期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Preparation and Anti⁃arc Erosion Property of Ag Matrix Electrical Contact Material Reinforced by Novel Ti_(2)Cd
1
作者 SUN Wanjie SHI Yuxin +4 位作者 DING Jianxiang REN Wanbin PAN Zhixiong ZHANG Peigen SUN Zhengming 《材料导报》 EI CAS CSCD 北大核心 2024年第21期190-196,共7页
Due to their outstanding electrical contact properties,Cd-containing silver-matrix electrical contact materials can meet the requirements of high stability and long life for military defense and aerospace applications... Due to their outstanding electrical contact properties,Cd-containing silver-matrix electrical contact materials can meet the requirements of high stability and long life for military defense and aerospace applications.In order to further reduce the Cd content under the premise of meeting the high-performance requirements,in this study,high-purity intermediate Ti_(2)Cd powder of MAX phase(Ti_(2)CdC)was synthesized with a pressureless technique and then applied to reinforce the Ag matrix.The Cd content of the as-prepared Ag/Ti_(2)Cd composites was actually reduced by 38.31%compared with conventional Ag/CdO material.Based on the systematic study of the effect of heat treatment temperature on the physical phase,morphology,interface and comprehensive physical properties of Ag/Ti_(2)Cd composites,the preferred samples(heat treated at 400°C for 1 h)showed high density(97.77%),low resistivity(2.34μΩ·cm),moderate hardness(90.8HV),high tensile strength(189.9 MPa),and exhibited good electrical contact performance after 40000 cycles of arc discharging under severe conditions(DC 28 V/20 A).The results of microscopic morphological evolution,phase change and elemental distribution of the electrical contact surface show that the combination of high stability of Ti_(2)Cd reinforcing phase,good interfacial bonding with Ag matrix and improved melt pool viscosity in the primary stage of arc erosion,results in low and stable contact resistance(average value 13.20 mΩ)and welding force(average value 0.6 N),low fluctuation of static force(2.2-2.5 N).The decomposition and absorption energy of Ti_(2)Cd and the arc extinguishing effect of Cd vapor are the main reasons for the stable arcing energy and arcing time of electric contacts in the late stage of arc erosion. 展开更多
关键词 low-voltage apparatus Ag matrix composite Ti-Cd compound electrical contact properties arc erosion mechanism
下载PDF
Arc erosion behaviors of AgSnO_2 contact materials prepared with different SnO_2 particle sizes 被引量:10
2
作者 张苗 王献辉 +2 位作者 杨晓红 邹军涛 梁淑华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期783-790,共8页
To clarify the effect of SnO2 particle size on the arc erosion behavior of AgSnO2 contact material, Ag?4%SnO2 (mass fraction) contact materials with different sizes of SnO2 particles were fabricated by powder metallur... To clarify the effect of SnO2 particle size on the arc erosion behavior of AgSnO2 contact material, Ag?4%SnO2 (mass fraction) contact materials with different sizes of SnO2 particles were fabricated by powder metallurgy. The microstructure of Ag?4%SnO2 contact materials was characterized, and the relative density, hardness and electrical conductivity were measured. The arc erosion of Ag?4%SnO2 contact materials was tested, the arc duration and mass loss before and after arc erosion were determined, the surface morphologies and compositions of Ag?4%SnO2 contact materials after arc erosion were characterized, and the arc erosion mechanism of AgSnO2 contact materials was discussed. The results show that fine SnO2 particle is beneficial for the improvement of the relative density and hardness, but decreases the electrical conductivity. With the decrease of SnO2 particle size, Ag?4%SnO2contact material presents shorter arc duration, less mass loss, larger erosion area and shallower arc erosion pits. 展开更多
关键词 AgSnO_2 contact materials SnO_2 particle size arc erosion electrical conductivity HARDNESS
下载PDF
Influence of alloy components on arc erosion morphology of Ag/MeO electrical contact materials 被引量:8
3
作者 吴春萍 易丹青 +2 位作者 翁桅 李素华 周孑民 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期185-195,共11页
