In this manuscript,an algorithm for the computation of numerical solutions to some variable order fractional differential equations(FDEs)subject to the boundary and initial conditions is developed.We use shifted Legen...In this manuscript,an algorithm for the computation of numerical solutions to some variable order fractional differential equations(FDEs)subject to the boundary and initial conditions is developed.We use shifted Legendre polynomials for the required numerical algorithm to develop some operational matrices.Further,operational matrices are constructed using variable order differentiation and integration.We are finding the operationalmatrices of variable order differentiation and integration by omitting the discretization of data.With the help of aforesaid matrices,considered FDEs are converted to algebraic equations of Sylvester type.Finally,the algebraic equations we get are solved with the help of mathematical software like Matlab or Mathematica to compute numerical solutions.Some examples are given to check the proposed method’s accuracy and graphical representations.Exact and numerical solutions are also compared in the paper for some examples.The efficiency of the method can be enhanced further by increasing the scale level.展开更多
Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely...Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely.The aim of this paper is to study the similar problems about Fermat’s Last Theorem for multivariate(skew)-polynomials with any characteristic.展开更多
The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ...The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4))...Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4)),and their interaction with distinct irreducible polynomials.The primary aim is to enhance watermarking techniques for achieving imperceptibility,robustness,and efficient execution time.The research employs scene selection and adaptive thresholding techniques to streamline the watermarking process.Scene selection is used strategically to embed watermarks in the most vital frames of the video,while adaptive thresholding methods ensure that the watermarking process adheres to imperceptibility criteria,maintaining the video's visual quality.Concurrently,careful consideration is given to execution time,crucial in real-world scenarios,to balance efficiency and efficacy.The Peak Signal-to-Noise Ratio(PSNR)serves as a pivotal metric to gauge the watermark's imperceptibility and video quality.The study explores various irreducible polynomials,navigating the trade-offs between computational efficiency and watermark imperceptibility.In parallel,the study pays careful attention to the execution time,a paramount consideration in real-world scenarios,to strike a balance between efficiency and efficacy.This comprehensive analysis provides valuable insights into the interplay of GF multiplication tables,diverse irreducible polynomials,scene selection,adaptive thresholding,imperceptibility,and execution time.The evaluation of the proposed algorithm's robustness was conducted using PSNR and NC metrics,and it was subjected to assessment under the impact of five distinct attack scenarios.These findings contribute to the development of watermarking strategies that balance imperceptibility,robustness,and processing efficiency,enhancing the field's practicality and effectiveness.展开更多
In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatmen...In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct.展开更多
Let Abe the linear transformation on the linear space V in the field P, Vλibe the root subspace corresponding to the characteristic polynomial of the eigenvalue λi, and Wλibe the root subspace corresponding to the ...Let Abe the linear transformation on the linear space V in the field P, Vλibe the root subspace corresponding to the characteristic polynomial of the eigenvalue λi, and Wλibe the root subspace corresponding to the minimum polynomial of λi. Consider the problem of whether Vλiand Wλiare equal under the condition that the characteristic polynomial of Ahas the same eigenvalue as the minimum polynomial (see Theorem 1, 2). This article uses the method of mutual inclusion to prove that Vλi=Wλi. Compared to previous studies and proofs, the results of this research can be directly cited in related works. For instance, they can be directly cited in Daoji Meng’s book “Introduction to Differential Geometry.”展开更多
The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when th...The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.展开更多
A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view...A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view a number of algorithms.展开更多
Using the technique of integration within an ordered product of operators and the intermediate coordinatemomentum representation in quantum optics, as well as the excited squeezed state we derive a new form of Legendr...Using the technique of integration within an ordered product of operators and the intermediate coordinatemomentum representation in quantum optics, as well as the excited squeezed state we derive a new form of Legendre polynomials.展开更多
In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order linear partial differential equations. Our approach consists of reducing the problem to a set of linear...In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order linear partial differential equations. Our approach consists of reducing the problem to a set of linear equations by expanding the approximate solution in terms of shifted Legendre polynomials with unknown coefficients. The performance of presented method has been compared with other methods, namely Sinc-Galerkin, quadratic spline collocation and LiuLin method. Numerical examples show better accuracy of the proposed method. Moreover, the computation cost decreases at least by a factor of 6 in this method.展开更多
In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it f...In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it for solving the non-stiff initial value problems, being the continuous interpolant derived and collocated at grid and off-grid points. Numerical examples of ordinary differential equations (ODEs) are solved using the proposed methods to show the validity and the accuracy of the introduced algorithms. A comparison with fourth-order Runge-Kutta method is given. The ob-tained numerical results reveal that the proposed method is efficient.展开更多
For every astronomical instrument, the operating conditions are undoubtedly different from those defined in a setup experiment. Besides environmental conditions, the drives, the electronic cabinets containing heaters ...For every astronomical instrument, the operating conditions are undoubtedly different from those defined in a setup experiment. Besides environmental conditions, the drives, the electronic cabinets containing heaters and fans introduce disturbances that must be taken into account already in the preliminary design phase. Such disturbances can be identified as being mostly of two types: heat sources/sinks or cooling systems responsible for heat transfer via conduction, radiation, free and forced convection on one side and random and periodic vibrations on the other. For this reason, a key role already from the very beginning of the design process is played by integrated model merging the outcomes based on a Finite Element Model from thermo-structural and modal analysis into the optical model to estimate the aberrations. The current paper presents the status of such model, capable of analyzing the deformed surfaces deriving from both thermo-structural and vibrational analyses and measuring their effect in terms of optical aberrations by fitting them by Zernike and Legendre polynomial fitting respectively for circular and rectangular apertures. The independent contribution of each aberration is satisfied by the orthogonality of the polynomials and mesh uniformity.展开更多
基金Supporting Project No.(PNURSP2022R 14),Princess Nourah bint A bdurahman University,Riyadh,Saudi Arabia.
