Modern processing plants use a variety of control loop networks to deliver a finished product to the market.Such control loops,like control valves,are designed to keep process variables such as pressure,temperature,sp...Modern processing plants use a variety of control loop networks to deliver a finished product to the market.Such control loops,like control valves,are designed to keep process variables such as pressure,temperature,speed,flow,etc.within the appropriate operating range and to ensure a quality product is produced.All control valves have a bypass so that production can proceed if maintenance is needed for the control valve as part of the control loop.The important point is that in both operation and maintenance situations,the bypass valve and the control valve should have approximately the same flow capacity to provide nearly the same amount of pressure.This paper presents a case study in seawater service on the selection of manual bypass valves for a 16″control valve in class 150 and titanium material.A 16″butterfly valve of class 150 was chosen for the control valve bypass,which provided a much higher flow capacity than the control valve.In this paper,four solutions are recommended to achieve the same coefficient value(Cv)for the control and bypass valve.Using the reduced size butterfly valve could be the cheapest and best solution.On the other hand,selecting the same control valve for bypass line is the most expensive but maybe the most reliable solution.Using a flow orifice for throttling could be ranked as the second expensive option and the second reliable one.Selection of butterfly valve for throttling is the second cheapest option,but it has the least reliability.Different parameters such as space and weight saving,cost as well as reliability have been considered in evaluation of different solutions.展开更多
Control valves are widely used in industry to control fluid flow in several applications. In nuclear power systems they are crucial for the safe operation of plants. Therefore, the necessity of improvements in monitor...Control valves are widely used in industry to control fluid flow in several applications. In nuclear power systems they are crucial for the safe operation of plants. Therefore, the necessity of improvements in monitoring and diagnosis methods started to be of extreme relevance, establishing as main goal of the reliability and readiness of the system components. The main focus of this work is to study the development of a model of non-intrusive monitoring and diagnosis applied to process control valves using artificial intelligence by fuzzy logic technique, contributing to the development of predictive methodologies identifying faults in incipient state. Specially in nuclear power plants, the predictive maintenance contributes to the security factor in order to diagnose in advance the occurrence of a possible failure, preventing severs situations. The control valve analyzed belongs to a steam plant which simulates the secondary circuit of a PWR—Pressurized Water Reactor. The maintenance programs are being implemented based on the ability to diagnose modes of degradation and to take measures to prevent incipient failures, improving plant reliability and reducing maintenance costs. The approach described in this paper represents an alternative departure from the conventional qualitative techniques of system analysis. The methodology used in this project is based on signatures analysis, considering the pressure (psi) in the actuator and the stem displacement (mm) of the valve. Once the measurements baseline of the control valve is taken, it is possible to detect long-term deviations during valve lifetime, detecting in advance valve failures. This study makes use of MATLAB language through the “fuzzy logic toolbox” which uses the method of inference “Mamdani”, acting by fuzzy conjunction, through Triangular Norms (t-norm) and Triangular Conorms (t-conorm). The main goal is to obtain more detailed information contained in the measured data, correlating them to failure situations in the incipient stage.展开更多
The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response ca...The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response capability of the servo valve itself.To counteract such restriction,a novel scheme for an electro-hydraulic vibrator,controlled by a two-dimensional valve(2D valve) and a bias valve in parallel,is therefore proposed.The frequency,amplitude and offset are independently controlled by rotary speed,axial sliding of the spool of the 2D valve and axial sliding of the spool of the bias valve.The principle of separate control was presented and the regulation approach of frequency,amplitude and offset was discussed.A mathematical model of the hydraulic power mechanism for the proposed vibration exciter was established to investigate the relationship between the amplitude and the axial sliding of the 2D valve' spool,as well as that between the offset and the axial sliding of the bias valve's spool at various frequencies.An experimental system was built to validate the theoretical analysis.It is verified that the 2D exciter is capable of working smoothly in a frequency range of 5- 200 Hz.And its frequency,amplitude and offset can be controlled respectively by either closed loop or open loop method.There is a linear relationship between the output amplitude and the spool axial opening of the 2D valve until a point when the flow rate becomes saturate and the amplitude remains constant.The offset displacement of the cylinder's piston is linearly proportional to the axial displacement of the spool of the bias valve,when the valve opening is less than 25%.Thereafter,the slop of the offset curve decreases and tends to saturate.The proposed electro-hydraulic vibration controlled by the 2D valve not only facilitates the realization of high-frequency electro-hydraulic vibration,the high-accuracy of vibration can also be achieved by means of independent controls to the frequency,amplitude and offset.展开更多