Arc erosion morphologies of Ag/MeO(10) electrical contact materials after 50000 operations under direct current of 19 V and 20 A and resistive load conditions were investigated using scanning electron microscope(SE... Arc erosion morphologies of Ag/MeO(10) electrical contact materials after 50000 operations under direct current of 19 V and 20 A and resistive load conditions were investigated using scanning electron microscope(SEM) and a 3D optical profiler(3DOP). The results indicated that 3DOP could supply clearer and more detailed arc erosion morphology information. Arc erosion resistance of Ag/SnO_2(10) electrical contact material was the best and that of Ag/CuO(10) was the worst. Arc erosion morphology of Ag/MeO(10) electrical contact materials mainly included three different types. Arc erosion morphologies of Ag/ZnO(10) and Ag/SnO_2(10) electrical contact materials were mainly liquid splash and evaporation, and those of Ag/CuO(10) and Ag/CdO(10) were mainly material transfer from anode to cathode. Arc erosion morphology of Ag/SnO_2(6)In_2O_3(4) electrical contact materials included both liquid splash, evaporation and material transfer. In addition, the formation process and mechanism on arc erosion morphology of Ag/MeO(10) electrical contact materials were discussed. 展开更多
关键词 Ag/MeO electrical contact material alloy component arc erosion morphology three-dimensional optical profiler
下载PDF
Effect of La on arc erosion behaviors and oxidation resistance of Cu alloys 被引量:3
4
作者 李海燕 周轩 +1 位作者 卢雪琼 王亚平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期102-109,共8页
Cu with and without La addition was prepared and the effect of a trace amount of La on the arc erosion behaviors and oxidation resistance of Cu alloys was investigated. The results indicate that CuLa alloy exhibits su... Cu with and without La addition was prepared and the effect of a trace amount of La on the arc erosion behaviors and oxidation resistance of Cu alloys was investigated. The results indicate that CuLa alloy exhibits superior oxidation resistance and arc erosion resistance. The contact resistance and temperature rise were obviously improved. The oxidation resistance of CuLa alloy mainly is due to the interface wrapping of La2O3 particles and CuLa alloy phase on Cu atoms. Thermodynamic calculation indicated that La2O3 could form preferentially in the CuLa alloy, which was beneficial for the protection of the Cu substrate. According to kinetics analysis, the activation energy of CuLa alloy was higher than that of pure Cu, indicating the better oxidation resistance of CuLa alloys. 展开更多
关键词 CuLa alloy arc erosion contact resistance OXIDATION interface wrapping
下载PDF
Arc erosion of AgSnO_2 electrical contacts at different stages of a break operation 被引量:41
5
作者 J. Swingler A. Sumption 《Rare Metals》 SCIE EI CAS CSCD 2010年第3期248-254,共7页
Arc erosion studies are conducted on AgSnO2 contact materials at different stages in the break operation. A resistive load arrangement is used with up to 42 V DC at 24 A and a constant contact opening velocity. The ar... Arc erosion studies are conducted on AgSnO2 contact materials at different stages in the break operation. A resistive load arrangement is used with up to 42 V DC at 24 A and a constant contact opening velocity. The arc current is terminated at different stages as the arc is drawn between the contacts enabling a study of the arcing phenomena up to that point. Surface profiling of the contacts is conducted to determine the extent of erosion at the different stages as the arc is drawn. Spectral analysis is also conducted on the arc and then related to the extent of erosion. The results show that particular features occur at different stages as the arc is drawn. As the arc is initially established, it goes through an "Arc Generation" regime where the arc roots are small and immobile on both the anode and the cathode. Material transfer occurs mainly from anode to cathode. The spectral analysis indicates that Sn and O species dominate the arc followed by the Ag species. As the arc is drawn further and enters the "Arc Degeneration" regime, the anode undergoes significantly larger erosion than the cathode. Also, both contacts indicate that multiple arc roots have formed, which are highly mobile in the later stages of the discharge. The spectral analysis indicates that Ag and N species are in high concentrations compared to other species. The mechanisms of erosion and deposition are discussed in relation to the species within the arc discharge. For the complete break operation, it is found that the anode undergoes major erosion, and it is thought that the gaseous ions species do not dominate the arc under these conditions of short arcs and voltage 〈42 V to cause cathode erosion. 展开更多