文摘In this manuscript,an algorithm for the computation of numerical solutions to some variable order fractional differential equations(FDEs)subject to the boundary and initial conditions is developed.We use shifted Legendre polynomials for the required numerical algorithm to develop some operational matrices.Further,operational matrices are constructed using variable order differentiation and integration.We are finding the operationalmatrices of variable order differentiation and integration by omitting the discretization of data.With the help of aforesaid matrices,considered FDEs are converted to algebraic equations of Sylvester type.Finally,the algebraic equations we get are solved with the help of mathematical software like Matlab or Mathematica to compute numerical solutions.Some examples are given to check the proposed method’s accuracy and graphical representations.Exact and numerical solutions are also compared in the paper for some examples.The efficiency of the method can be enhanced further by increasing the scale level.
基金supported by the National Natural Science Foundation of China(12131015,12071422).
文摘Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely.The aim of this paper is to study the similar problems about Fermat’s Last Theorem for multivariate(skew)-polynomials with any characteristic.
文摘The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
文摘Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4)),and their interaction with distinct irreducible polynomials.The primary aim is to enhance watermarking techniques for achieving imperceptibility,robustness,and efficient execution time.The research employs scene selection and adaptive thresholding techniques to streamline the watermarking process.Scene selection is used strategically to embed watermarks in the most vital frames of the video,while adaptive thresholding methods ensure that the watermarking process adheres to imperceptibility criteria,maintaining the video's visual quality.Concurrently,careful consideration is given to execution time,crucial in real-world scenarios,to balance efficiency and efficacy.The Peak Signal-to-Noise Ratio(PSNR)serves as a pivotal metric to gauge the watermark's imperceptibility and video quality.The study explores various irreducible polynomials,navigating the trade-offs between computational efficiency and watermark imperceptibility.In parallel,the study pays careful attention to the execution time,a paramount consideration in real-world scenarios,to strike a balance between efficiency and efficacy.This comprehensive analysis provides valuable insights into the interplay of GF multiplication tables,diverse irreducible polynomials,scene selection,adaptive thresholding,imperceptibility,and execution time.The evaluation of the proposed algorithm's robustness was conducted using PSNR and NC metrics,and it was subjected to assessment under the impact of five distinct attack scenarios.These findings contribute to the development of watermarking strategies that balance imperceptibility,robustness,and processing efficiency,enhancing the field's practicality and effectiveness.
文摘In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct.
文摘Let Abe the linear transformation on the linear space V in the field P, Vλibe the root subspace corresponding to the characteristic polynomial of the eigenvalue λi, and Wλibe the root subspace corresponding to the minimum polynomial of λi. Consider the problem of whether Vλiand Wλiare equal under the condition that the characteristic polynomial of Ahas the same eigenvalue as the minimum polynomial (see Theorem 1, 2). This article uses the method of mutual inclusion to prove that Vλi=Wλi. Compared to previous studies and proofs, the results of this research can be directly cited in related works. For instance, they can be directly cited in Daoji Meng’s book “Introduction to Differential Geometry.”
基金Project supported by the National Natural Science Foundation of China(No.12102131)the Natural Science Foundation of Henan Province of China(No.242300420248)the International Science and Technology Cooperation Project of Henan Province of China(No.242102521010)。
文摘The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.
文摘A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view a number of algorithms.
文摘Using the technique of integration within an ordered product of operators and the intermediate coordinatemomentum representation in quantum optics, as well as the excited squeezed state we derive a new form of Legendre polynomials.
文摘In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order linear partial differential equations. Our approach consists of reducing the problem to a set of linear equations by expanding the approximate solution in terms of shifted Legendre polynomials with unknown coefficients. The performance of presented method has been compared with other methods, namely Sinc-Galerkin, quadratic spline collocation and LiuLin method. Numerical examples show better accuracy of the proposed method. Moreover, the computation cost decreases at least by a factor of 6 in this method.
文摘In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it for solving the non-stiff initial value problems, being the continuous interpolant derived and collocated at grid and off-grid points. Numerical examples of ordinary differential equations (ODEs) are solved using the proposed methods to show the validity and the accuracy of the introduced algorithms. A comparison with fourth-order Runge-Kutta method is given. The ob-tained numerical results reveal that the proposed method is efficient.
文摘For every astronomical instrument, the operating conditions are undoubtedly different from those defined in a setup experiment. Besides environmental conditions, the drives, the electronic cabinets containing heaters and fans introduce disturbances that must be taken into account already in the preliminary design phase. Such disturbances can be identified as being mostly of two types: heat sources/sinks or cooling systems responsible for heat transfer via conduction, radiation, free and forced convection on one side and random and periodic vibrations on the other. For this reason, a key role already from the very beginning of the design process is played by integrated model merging the outcomes based on a Finite Element Model from thermo-structural and modal analysis into the optical model to estimate the aberrations. The current paper presents the status of such model, capable of analyzing the deformed surfaces deriving from both thermo-structural and vibrational analyses and measuring their effect in terms of optical aberrations by fitting them by Zernike and Legendre polynomial fitting respectively for circular and rectangular apertures. The independent contribution of each aberration is satisfied by the orthogonality of the polynomials and mesh uniformity.