48±0.03ppm, S_5 = 0.26±0.05ppm. In o-dichloro-benzen-d_4 S_1(s)=44.79±0.61ppm, S_2=7.40±0.00ppm, S_3(s)=-4.51±0.17ppm, S_3(t)=-3.13 ±0.00 ppm, S_4 =0.63±0.04ppm, S_5=0.36±0.00ppm.Simultaneously the ^(13)CNMR spectra of EVA copolymers were assigned by using the SCS parameters obtained. 展开更多
关键词 Ethylene-α-olefine copolymers Sequence structure Substituent chemical shift (SCS) ^(13)C NMR.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部