关键词 contact materials electrical contacts arc erosion 3D surface profiles spectral analysis
下载PDF
Arc erosion behavior of a nanocomposite W-Cu electrical contact material 被引量:6
6
作者 CHEN Wenge KANG Zhanying +1 位作者 SHEN Hongfang DING Bingjun 《Rare Metals》 SCIE EI CAS CSCD 2006年第1期37-42,共6页
The erosion behavior of a nanocomposite W-Cu material under arc breakdown was investigated. The arc erosion rates of the material were determined, and the eroded surfaces and arc erosion mechanisms were studied by sca... The erosion behavior of a nanocomposite W-Cu material under arc breakdown was investigated. The arc erosion rates of the material were determined, and the eroded surfaces and arc erosion mechanisms were studied by scanning eleclion microscopy. It is concluded that the nanocomposite W-Cu electrical contact material shows a characteristic of spreading arcs. The arc breakdown of a commercially used W-Cu alloy was limited in a few areas, and its average arc erosion rate is twice as large as that of the former. Furthermore, it is also proved that the arc extinction ability and arc stability of the nanocomposite W-Cu material are excellent, and melting is the major failure modality in the make-and-break operation of arcs. 展开更多
关键词 arc erosion W-Cu alloy contact materials NANOCOMPOSITE
下载PDF
Preparation and Arc Erosion Resistance of C_f/Cu Composite by Vacuum Melting Infiltration 被引量:5
7
作者 张华煜 LIU Yiwen +1 位作者 ZHAO Xianling LUAN Xingang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第5期1039-1043,共5页
Cf/Cu composite was prepared by vacuum melting infiltration. Ti and Cr were doped to the Cu alloy to improve the wettability between Cu and carbon. The microstrueture was investigated by XRD, SEM and EDS. The arc eros... Cf/Cu composite was prepared by vacuum melting infiltration. Ti and Cr were doped to the Cu alloy to improve the wettability between Cu and carbon. The microstrueture was investigated by XRD, SEM and EDS. The arc erosion rate of Cf/Cu composite was investigated in vacuum. The results showed that the Ti and Cr could improve the wettability between Cu and C/C preform and the infiltration ability of Cu into C/ C preform greatly. A TiC interface formed between the fibers and matrix. The good bonding between the fiber and matrix guaranteed that part of the Cu matrix can still be bonded on the fibers even when the material was exposed to the plasma. Consequently, the carbon fibers were protected from the erosion. In comparison, Cu was completely consumed by the arc erosion. Hence, the graphite was eroded and presented a cauliflower-like morphology. Therefore, the prepared C/Cu bad better ability to resist the arc erosion, compared with common Cu-C material. 展开更多
关键词 Cf/Cu composite vacuum melting infiltration arc erosion
下载PDF
Influence of operation number on arc erosion behavior of Ag/Ni electrical contact materials 被引量:3
8
作者 Run-zhang HUANG Guo-fu XU +2 位作者 Qiong WU Meng YUAN Chun-ping WU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第8期2681-2695,共15页
Arc erosion behavior of Ag/Ni materials with different operation numbers was investigated by OM,3DOP and SEM.The results indicated that the arc erosion of Ag/10Ni electrical contact material fabricated by sintering−ex... Arc erosion behavior of Ag/Ni materials with different operation numbers was investigated by OM,3DOP and SEM.The results indicated that the arc erosion of Ag/10Ni electrical contact material fabricated by sintering−extrusion technology was more and more serious with the operation numbers increasing from 1000 to 40000.With the same operation numbers,the arc erosion on anode was more serious than that on cathode.Besides,the pores preferred to emerge around the arc effect spot during the first 10000 operations.And the morphology of the molten silver on cathode and anode was different due to the action of gravity and arc erosion.Furthermore,the relationships among arc energy,arc time,welding force,electric resistivity,temperature and mass change on contacts were discussed,which indicated that the mass loss on cathode was mainly caused by the fracture of molten bridge. 展开更多
