The development of technologies such as big data and cyber-physical systems (CPSs) has increased the demand for product design. Product digital design involves completing the product design process using advanced di...The development of technologies such as big data and cyber-physical systems (CPSs) has increased the demand for product design. Product digital design involves completing the product design process using advanced digital technologies such as geometry modeling, kinematic and dynamic simulation, multi- disciplinary coupling, virtual assembly, virtual reality (VR), multi-objective optimization (MOO), and human-computer interaction. The key technologies of intelligent design for customized products include: a description and analysis of customer requirements (CRs), product family design (PFD) for the customer base, configuration and modular design for customized products, variant design for customized products, and a knowledge push for product intelligent design. The development trends in intelligent design for customized products include big-data-driven intelligent design technology for customized products and customized design tools and applications. The proposed method is verified by the design of precision computer numerical control (CNC) machine tools.展开更多
The rapid development of micro-electronics raises the demand of their power sources to be simplified,miniaturized and highly integratable with other electronics on a chip.In-plane Micro-sized energy storage devices(ME...The rapid development of micro-electronics raises the demand of their power sources to be simplified,miniaturized and highly integratable with other electronics on a chip.In-plane Micro-sized energy storage devices(MESDs),which are composed of interdigitated electrodes on a single chip,have aroused particular attentions since they could be easily integrated with other miniaturized electronics,reducing the complexity of overall chip design via removing complex interconnections with bulky power sources.This review highlights the achievements in the device fabrication of in-plane MESDs,as well as their integration and intelligent designs.We also discussed the current challenges and future perspectives for the development of in-plane MESDs.展开更多
A hybrid reasoning model was proposed in which CBR(case-based reasoning)was applied to the conceptual design and RBR(rule-based reasoning)was applied to the detailed design after research of the design process and dom...A hybrid reasoning model was proposed in which CBR(case-based reasoning)was applied to the conceptual design and RBR(rule-based reasoning)was applied to the detailed design after research of the design process and domain knowledge of the aero-engine turbine blade investment casting mold design field.In the conceptual design stage,the representation and retrieval technologies were researched which improve the retrieval efficiency.Meanwhile,RBR was used to modify the retrieval result.The experimentation shows that the approach in this study can be used to obtain a more satisfactory design result.展开更多
Efficient methods for incorporating engineering experience into the intelligent generation and optimization of shear wall structures are lacking,hindering intelligent design performance assessment and enhancement.This...Efficient methods for incorporating engineering experience into the intelligent generation and optimization of shear wall structures are lacking,hindering intelligent design performance assessment and enhancement.This study introduces an assessment method used in the intelligent design and optimization of shear wall structures that effectively combines mechanical analysis and formulaic encoding of empirical rules.First,the critical information about the structure was extracted through data structuring.Second,an empirical rule assessment method was developed based on the engineer's experience and design standards to complete a preliminary assessment and screening of the structure.Subsequently,an assessment method based on mechanical performance and material consumption was used to compare different structural schemes comprehensively.Finally,the assessment effectiveness was demonstrated using a typical case.Compared to traditional assessment methods,the proposed method is more comprehensive and significantly more efficient,promoting the intelligent transformation of structural design.展开更多
A method to set up 3D collar prototype is developed in this paper by using the technique of cubic spline and bicubic surface patch. Then the relationship between the parameters of 3D collar prototype and different col...A method to set up 3D collar prototype is developed in this paper by using the technique of cubic spline and bicubic surface patch. Then the relationship between the parameters of 3D collar prototype and different collar styles are studied. Based on the relationship, we can develop some algorithms of transferring style requirements to the parameters value of the collar prototype, and obtain some generation rules for the design of 3D collar style. As such, the knowledge base can be constructed, and the intelligent design system of 3D collar style is built. Using the system, various 3D collar styles can be designed automatically to satisfy various style requirements.展开更多
At present, the main work of electron optical system CAD is solving equations and calculating mumerical values. However, the design perhaps needs more inference and expertise than numerical calculations because the st...At present, the main work of electron optical system CAD is solving equations and calculating mumerical values. However, the design perhaps needs more inference and expertise than numerical calculations because the structure of electron lens system is complicated. In this paper, a primary expert system is applied to design the electron lens system intelligently. This expert system is combined with SEU-3D program which is used to simulate the electron optical system to optimize the electron lens systems. In spite of this, the expert system which is established in this paper can also be used to diagnose the electron lens system. Although the knowledge base is small and rules are not abundant, this paper has used this system to obtain some very useful results. The initial success with this system suggests that further work need to be done whether more rules and knowledge will be added to extend the ability of expert system.展开更多