Industrial Control Systems(ICS)and SCADA(Supervisory Control and Data Acquisition)systems play a critical role in the management and regulation of critical infrastructure.SCADA systems brings us closer to the real-tim...Industrial Control Systems(ICS)and SCADA(Supervisory Control and Data Acquisition)systems play a critical role in the management and regulation of critical infrastructure.SCADA systems brings us closer to the real-time application world.All process and equipment control capability is typically provided by a Distributed Control System(DCS)in industries such as power stations,agricultural systems,chemical and water treatment plants.Instead of control through DCS,this paper proposes a SCADA and PLC(Programmable Logic Controller)system to control the ratio control division and the assembly line division inside the chemical plant.A specific design and implementation method for development of SCADA/PLC based real time ratio control and automated assembly line system in a chemical plant is introduced.The assembly line division is further divided into sorting stage,filling stage and the auxiliary stage,which includes the capping unit,labelling unit and then the storage.In the ratio control division,we have defined the levels inside the mixer and ratio of the raw materials through human machine interface(HMI)panel.The ratio of raw materials is kept constant on the basis of flow rates of wild stream and manipulated stream.There is a flexibility in defining new levels and the ratios of the raw materials inside the mixer.But here we taken the predefined levels(low,medium,high)and ratios(3:4,2:1,2:5).Control valves are used for regulating the flow of the compositions.In the assembly line division,the containers are sorted on the basis of size and type of material used i.e.,big sized metallic containers and small sized non-metallic containers by inductive and capacitive proximity sensors.All the processes are facilitated with laser beam type or reflective type sensors on the conveyor system.Building a highly stable and dependable PLC/SCADA system instead of Distributed Control System is required to achieve automatic management and control of chemical industry processes to reduce waste manpower and physical resources,as well as to improve worker safety.展开更多
Cavitation is a destructive phenomenon in control valves.In order to delay cavitation,a multi-series of perforated cylindrical plates,called trims,are used.Previously,the effects of orifice diameter and different type...Cavitation is a destructive phenomenon in control valves.In order to delay cavitation,a multi-series of perforated cylindrical plates,called trims,are used.Previously,the effects of orifice diameter and different types of trims have been investigated.In this study,by numerical analysis,a globe control valve was investigated by employing four different cases(without trim,with one trim,with two and three trims)and the impact of the number of these trims on the intensity,formation region and the initiation point of cavitation was analyzed.It was found that the addition of one stage or two stages of trims reduces the intensity and delays the onset of cavitation,relative to the valve without trim.However,no significant differences in terms of intensity and initiation point of cavitation were observed in the cases where two or three trims were used.Therefore,due to the high cost of producing the trims,and the severe drop in flow coefficient,it is not economically and technically justified to increase the number of trims to more than three.展开更多
The simulation model of a valve control hydraulic system with long pipe isestablished in Simulink4.0, and then the step responses of the systems with difference pipeparameters are investigated by simulation. Simulatio...The simulation model of a valve control hydraulic system with long pipe isestablished in Simulink4.0, and then the step responses of the systems with difference pipeparameters are investigated by simulation. Simulation results show that the long pipes will slowdown the step response of system and make it fluctuate periodically. The results of simulationconform to the results of experiment on the whole, which proves the mathematic model is correct.展开更多
Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system s...Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system still has problems, such as strong nonlinearity, and time?varying parameters. This makes HIVC force control very diffcult and complex. How to improve the control performance of the HIVC force control system and find the influence rule of the system parameters on the control performance is very significant. Firstly, the mathematical model of HIVC force control system is established. Then the mathematical expression for parameter sensitivity matrix is obtained by applying matrix sensitivity analysis(PSM). Then, aimed at the sinusoidal response under(three factors and three levels) working conditions, the simulation and the experiment are conducted. While the error between the simulation and experiment can’t be avoided. Therefore, combined with the range analysis, the error in the two performance indexes of sinusoidal response under the whole working condition is analyzed. Besides, the sensitivity variation pattern for each system parameter under the whole working condition is figured out. Then the two sensitivity indexes for the three system parameters, which are supply pressure, proportional gain and initial displacement of piston, are proved experimentally. The proposed method significantly reveals the sensitivity characteristics of HIVC force control system, which can make the contribution to improve the control performance.展开更多