关键词 Ag/Ni electrical contact material operation number arc erosion arc parameter
下载PDF
Effect of sintering temperature on morphology and arc erosion properties of La-Ni-O ceramic and its composites 被引量:1
9
作者 尹娜 王洪超 王春雷 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第3期506-509,共4页
Ceramic LaNiO3 samples were prepared by solid state reaction method at different sintering temperatures. It was found that the resultant was not ABO3 perovskite single phase but dual phase La2NiO4 and NiO, and the per... Ceramic LaNiO3 samples were prepared by solid state reaction method at different sintering temperatures. It was found that the resultant was not ABO3 perovskite single phase but dual phase La2NiO4 and NiO, and the percentage of the two phases varied with sintering temperature. Ceramics sintered at 1400 ℃ were well crystallized and the phase ratio of La2NiO4 was the maximum. The surface morphology observed by scanning electron microscopy (SEM) indicated that the grains of the ceramics sintered at 1400 ℃ were uniform and compact, which were in agreement with the properties of high density and low electrical resistivity of the samples. X-ray diffraction (XRD) patterns of ceramics before and after arc erosion indicated their high structural stability, which resulted in the good arc erosion resistance properties for silver-based electrical contact materials. The contact materials prepared with the ceramic sintered at 1400 ℃ exhibited better mass transition and arc erosion resisting properties. 展开更多
关键词 La-Ni-O ceramics perovskite-type oxides composite ceramics arc erosion rare earths
下载PDF
Research on arc erosion of silver-based alloy contact materials under low voltage,resistive load and small current at 400 Hz and 50 Hz 被引量:1
10
作者 Jing Li1,2,Zhi-ying Ma11. School of Electrical Engineering,Xi’an Jiaotong University,Xi’an 710049 2. School of Electrical Information,Hunan Institute of Engineering,Xiangtan 411101,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第3期149-154,共6页
By using a self-developed IF power and a ASTM contact material experimental system of small-capacity and variable frequency,the value of arcing characteristics and the welding force of the silver-based contact materia... By using a self-developed IF power and a ASTM contact material experimental system of small-capacity and variable frequency,the value of arcing characteristics and the welding force of the silver-based contact material are acquired under low voltage,resistive load and small current at 400 Hz and 50 Hz. By means of an electricity-ray analytical balance,SEM and EDAX,the weighing values of the contact materials and the changes of AgCdO,AgNi,AgC and AgW contact material surface profile and micro-area constituent are obtained and analyzed. The arc erosion causes of silver-based alloy contact materials at 400 Hz and 50 Hz are also discussed. 展开更多
关键词 silver-based alloy low voltage 400 Hz 50 Hz contact material arc erosion
下载PDF
Study of the Material Transfer Characteristics and Surface Morphology Due to Arc Erosion of PtIr Contact Materials 被引量:1
11
作者 WANG Saibei XIE Ming +6 位作者 YANG Youcai ZHANG Jiming CHEN Yongtai LIU Manmen YANG Yunfeng HU Jieqiong CUI Hao 《贵金属》 CAS CSCD 北大核心 2012年第A01期128-133,共6页
By means of breaking tests on PtIr contact materials via a JF04C contact material testing machine, it was attempted to elucidate the characteristics of the various surface morphology and material transfer after the ar... By means of breaking tests on PtIr contact materials via a JF04C contact material testing machine, it was attempted to elucidate the characteristics of the various surface morphology and material transfer after the arc erosion process caused by break arc. The material transfer characteristics appeared in the experiments were concluded and analyzed. Meanwhile, the morphology of the anode and cathode surface were observed and analyzed by SEM. 展开更多
关键词 PtIr contact materials arc erosion material transfer surface morphology
下载PDF