Plastic forming is one of enabling and fundamental technologies in advanced manufacturing chains. Design optimization is a critical way to improve the performance of the forming system, exploit the advantages of high ...Plastic forming is one of enabling and fundamental technologies in advanced manufacturing chains. Design optimization is a critical way to improve the performance of the forming system, exploit the advantages of high productivity, high product quality, low production cost and short time to market and develop precise, accurate, green, and intelligent(smart) plastic forming technology. However, plastic forming is quite complicated, relating to multi-physics field coupling,multi-factor influence, multi-defect constraint, and triple nonlinear, etc., and the design optimization for plastic forming involves multi-objective, multi-parameter, multi-constraint, nonlinear,high-dimensionality, non-continuity, time-varying, and uncertainty, etc. Therefore, how to achieve accurate and efficient design optimization of products, equipment, tools/dies, and processing as well as materials characterization has always been the research frontier and focus in the field of engineering and manufacturing. In recent years, with the rapid development of computing science, data science and internet of things(Io T), the theories and technologies of design optimization have attracted more and more attention, and developed rapidly in forming process. Accordingly, this paper first introduced the framework of design optimization for plastic forming. Then, focusing on the key problems of design optimization, such as numerical model and optimization algorithm,this paper summarized the research progress on the development and application of the theories and technologies about design optimization in forming process, including deterministic and uncertain optimization. Moreover, the applicability of various modeling methods and optimization algorithms was elaborated in solving the design optimization problems of plastic forming. Finally, considering the development trends of forming technology, this paper discusses some challenges of design optimization that may need to be solved and faced in forming process.展开更多
To solve the problems in turbine blade investment casting die design process such as long design time,lacking of expert experience and low level of intelligence,knowledge-based engineering (KBE) was introduced in the ...To solve the problems in turbine blade investment casting die design process such as long design time,lacking of expert experience and low level of intelligence,knowledge-based engineering (KBE) was introduced in the turbine blade investment casting die design field. The key technologies of the intelligent design method were researched and a prototype system was developed. A hybrid reasoning model was prompted in which case-based reasoning (CBR) was applied to conceptual design and rule-based reasoning (RBR) was applied to parts design after research the design process and domain knowledge of casting die. In the conceptual design stage,a retrieval model which integrated nearest neighbor approach and knowledge-based retrieval approach was prompted to improve the retrieval efficiency. Meanwhile,RBR was used to modify the retrieval result. The practical application results indicate that this system can reuse the expert experience efficiently and heighten the die design efficiency and quality.展开更多
The rich and colorful leather design brings a broad stage of fashion design in the past, China's leather (leather) clothing brand single, old style, color: black, blue, is brown. The economic and cultural developm...The rich and colorful leather design brings a broad stage of fashion design in the past, China's leather (leather) clothing brand single, old style, color: black, blue, is brown. The economic and cultural development, leading the fashion changes, the concept is also constantly promote the development of a new direction, to the consumer, aesthetic with the change of consumption concept, the fur (leather) apparel consumption presents a civilian, personalized, ideal trend, leather (leather) clothing to reflects personal charm and style of the clothing style, design aesthetic appreciation, knowledge and other aspects of the new technology and new materials to absorb human body art is to stimulate leather (leather) the change of clothing. With the continuous development of science and technology, intelligent garment customization to the majority of consumers, the effect of intelligent custom fur (leather) three direction costumes (fabrics, colors, styles) for innovative research, get a Of leather (leather) costumes to break the current leather (leather) styles of dull shape, rich leather (leather) and other clothing charm, for the fur (leather) costumes to all ages personality need to provide ideas and new development space.展开更多
Based on extenics, an extensive functional information model(function-behavioral action-structure-environmental constraint) of the mechanical productintelligent conceptual design is developed, and the mechanism of the...Based on extenics, an extensive functional information model(function-behavioral action-structure-environmental constraint) of the mechanical productintelligent conceptual design is developed, and the mechanism of theoretic structure solutions isproduced, the mapping relations between function-behavior and behavior-structure are analyzed. Themodel is applied to the filling material system's conceptual design to verify validity.展开更多