Globe control valve is widely used in chemical, petroleum and hydraulic industries, and its throttling feature is achieved by the adopting of valve plug. However, very limited information is available in literature re...Globe control valve is widely used in chemical, petroleum and hydraulic industries, and its throttling feature is achieved by the adopting of valve plug. However, very limited information is available in literature regarding the influence of valve plug on the internal and external features in globe control valves. Thus the effect of valve plug is studied by CFD and experiment in this paper. It is obtained from external features that the pressure drop between upstream and downstream pressure-sampling position increases exponentially with flow rate. And for small valve opening, the increment of pressure drop decreases with the increase of cone angle(β). However, with the increase of valve opening, the effect of cone angle diminishes significantly. It is also found that the cone angle has little effect on flow coefficient(Cv) when the valve opening is larger than 70%. But for the cases less than 70%, Cv curve varies from an arc to a straight line. The variation of valve performance is caused by the change of internal flow. The results of internal flow show that cone angle has negligible effect on flow properties for the cases of valve opening larger than 70%. However, when valve opening is smaller than 70%, the pressure drop of orifice decreases with the increase of β, making the reduction in value and scope of the high speed zone around the conical surface of valve plug, and then results in a decreasing intensity of adjacent downstream vortex. Meanwhile, it is concluded from the results that the increase of cone angle will be beneficial for the anti-cavitation and anti-erosion of globe control valve. This paper focuses on the internal and external features of globe control valve that caused by the variation of cone angle, arriving at some results beneficial for the design and usage of globe control valve.展开更多
The physical model of -20 diesel oil and force model of injector controlvalve of common rail system is built. The changes of the fluid thickness are investigated on thebase of the results of CFD and experiments for co...The physical model of -20 diesel oil and force model of injector controlvalve of common rail system is built. The changes of the fluid thickness are investigated on thebase of the results of CFD and experiments for control valve of injector. The results indicate thata fluid thickness of 0.02-0.03 mm between the poppet and valve guide is sufficient to dampen anyexcessive control valve poppet bouncing.展开更多
Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown tha...Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.展开更多
The problem of transient stability for a single machine infinite bus system with turbine main steam valve control is addressed by means of a novel adaptive backstepping method in this paper.The recursive design proced...The problem of transient stability for a single machine infinite bus system with turbine main steam valve control is addressed by means of a novel adaptive backstepping method in this paper.The recursive design procedure of the proposed controller is much simpler than that of the existing controller based on conventional adaptive backstepping method.In the system,the damping coefficient is measured inaccurately,and the reactance of transmission line also contains a few uncertainties.A nonlinear robust controller and parameter updating laws are obtained simultaneously.The system does not need to be linearized,and the closed-loop error system is guaranteed to be asymptotically stable.The design procedure and simulation results demonstrate the effectiveness of the proposed design.展开更多
Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dy...Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dynamic model is set up by means of mechanism analysis. For the purpose of checking the validity of the modeling method, a prototype workpiece of the valve is manufactured for comparison test, and its simulation result follows the experimental result quite well. An associated performance index is founded considering the response time, overshoot and saving energy, and five structural parameters are selected to adjust for deriving the optimal associated performance index. The optimization problem is solved by the genetic algorithm (GA) with necessary constraints. Finally, the properties of the optimized valve are compared with those of the prototype workpiece, and the results prove that the dynamic performance indexes of the optimized valve are much better than those of the prototype workpiece.展开更多
A new approach for nonlinear adaptive control of turbine main steam valve is developed. In comparison with the existing controller based on "classical" adaptive backstepping, this method does not follow the classica...A new approach for nonlinear adaptive control of turbine main steam valve is developed. In comparison with the existing controller based on "classical" adaptive backstepping, this method does not follow the classical certaintyequivalence principle in the design of adaptive control law. We introduce this approach, for the first time, to power systems and present a novel parameter estimator and dynamic feedback controller for a single machine infinite bus (SMIB) system with steam valve control. This system contains unknown parameters such as reactance of transmission lines. Besides preserving useful nonlinearities and the real-time estimation of uncertain parameters, the proposed approach possesses better performances with respect to the response of the system and the speed of adaptation. The simulation results demonstrate that the proposed approach is better than the design based on "classical" adaptive backstepping in terms of properties of stability and parameter estimation, and recovers the performance of the "full-information" controller. Hence, the proposed method provides an alternative for engineers in applications.展开更多
Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matl...Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matlab/Simulink indicates that there is much more overshoot and fluctuating during the valve-positioning process. In order to improve the valve-positioning precision, the control method of trapezoidal velocity curve was studied. The simulation result showed that the positioning steady-state error was less than 0.0056%, whereas the peak error was less than 0.016% by using trapezoidal velocity curve at 10 positioning steps. A valve-positioning precision experimental device for the stepper motor of basis weight control valve was developed. The experiment results showed that the error ratio of 1/10000 positioning steps was 4% by using trapezoidal velocity curve. Furthermore, the error ratio of 10/10000 positioning steps was 0.5%. It proved that the valve-positioning precision of trapezoidal velocity curve was much higher than that of the constant frequency pulse signal control strategy. The new control method of trapezoidal velocity curve can satisfy the precision requirement of 10000 steps.展开更多
Partial pressure, system vibration and asymmetric system dynamic performance exit in asymmetric cylinder controller by symmetric valve hydraulic system. To solve this problem in the force control system, model referen...Partial pressure, system vibration and asymmetric system dynamic performance exit in asymmetric cylinder controller by symmetric valve hydraulic system. To solve this problem in the force control system, model reference adaptive controller is designed using equilibrium point stability theory and output error equation polynomial. The reference model is selected in such a way that it meets the system dynamic performance. Hardware configuration of asymmetric cylinder controlled by asymmetric valve hydraulic system is replaced by intelligent control algorithm, thus the cost is lowered and easy to application. Simulation results demonstrate that the proposed adaptive control sheme has good adaptive ability and well solves asymmetric dynamic performance problem. The designed adaptive controller is fairly robust to load disturbance and system parameter variation.展开更多
Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound co...Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound control method is proposed. This compound controller consists of two components: one is a traditional PID for the feedback control to guarantee stability of the system; the other is the CMAC control algorithm to form a feed-forward control for achieving high control precision and short response time of the controlled plant. Then the CMAC-PID compound control method is used in the digital valve control servo system to improve its control performance. Through simulation and experiment,the proposed CMAC-PID compound control method is superior to the traditional PID control for enhancing stability and robustness,and thus this compound control can be used as a new control strategy for the digital valve control servo system.展开更多
An experimental study on flowrate and stability of a type of control valve of 600MW supercritical steam-turbine was presented by measuring instruments of static, dynamic pressure and vibration in self-designed test ri...An experimental study on flowrate and stability of a type of control valve of 600MW supercritical steam-turbine was presented by measuring instruments of static, dynamic pressure and vibration in self-designed test rig. The investigation shows that flow coefficient is 30% up more than that of the control valve of GX-1 type used widely in domestic power plants now, as small-medium lifts. If the relative lift (h/D) is less than 20%, the valve can always work steadily in all the pressure ratios. When the h/D is between 20% to 24%, big vibration of valve stem occurs if the pressure ratio is between 0.7 to 0.8. When h/D is more than 25%, relatively great vibration happens in a wide range of pressure ratios of 0.4 to 0.85.展开更多
A set of novel nonlinear variable structure excitation and steam-valving controllers are proposed in this paper. On the basis of the classical dynamic equations of a generator, excitation control and steam valving con...A set of novel nonlinear variable structure excitation and steam-valving controllers are proposed in this paper. On the basis of the classical dynamic equations of a generator, excitation control and steam valving control are simultaneously considered. Design of these controllers combines the differential geometry theory with the variable structure controlling theory. The mathematical model in the form of "an affine nonlinear system" is set up for the control design of a large-scale power plant. The dynamic performance of the nonlinear variable structure controllers proposed for a single machine connected to an infinite bus power system is simulated. Simulation results show that the nonlinear variable structure excitation and steam-valving controllers give satisfactory dynamic performance and good robustness.展开更多