Preparation and Arc Erosion Characteristics of Ultrafine Crystalline CuCr50 Alloy by MA-SPS 被引量:1
12
作者 史昆玉 薛丽红 +1 位作者 YAN Youwei ZHAO Laijun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期1081-1085,共5页
The ultrafine crystalline CuCr50(Cr 50 wt%) alloys were fabricated by a combination of mechanical alloying and spark plasma sintering process. The effects of milling time on crystallite size and solid solubility of ... The ultrafine crystalline CuCr50(Cr 50 wt%) alloys were fabricated by a combination of mechanical alloying and spark plasma sintering process. The effects of milling time on crystallite size and solid solubility of the CuCr50 composite powders were investigated. The results showed that crystallite size of powders decreases gradually and solid solubility of Cr in Cu was extended with increasing milling time. The minimal crystallite size about 10 nm and the maximum solid solubility about 8.4 at%(i e, 7 wt%) were obtained at 60 h. The microstructure of ultrafine crystalline CuCr50 alloy was analyzed by SEM and TEM, which contains two kinds of size scale Cr particles of 2 μm and 50-150 nm, distributing homogeneously in matrix, respectively. The arc erosion characteristics of ultrafine crystalline CuCr50 alloy were investigated by the vacuum contact simulation test device in low D.C. voltage and low current(24 V/10 A). A commercial microcrystalline CuCr50 alloy was also investigated for comparison. Experiments indicate that the cathode mass loss of ultrafine crystalline CuCr50 contact material is higher than that of microcrystalline CuCr50 material, but its eroded surface morphology by the arc is uniform without obvious erosion pits. While the surface of microcrystalline CuCr50 contact is seriously eroded in local area by the arc, an obvious erosion pit occurred in the core part. Therefore, the ability of arc erosion resistance of ultrafine crystalline CuCr50 alloy is improved compared to that of microcrystalline CuCr50 material. 展开更多
关键词 mechanical alloying spark plasma sintering ultrafine crystalline CuCr50 alloys arc erosion characteristics
下载PDF
Contact Resistance and Arc Erosion of Tungsten-copper Contacts in Direct Currents
13
作者 马窦琴 XIE Jingpei +2 位作者 LI Jiwen WANG Aiqin WANG Wenyan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期816-822,共7页
The arc erosion under medium direct currents in the argon flow was tested on tungsten-copper(W-Cu) contacts which were processed by hot extrusion and heat treatment. The scanning electron microscopy(SEM) and trans... The arc erosion under medium direct currents in the argon flow was tested on tungsten-copper(W-Cu) contacts which were processed by hot extrusion and heat treatment. The scanning electron microscopy(SEM) and transmission electron microscopy(TEM) were used to study the microstructure of the W-Cu powders and compacts. The contact resistance, arcing energy, and arcing time were continuously measured by JF04C contact materials test system. Changes in tungsten-copper contact surface were observed by SEM. The test results showed that the arcing time and arcing energy all increase with current and voltage, but the changes of average contact resistance are more complicated. For a short arcing time, the average contact resistance decreases with increasing current due to the vaporization of Cu. However, for a longer arcing time, it slightly increases due to the formation of high resistant films, compound copper tungsten. The formation of compound copper tungsten was confirmed by the increased Rc kept in the range from 1.1 to 1.6 mΩ. The compound copper tungsten is first exposed with a tungsten and copper-rich surface, and then totally exposed due to evaporation of copper from the surface. At last a stabilized surface is created and the crystals decrease from 8 μm to 2 μm caused by the arc erosion. 展开更多
关键词 Tungsten-copper contacts arc erosion contact resistance surface analysis
下载PDF
Investigation on the arc erosion performance of Ag–Ta_(2)AlCcomposite under air conditions
14
作者 Xiaochen Huang Liang Li +2 位作者 Jinlong Ge Hao Zhao Zijue Zhou 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第9期1359-1368,共10页