Design intelligence,namely,artificial intelligence to solve creative problems and produce creative ideas,has improved rapidly with the new generation artificial intelligence.However,existing methods are more skillful ...Design intelligence,namely,artificial intelligence to solve creative problems and produce creative ideas,has improved rapidly with the new generation artificial intelligence.However,existing methods are more skillful in learning from data and have limitations in creating original ideas different from the training data.Crowdsourcing offers a promising method to produce creative designs by combining human inspiration and machines' computational ability.We propose a crowdsourcing intelligent design method called ‘flexible crowdsourcing design'.Design ideas produced through crowdsourcing design can be unreliable and inconsistent because they rely solely on selection among participants' submissions of ideas.In contrast,the flexible crowdsourcing design method employs a cultivation procedure that integrates the ideas from crowd participants and cultivates these ideas to improve design quality at the same time.We introduce a series of studies to show how flexible crowdsourcing design can produce original design ideas consistently.Specifically,we will describe the typical procedure of flexible crowdsourcing design,the refined crowdsourcing tasks,the factors that affect the idea development process,the method for calculating idea development potential,and two applications of the flexible crowdsourcing design method.Finally,it summarizes the design capabilities enabled by crowdsourcing intelligent design.This method enhances the performance of crowdsourcing design and supports the development of design intelligence.展开更多
Issues on intelligent resource description and multiple intelligent resources integration for lntemet based collaborative design are analyzed. A performance-based intelligent resource description model for lnternet-ba...Issues on intelligent resource description and multiple intelligent resources integration for lntemet based collaborative design are analyzed. A performance-based intelligent resource description model for lnternet-based product design is proposed, which can help to create, store, manipulate and exchange intelligent resource description information for applications, tools and systems in Interact-based product design. A method to integrate multiple intelligent resources to fulfill a complex product design and analysis via lntemet is also proposed. A real project for improving the bearing system design of a turbo-expander with many intelligent resources in prominent universities is presented as a case study.展开更多
The procedure during complex system plan design of welding position-locating machine is studied in this paper. The main difficulties in designing welding position-locating machine utilizing computer are discussed as w...The procedure during complex system plan design of welding position-locating machine is studied in this paper. The main difficulties in designing welding position-locating machine utilizing computer are discussed as well. A method of case-based intelligent CAD system for welding position-locating machine ( WMICAD) is put forward through wide research on design methodology. Object-oriented programming method is also applied to Ms system. The basic idea and realizing method are described.展开更多
With the development of the times,the contradiction between human living and the natural environment becomes increasingly prominent.People pay more and more attention to the protection of the natural environment while...With the development of the times,the contradiction between human living and the natural environment becomes increasingly prominent.People pay more and more attention to the protection of the natural environment while improving the living standard.While,the emergence of the ecological roof can greatly improve the urban ecological environment and make full use of the architectural space.On the premise of analyzing the current status and significance of research on the ecological roof,this paper puts forward some ideas about the research on the design of the ecological roof with intelligent management system which can be used as a reference for the design of the ecological roof in the future,based on giving full consideration to the factors of ecological energy-saving,environmental protection,economic development,etc.,and summarizing the shortcomings of the traditional ecological roof.展开更多
Applying intelligence algorithms to conceive nanoscale meta-devices becomes a flourishing and extremely active scientific topic over the past few years.Inverse design of functional nanostructures is at the heart of th...Applying intelligence algorithms to conceive nanoscale meta-devices becomes a flourishing and extremely active scientific topic over the past few years.Inverse design of functional nanostructures is at the heart of this topic,in which artificial intelligence(AI)furnishes various optimization toolboxes to speed up prototyping of photonic layouts with enhanced performance.In this review,we offer a systemic view on recent advancements in nanophotonic components designed by intelligence algorithms,manifesting a development trend from performance optimizations towards inverse creations of novel designs.To illustrate interplays between two fields,AI and photonics,we take meta-atom spectral manipulation as a case study to introduce algorithm operational principles,and subsequently review their manifold usages among a set of popular meta-elements.As arranged from levels of individual optimized piece to practical system,we discuss algorithm-assisted nanophotonic designs to examine their mutual benefits.We further comment on a set of open questions including reasonable applications of advanced algorithms,expensive data issue,and algorithm benchmarking,etc.Overall,we envision mounting photonic-targeted methodologies to substantially push forward functional artificial meta-devices to profit both fields.展开更多
Introducing a System-on-Chip (SoC) microcontroller (C8051F350) into a ceramic pressure sensor has resulted in the design of a intelligent sensor. An improved algorithm for digital phassensitive detection is used ...Introducing a System-on-Chip (SoC) microcontroller (C8051F350) into a ceramic pressure sensor has resulted in the design of a intelligent sensor. An improved algorithm for digital phassensitive detection is used to perform lock-in amplification of the sensor signal. The compensation for the sensor error is realized by the detection of the sensor's supply voltage and working temperature. The system also has the function of short/open circuit fault detection and can ommamicate with other digital equipment through an RS-485 communication interface. In the design, full utilization of the SoC microcontroller' s internal resource results in the simple hardware structure. Experimental results show that the error of the sensor is less than 0.5% at range ratio 1 : 10. Employing the microcontroller and using lock-in amplification algorithm are an effective method for achieving an intelligent sensor of slowly-varying physical quantities, thereby improving the measuring accuracy and performance.展开更多
Design and manufacture organizations currently suffer from a number of problems that aignificantly affect their productivity.Despite their fragmented efforts to automate portioas of operations,they still suffer from &...Design and manufacture organizations currently suffer from a number of problems that aignificantly affect their productivity.Despite their fragmented efforts to automate portioas of operations,they still suffer from 'islands' of designing and manufacturing automation,long lead time for semi-custom proposals and engineering work, lengthy cycles of product development and introduction into the market,and low morale due to boring,repetitive engineering and industrial design activities.Thereby,the integration of design and manufacturing poses to the CAD/CAM researchere a series of challenges.The paper introduces a methodology that allows for the integration of product design with manufacturing process planning and the application of a new software technology known as 'Object-Oriented Intelligent Programming' .The task is achieved through an object-oriented intelligent CAD/CAM environment where a design model from the CAD system can be analysed, and manufacturing process plans with specifications of machining can be automatically determined.The manufacturing information of a part is extracted from the 3D geometric model and the 2D engineering drawing,thus,both geometric and non-geometric attributes of a part can be obtained.展开更多
The key techniques of modular design of heavy duty NC mathine tools are described. Amodule definition modelfor modular design and manufacturing of heavy duty NC machine tools isbulit and the essential composition of t...The key techniques of modular design of heavy duty NC mathine tools are described. Amodule definition modelfor modular design and manufacturing of heavy duty NC machine tools isbulit and the essential composition of the module definition model (MDM) is discussed in detail. Itis composed of two models: the part definition model (PDM) and the module assembly model(MAM). The PDM and MAM are built and their structures are given. Using object-oriented know-ledge representation and based on these models, an intelligent support system of modular design forheavy duty NC machine tools is developed and implemented This system has been applied to thepractical use of Wuhan Heavy Duty Machine Tool Works展开更多
基金The work presented in this article is funded by the National Natural Science Foundation of China (51375012 and 51675478), the Science and Technology Plan Project of Zhejiang Province (2017C31002), and the Fundamental Research Funds for the Central Universities (2017FZA4003).
文摘The development of technologies such as big data and cyber-physical systems (CPSs) has increased the demand for product design. Product digital design involves completing the product design process using advanced digital technologies such as geometry modeling, kinematic and dynamic simulation, multi- disciplinary coupling, virtual assembly, virtual reality (VR), multi-objective optimization (MOO), and human-computer interaction. The key technologies of intelligent design for customized products include: a description and analysis of customer requirements (CRs), product family design (PFD) for the customer base, configuration and modular design for customized products, variant design for customized products, and a knowledge push for product intelligent design. The development trends in intelligent design for customized products include big-data-driven intelligent design technology for customized products and customized design tools and applications. The proposed method is verified by the design of precision computer numerical control (CNC) machine tools.
基金supported by the Ministry of Science and Technology of China(Grant No.2019YFA0705600)the National Natural Science Foundation of China(Grant Nos.51822205,21875121)+2 种基金the Natural Science Foundation of Tianjin(Grant Nos.18JCJQJC46300,19JCZDJC31900)the Ministry of Education of China(Grant No.B12015)the “Frontiers Science Center for New Organic Matter”,Nankai University(Grant No.63181206)。
文摘The rapid development of micro-electronics raises the demand of their power sources to be simplified,miniaturized and highly integratable with other electronics on a chip.In-plane Micro-sized energy storage devices(MESDs),which are composed of interdigitated electrodes on a single chip,have aroused particular attentions since they could be easily integrated with other miniaturized electronics,reducing the complexity of overall chip design via removing complex interconnections with bulky power sources.This review highlights the achievements in the device fabrication of in-plane MESDs,as well as their integration and intelligent designs.We also discussed the current challenges and future perspectives for the development of in-plane MESDs.