The Ta_(2)AlC material is designed to enhance the performance of Ag-based electrical contact materials as areinforcement phase.With a work function of 6.7192 eV,Ta_(2)AlC demonstrated significantly higher values thanr... The Ta_(2)AlC material is designed to enhance the performance of Ag-based electrical contact materials as areinforcement phase.With a work function of 6.7192 eV,Ta_(2)AlC demonstrated significantly higher values thanreinforcement phase materials such as SnO_(2),ZrO_(2),and the commonly used MAX phase materials.Consequently,the arcerosion performance of an Ag–Ta_(2)AlC composite was investigated under air conditions.Gas breakdown mainly occurreddue to electron avalanches,with the observation of a streamer breakdown mechanism in a strongly nonuniform field.Thearc exhibited concentrated erosion on the surface of the Ag–20 vol%Ta_(2)AlC material,resulting in a higher arc energy.Asthe volume fraction of the Ta_(2)AlC material increased to 30%and 40%,the eroded area became more dispersed.Inparticular,Ag–30 vol%Ta_(2)AlC displayed the lowest arc energy(3.395 kJ)and shortest arcing time(33.26 ms).Among thefour tested components,the Ag–30 vol%Ta_(2)AlC composite demonstrated superior arc erosion resistance.Oxides of Ag_(2)O,AgO,Ta_(2)O_(5),and Al_(2)O_(3)were formed through the interaction of ionized Ag and Ta_(2)AlC particles.By combining theelectromagnetic force and plasma flow force,sputtered particles and bulges were generated on the eroded surface.Theseresearch findings contribute to broadening the applications of Ag–MAX materials in the realm of electrical contacts. 展开更多
关键词 MAX phase electrical contact materials surface oxidation arc erosion STREAMER
原文传递
Effects of different atmospheres on the arc erosion behaviors of Ti_(3)SiC_(2)cathodes 被引量:4
15
作者 ZHOU ZiJue FENG Yi +4 位作者 ZHAO Hao QIAN Gang ZHANG JingCheng ZHANG XueBin HUANG XiaoChen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第3期620-628,共9页
The effects of ambient atmospheres on the arc erosion behaviors of Ti_(3)SiC_(2)cathodes were investigated at 5.5 kV in argon,nitrogen,air,and oxygen.The mass loss of the cathodes increased in the order of argon,nitro... The effects of ambient atmospheres on the arc erosion behaviors of Ti_(3)SiC_(2)cathodes were investigated at 5.5 kV in argon,nitrogen,air,and oxygen.The mass loss of the cathodes increased in the order of argon,nitrogen,air,and oxygen and the morphologies were measured by 3D laser scanning confocal microscope with a gradual blooming phenomenon.Raman spectroscopy,X-ray diffraction,and X-ray photoelectron spectroscopy were employed to detect the components of erosion regions.The erosion-chemical products mainly consisted of TiNx in nitrogen,TiN_(x),TiO_(2)and SiO_(2)in air,TiO_(2)and SiO_(2)in oxygen.The arc energy was responsible for the arc erosion characteristics in different atmospheres. 展开更多
关键词 Ti_(3)SiC_(2) ATMOSPHERE arc erosion
原文传递
Effect of La_(2)Sn_(2)O_(7)content on Ag-La_(2)Sn_(2)O_(7)/SnO_(2)arc erosion behavior and mechanism 被引量:2
16
作者 Mengli Cao Yi Feng +3 位作者 Lili Wang Ting Zhao Hao Zhao Zijue Zhou 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第9期1488-1498,I0006,共12页
La_(2)Sn_(2)O_(7)/SnO_(2)powder was synthesized by chemical co-precipitation method,and Ag-La_(2)Sn_(2)O_(7)/SnO_(2)composites were prepared by hot-pressing sintering.The electrical resistivity,density,Brinell hardnes... La_(2)Sn_(2)O_(7)/SnO_(2)powder was synthesized by chemical co-precipitation method,and Ag-La_(2)Sn_(2)O_(7)/SnO_(2)composites were prepared by hot-pressing sintering.The electrical resistivity,density,Brinell hardness and flexural strength of Ag-La_(2)Sn_(2)O_(7)/SnO_(2)composites were measured.Moreover,the effect of La_(2)Sn_(2)O_(7)content on the arc erosion behavior of Ag-La_(2)Sn_(2)O_(7)/SnO_(2)composites at 7 kV voltage was studied.With the increase of La_(2)Sn_(2)O_(7)content,the arc duration and arc energy decrease,and the breakdown strength increases.The surface morphology of Ag-La_(2)Sn_(2)O_(2)/SnO_(2)composites after arc erosion was investigated using scanning electron microscopy and three-dimensio nal laser confocal scanning microscopy.With the increase of La_(2)Sn_(2)O_(7)content,the smaller the erosion damage,the better the anti-arc erosion performance.However,too much La_(2)Sn_(2)O_(7)results in the decrease of Ag-La_(2)Sn_(2)O_(7)/SnO_(2)properties and severe arc erosion.X-ray photoelectron spectroscopy was used to determine the composition of the erosion region.The effect of La_(2)Sn_(2)O_(7)on wettability between Ag and SnO_(2)was investigated,and the erosion mechanism of Ag-La_(2)Sn_(2)O_(7)/SnO_(2)composites was discussed systematically.This study can provide a reference for the application of Ag matrix electrical contact materials in high-voltage electrical appliances. 展开更多