基金supported by National High-tech R&D Program(863 Program)(2006AA04Z144)Key Technologies R&D Program(2006BAF04B02)
文摘A hybrid reasoning model was proposed in which CBR(case-based reasoning)was applied to the conceptual design and RBR(rule-based reasoning)was applied to the detailed design after research of the design process and domain knowledge of the aero-engine turbine blade investment casting mold design field.In the conceptual design stage,the representation and retrieval technologies were researched which improve the retrieval efficiency.Meanwhile,RBR was used to modify the retrieval result.The experimentation shows that the approach in this study can be used to obtain a more satisfactory design result.
文摘Efficient methods for incorporating engineering experience into the intelligent generation and optimization of shear wall structures are lacking,hindering intelligent design performance assessment and enhancement.This study introduces an assessment method used in the intelligent design and optimization of shear wall structures that effectively combines mechanical analysis and formulaic encoding of empirical rules.First,the critical information about the structure was extracted through data structuring.Second,an empirical rule assessment method was developed based on the engineer's experience and design standards to complete a preliminary assessment and screening of the structure.Subsequently,an assessment method based on mechanical performance and material consumption was used to compare different structural schemes comprehensively.Finally,the assessment effectiveness was demonstrated using a typical case.Compared to traditional assessment methods,the proposed method is more comprehensive and significantly more efficient,promoting the intelligent transformation of structural design.
文摘A method to set up 3D collar prototype is developed in this paper by using the technique of cubic spline and bicubic surface patch. Then the relationship between the parameters of 3D collar prototype and different collar styles are studied. Based on the relationship, we can develop some algorithms of transferring style requirements to the parameters value of the collar prototype, and obtain some generation rules for the design of 3D collar style. As such, the knowledge base can be constructed, and the intelligent design system of 3D collar style is built. Using the system, various 3D collar styles can be designed automatically to satisfy various style requirements.
文摘At present, the main work of electron optical system CAD is solving equations and calculating mumerical values. However, the design perhaps needs more inference and expertise than numerical calculations because the structure of electron lens system is complicated. In this paper, a primary expert system is applied to design the electron lens system intelligently. This expert system is combined with SEU-3D program which is used to simulate the electron optical system to optimize the electron lens systems. In spite of this, the expert system which is established in this paper can also be used to diagnose the electron lens system. Although the knowledge base is small and rules are not abundant, this paper has used this system to obtain some very useful results. The initial success with this system suggests that further work need to be done whether more rules and knowledge will be added to extend the ability of expert system.
基金the National Natural Science Foundation of China (Nos. 51775441&51835011)the National Science Fund for Excellent Young Scholars (No.51522509)Research Fund of the State Key Laboratory of Solidification Processing (NWPU) of China (KP201608)。
文摘Plastic forming is one of enabling and fundamental technologies in advanced manufacturing chains. Design optimization is a critical way to improve the performance of the forming system, exploit the advantages of high productivity, high product quality, low production cost and short time to market and develop precise, accurate, green, and intelligent(smart) plastic forming technology. However, plastic forming is quite complicated, relating to multi-physics field coupling,multi-factor influence, multi-defect constraint, and triple nonlinear, etc., and the design optimization for plastic forming involves multi-objective, multi-parameter, multi-constraint, nonlinear,high-dimensionality, non-continuity, time-varying, and uncertainty, etc. Therefore, how to achieve accurate and efficient design optimization of products, equipment, tools/dies, and processing as well as materials characterization has always been the research frontier and focus in the field of engineering and manufacturing. In recent years, with the rapid development of computing science, data science and internet of things(Io T), the theories and technologies of design optimization have attracted more and more attention, and developed rapidly in forming process. Accordingly, this paper first introduced the framework of design optimization for plastic forming. Then, focusing on the key problems of design optimization, such as numerical model and optimization algorithm,this paper summarized the research progress on the development and application of the theories and technologies about design optimization in forming process, including deterministic and uncertain optimization. Moreover, the applicability of various modeling methods and optimization algorithms was elaborated in solving the design optimization problems of plastic forming. Finally, considering the development trends of forming technology, this paper discusses some challenges of design optimization that may need to be solved and faced in forming process.