关键词 Ag-La_(2)Sn_(2)O_(7)/SnO_(2)composites arc erosion behavior erosion mechanism Rare earths
原文传递
Arc Erosion Behavior of Cu–0.23Be–0.84Co Alloy after Heat Treatment: An Experimental Study
17
作者 Yanjun Zhou Kexing Song +2 位作者 Jiandong Xing Zhou Li Xiuhua Guo 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第4期399-408,共10页
The arc erosion behavior of Cu-0.23Be-0.84Co alloy after heat treatment was investigated experimentally by a JF04C electric contact test system. The arc duration, arc energy, contact resistance and contact pressure of... The arc erosion behavior of Cu-0.23Be-0.84Co alloy after heat treatment was investigated experimentally by a JF04C electric contact test system. The arc duration, arc energy, contact resistance and contact pressure of Cu-0.23Be- 0.84Co alloy after solution treatment and aging treatment were analyzed. The arc erosion morphologies were contrastively observed by a three-dimensional measuring system and scanning electron microscopy. For the Cu-0.23Be-0.84Co alloy in solution state and aging state, the maximum values of arc duration are 90 and 110 ms, and the arc energies are 15,000 and 18,000 mJ, respectively. The maximum value of the contact resistance of Cu-0.23Be-0.84Co alloy in different states is about 33 mΩ The contact pressure of Cu-0.23Be-0.84Co alloy in solution state generally changes between 50 and 60 cN during whole make-and-break contacts, while in aging state, it has a larger fluctuation range. Moreover, the quality of moving contact (anode) decreases, while static contact (cathode) increases. The materials transfer from anode to cathode during make-and-break contacts. The total mass losses of Cu-0.23Be-0.84Co alloy in solution state and aging state are 3 and 1.2 mg, respectively. In addition, a number of discrete corrosion pits, molten droplet, porosity and cavity distribute on the surface of moving contact and static contact. The arc erosion model of Cu-0.23Be-0.84Co alloy in make-and-break contact was built. The arc erosion resistance of Cu-0.23Be-0.84Co alloy after heat treatment is closely related to the microstructure and the properties of contact materials. This experimental study is important to evaluate the anode or cathode electrocorrosion fatigue life. 展开更多
关键词 Cu-Be-Co alloy arc erosion AGING MORPHOLOGY
原文传递
Effects of interfacial wettability on arc erosion behavior of Zn_(2)SnO_(4)/Cu electrical contacts
18
作者 Wei-Jian Li Zi-Yao Chen +4 位作者 Hao Jiang Xiao-Han Sui Cong-Fei Zhao Liang Zhen Wen-Zhu Shao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第14期64-75,共12页
Interface wettability is a vital role in directly impacting the electrical contact characteristics of oxides/Cubased composites under arc erosion.Exploring its influence mechanism,especially at atomic/electronic scale... Interface wettability is a vital role in directly impacting the electrical contact characteristics of oxides/Cubased composites under arc erosion.Exploring its influence mechanism,especially at atomic/electronic scales,is significant but challenging for the rational design of oxides/Cu contacts.Here,we designed Zn_(2)SnO_(4)/Cu electrical contacts aiming to solve the poor wettability of SnO_(2)/Cu composites.It was found that Zn_(2)SnO_(4)could remarkably improve the arc resistance of Cu-based electrical contacts,which was benefited by the excellent interface wettability of Zn_(2)SnO_(4)/Cu.The characterization of eroded surface indicated that Zn_(2)SnO_(4)particles distributed uniformly on the contact surface,leading to stable electrical contact characteristic.Nevertheless,SnO_(2)considerably deteriorated the arc resistance of SnO_(2)/Cu composite by agglomerating on the surface.The effect mechanism of wettability on arc resistance was investigated through density function theory(DFT)study.It revealed that strong polar covalent bonds across the Zn_(2)SnO_(4)/Cu interface contributed to improving the interfacial adhesion strength/wettability and thus significantly enhanced the arc resistance.For binary SnO_(2)/Cu interface,ionic bonds resulted in weak interface adhesion,giving rise to deterioration of electrical contact characteristic.This work discloses the bonding mechanism of oxide/Cu interfaces and paves an avenue for the rational design of ternary oxide/Cu-based electrical contact materials. 展开更多