文摘To solve the problems in turbine blade investment casting die design process such as long design time,lacking of expert experience and low level of intelligence,knowledge-based engineering (KBE) was introduced in the turbine blade investment casting die design field. The key technologies of the intelligent design method were researched and a prototype system was developed. A hybrid reasoning model was prompted in which case-based reasoning (CBR) was applied to conceptual design and rule-based reasoning (RBR) was applied to parts design after research the design process and domain knowledge of casting die. In the conceptual design stage,a retrieval model which integrated nearest neighbor approach and knowledge-based retrieval approach was prompted to improve the retrieval efficiency. Meanwhile,RBR was used to modify the retrieval result. The practical application results indicate that this system can reuse the expert experience efficiently and heighten the die design efficiency and quality.
文摘The rich and colorful leather design brings a broad stage of fashion design in the past, China's leather (leather) clothing brand single, old style, color: black, blue, is brown. The economic and cultural development, leading the fashion changes, the concept is also constantly promote the development of a new direction, to the consumer, aesthetic with the change of consumption concept, the fur (leather) apparel consumption presents a civilian, personalized, ideal trend, leather (leather) clothing to reflects personal charm and style of the clothing style, design aesthetic appreciation, knowledge and other aspects of the new technology and new materials to absorb human body art is to stimulate leather (leather) the change of clothing. With the continuous development of science and technology, intelligent garment customization to the majority of consumers, the effect of intelligent custom fur (leather) three direction costumes (fabrics, colors, styles) for innovative research, get a Of leather (leather) costumes to break the current leather (leather) styles of dull shape, rich leather (leather) and other clothing charm, for the fur (leather) costumes to all ages personality need to provide ideas and new development space.
基金This project is supported by National Natural Science Foundation of China(No.59990470-2)Doctorate Foundation of China (No.20010487024).
文摘Based on extenics, an extensive functional information model(function-behavioral action-structure-environmental constraint) of the mechanical productintelligent conceptual design is developed, and the mechanism of theoretic structure solutions isproduced, the mapping relations between function-behavior and behavior-structure are analyzed. Themodel is applied to the filling material system's conceptual design to verify validity.
基金supported by the National Natural Science Foundation of China(No.61672451)the National Basic Research Program(973)of China(No.2015CB352503)the Alibaba-Zhejiang University Joint Institute of Frontier Technologies
文摘Design intelligence,namely,artificial intelligence to solve creative problems and produce creative ideas,has improved rapidly with the new generation artificial intelligence.However,existing methods are more skillful in learning from data and have limitations in creating original ideas different from the training data.Crowdsourcing offers a promising method to produce creative designs by combining human inspiration and machines' computational ability.We propose a crowdsourcing intelligent design method called ‘flexible crowdsourcing design'.Design ideas produced through crowdsourcing design can be unreliable and inconsistent because they rely solely on selection among participants' submissions of ideas.In contrast,the flexible crowdsourcing design method employs a cultivation procedure that integrates the ideas from crowd participants and cultivates these ideas to improve design quality at the same time.We introduce a series of studies to show how flexible crowdsourcing design can produce original design ideas consistently.Specifically,we will describe the typical procedure of flexible crowdsourcing design,the refined crowdsourcing tasks,the factors that affect the idea development process,the method for calculating idea development potential,and two applications of the flexible crowdsourcing design method.Finally,it summarizes the design capabilities enabled by crowdsourcing intelligent design.This method enhances the performance of crowdsourcing design and supports the development of design intelligence.
基金This project is supported by National Natural Science Foundation of China (No.59990472)Doctor Foundation of Ministry of Education of China (No.20030698005, No.20050698016).
文摘Issues on intelligent resource description and multiple intelligent resources integration for lntemet based collaborative design are analyzed. A performance-based intelligent resource description model for lnternet-based product design is proposed, which can help to create, store, manipulate and exchange intelligent resource description information for applications, tools and systems in Interact-based product design. A method to integrate multiple intelligent resources to fulfill a complex product design and analysis via lntemet is also proposed. A real project for improving the bearing system design of a turbo-expander with many intelligent resources in prominent universities is presented as a case study.