关键词 Zn_(2)SnO_(4)/Cu electrical contacts arc erosion WETTABILITY DFT calculations Electronic structure
原文传递
Material transfer behavior of AgTiB_2 contact under different contact forces and electrode gaps 被引量:3
19
作者 Yong XI Xian-hui WANG +2 位作者 Zi-jing ZHOU Hang-yu LI Xiu-hua GUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期1046-1056,共11页
To disclose the effect of contact force and electrode gap on the material transfer behavior of Ag-based contact material, arc-erosion tests of the Ag-4wt.%TiB2 contact material were performed for 5000 operations at 24... To disclose the effect of contact force and electrode gap on the material transfer behavior of Ag-based contact material, arc-erosion tests of the Ag-4wt.%TiB2 contact material were performed for 5000 operations at 24 V/16 A under resistive load on an electric contact material testing system. The arc energy and arc duration were investigated, the surface morphologies of eroded anode and cathode were characterized, the mass changes after arc-erosion tests were determined, and the material transfer behavior was discussed as well. The results show that contact force has a significant effect on the arc energy, arc duration and erosion morphology, but has no impact on the material transfer mode. However, electrode gap not only influences the arc energy, arc duration and surface morphology, but also changes the material transfer mode. At 1 mm, the material transfers from anode to cathode. Nevertheless, an opposite mode presents at 4 mm, which is from cathode to anode. 展开更多
关键词 Ag-based contact materials contact force electrode gap material transfer arc erosion
下载PDF
Simultaneously enhancing erosion and compression resistance:designing AlCoCrFeNi high-entropy alloy strengthened Ag-based contacts
20
作者 Xiao-Yang Xue Zhe Wang +5 位作者 Hui-Ling Nie Zhao Yuan Jun Wang Chang-Hu Xu Kai Wen Cong-Hao Yu 《Rare Metals》 SCIE EI CAS CSCD 2024年第9期4476-4492,共17页
Designing microstructures and unveiling dynamic erosion mechanisms remain important challenges for Ag-based contacts.To simultaneously enhance erosion and compression resistance,an Al Co Cr Fe Ni high-entropy alloy(HE... Designing microstructures and unveiling dynamic erosion mechanisms remain important challenges for Ag-based contacts.To simultaneously enhance erosion and compression resistance,an Al Co Cr Fe Ni high-entropy alloy(HEA)is introduced into Ag-based materials to fabricate novel Ag-HEA contacts with island-and skeletonrestricted microstructures.The arc erosion experimental results reveal that the skeleton-restricted HEA microstructure is the key factor in reducing the hill and crater morphologies of the contact surface,effectively delaying material transfer between the movable and stationary contacts.The molten bridge evolution and compressive deformation behavior of Ag-HEA contacts with various microstructures are investigated using molecular dynamics(MD)simulations.MD results indicate that the constraint of Ag atom diffusion in the molten pool and the involvement of HEA atoms in the molten bridge are the primary mechanisms for improving erosion resistance.The skeleton-restricted HEA microstructure reduces the total energy and structural stability of the molten bridge system and promotes its fracture and disintegration.Moreover,the synergistic effect of the twin and Lomerz–Cottrell lock structures can hinder dislocation glide,generating dispersed and small-area stacking faults in the Ag matrix and mitigating the concentration of shear strains.Thus,the skeleton-restricted HEA microstructure contributes positively to compression resistance.This study presents a novel approach to designing Ag-based contacts. 展开更多
关键词 Electrical contact materials High entropy alloys arc erosion Molecular dynamics MICROSTRUCTURES
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部