文摘The procedure during complex system plan design of welding position-locating machine is studied in this paper. The main difficulties in designing welding position-locating machine utilizing computer are discussed as well. A method of case-based intelligent CAD system for welding position-locating machine ( WMICAD) is put forward through wide research on design methodology. Object-oriented programming method is also applied to Ms system. The basic idea and realizing method are described.
文摘With the development of the times,the contradiction between human living and the natural environment becomes increasingly prominent.People pay more and more attention to the protection of the natural environment while improving the living standard.While,the emergence of the ecological roof can greatly improve the urban ecological environment and make full use of the architectural space.On the premise of analyzing the current status and significance of research on the ecological roof,this paper puts forward some ideas about the research on the design of the ecological roof with intelligent management system which can be used as a reference for the design of the ecological roof in the future,based on giving full consideration to the factors of ecological energy-saving,environmental protection,economic development,etc.,and summarizing the shortcomings of the traditional ecological roof.
基金National Natural Science Foundation of China(No.62005224,61927820)National Key Research and Development Program of China(2017YFA0205700)。
文摘Applying intelligence algorithms to conceive nanoscale meta-devices becomes a flourishing and extremely active scientific topic over the past few years.Inverse design of functional nanostructures is at the heart of this topic,in which artificial intelligence(AI)furnishes various optimization toolboxes to speed up prototyping of photonic layouts with enhanced performance.In this review,we offer a systemic view on recent advancements in nanophotonic components designed by intelligence algorithms,manifesting a development trend from performance optimizations towards inverse creations of novel designs.To illustrate interplays between two fields,AI and photonics,we take meta-atom spectral manipulation as a case study to introduce algorithm operational principles,and subsequently review their manifold usages among a set of popular meta-elements.As arranged from levels of individual optimized piece to practical system,we discuss algorithm-assisted nanophotonic designs to examine their mutual benefits.We further comment on a set of open questions including reasonable applications of advanced algorithms,expensive data issue,and algorithm benchmarking,etc.Overall,we envision mounting photonic-targeted methodologies to substantially push forward functional artificial meta-devices to profit both fields.
基金supported by Research Project of "SUSTSpring Bud"(No.2008BWZ042)from Shandong University of Science and Technology
文摘Introducing a System-on-Chip (SoC) microcontroller (C8051F350) into a ceramic pressure sensor has resulted in the design of a intelligent sensor. An improved algorithm for digital phassensitive detection is used to perform lock-in amplification of the sensor signal. The compensation for the sensor error is realized by the detection of the sensor's supply voltage and working temperature. The system also has the function of short/open circuit fault detection and can ommamicate with other digital equipment through an RS-485 communication interface. In the design, full utilization of the SoC microcontroller' s internal resource results in the simple hardware structure. Experimental results show that the error of the sensor is less than 0.5% at range ratio 1 : 10. Employing the microcontroller and using lock-in amplification algorithm are an effective method for achieving an intelligent sensor of slowly-varying physical quantities, thereby improving the measuring accuracy and performance.
文摘Design and manufacture organizations currently suffer from a number of problems that aignificantly affect their productivity.Despite their fragmented efforts to automate portioas of operations,they still suffer from 'islands' of designing and manufacturing automation,long lead time for semi-custom proposals and engineering work, lengthy cycles of product development and introduction into the market,and low morale due to boring,repetitive engineering and industrial design activities.Thereby,the integration of design and manufacturing poses to the CAD/CAM researchere a series of challenges.The paper introduces a methodology that allows for the integration of product design with manufacturing process planning and the application of a new software technology known as 'Object-Oriented Intelligent Programming' .The task is achieved through an object-oriented intelligent CAD/CAM environment where a design model from the CAD system can be analysed, and manufacturing process plans with specifications of machining can be automatically determined.The manufacturing information of a part is extracted from the 3D geometric model and the 2D engineering drawing,thus,both geometric and non-geometric attributes of a part can be obtained.
文摘The key techniques of modular design of heavy duty NC mathine tools are described. Amodule definition modelfor modular design and manufacturing of heavy duty NC machine tools isbulit and the essential composition of the module definition model (MDM) is discussed in detail. Itis composed of two models: the part definition model (PDM) and the module assembly model(MAM). The PDM and MAM are built and their structures are given. Using object-oriented know-ledge representation and based on these models, an intelligent support system of modular design forheavy duty NC machine tools is developed and implemented This system has been applied to thepractical use of Wuhan Heavy Duty Machine Tool Works