Determining the venting time of a gas trunk pipeline segment provides an important basis for formulating an emergency plan in the advent of unexpected accidents.As the natural gas venting process corresponds to the tr...Determining the venting time of a gas trunk pipeline segment provides an important basis for formulating an emergency plan in the advent of unexpected accidents.As the natural gas venting process corresponds to the transient flow,it is necessary to establish a transient hydraulic-thermal simulation model in order to determine the venting time.In this paper,based on two kinds of venting scenarios in which there is only one venting point in the venting system of a gas trunk pipeline segment—namely,where the venting point is either at one of the two ends or at the junction of two gas trunk pipeline segments—transient hydraulic-thermal simulation models are established.The models consist of gas flow governing equations,the gas state equation,gas physical property equations,initial conditions,and appropriate boundary conditions.The implicit central difference method is used to discretize the gas flow partial differential equations,and the trust-region-dogleg algorithm is used to solve the equations corresponding to each time step,in order to dynamically simulate the whole venting process.The judgment condition for the end of the venting process is that the average pressure of gas trunk pipeline segment is less than 0.11 MPa(actual pressure).Comparing the simulation results of the proposed model with those of the OLGA software and real operational data,we find that the venting time error is less than 10%.On this basis,a venting valve opening control principle is proposed,which prevents the venting noise from exceeded the specified noise value(85 d B)in the venting design of domestic gas pipeline projects.The established calculation model for venting time(dynamic simulation model)for a gas trunk pipeline segment and the proposed opening control principle of venting valve provide reference for the optimal operation of gas pipeline venting systems.展开更多
The paper deals with the simulation and the experimental verification of the hydraulic behavior of an electro-hydraulic load-sensing proportional control valve. An innovative CAE (computer aided engineering) methodo...The paper deals with the simulation and the experimental verification of the hydraulic behavior of an electro-hydraulic load-sensing proportional control valve. An innovative CAE (computer aided engineering) methodology, developed combining CFD (computational fluid dynamics) simulations with lumped and distributed numerical modeling, is firstly introduced and tailored by comparing the numerical results with measurements coming from an experimental campaign performed for a wide range of pressure loads and metered flow rates. Then, both the reliability and the limits of the numerical approach are highlighted through a detailed numerical vs. experimental comparison, involving the pressure of the main hydraulic lines, the flow rate through the first section and the local compensator displacement. Finally, the CAE methodology has been applied for assessing the internal ducts hydraulic permeability and the local compensator spring pre-load influence on the control valve metering curves. At the end of this analysis, an optimized design configuration, featuring a maximum controlled volumetric flow rate increased of more than 25%, has been proposed.展开更多
文摘Modern processing plants use a variety of control loop networks to deliver a finished product to the market.Such control loops,like control valves,are designed to keep process variables such as pressure,temperature,speed,flow,etc.within the appropriate operating range and to ensure a quality product is produced.All control valves have a bypass so that production can proceed if maintenance is needed for the control valve as part of the control loop.The important point is that in both operation and maintenance situations,the bypass valve and the control valve should have approximately the same flow capacity to provide nearly the same amount of pressure.This paper presents a case study in seawater service on the selection of manual bypass valves for a 16″control valve in class 150 and titanium material.A 16″butterfly valve of class 150 was chosen for the control valve bypass,which provided a much higher flow capacity than the control valve.In this paper,four solutions are recommended to achieve the same coefficient value(Cv)for the control and bypass valve.Using the reduced size butterfly valve could be the cheapest and best solution.On the other hand,selecting the same control valve for bypass line is the most expensive but maybe the most reliable solution.Using a flow orifice for throttling could be ranked as the second expensive option and the second reliable one.Selection of butterfly valve for throttling is the second cheapest option,but it has the least reliability.Different parameters such as space and weight saving,cost as well as reliability have been considered in evaluation of different solutions.
文摘Control valves are widely used in industry to control fluid flow in several applications. In nuclear power systems they are crucial for the safe operation of plants. Therefore, the necessity of improvements in monitoring and diagnosis methods started to be of extreme relevance, establishing as main goal of the reliability and readiness of the system components. The main focus of this work is to study the development of a model of non-intrusive monitoring and diagnosis applied to process control valves using artificial intelligence by fuzzy logic technique, contributing to the development of predictive methodologies identifying faults in incipient state. Specially in nuclear power plants, the predictive maintenance contributes to the security factor in order to diagnose in advance the occurrence of a possible failure, preventing severs situations. The control valve analyzed belongs to a steam plant which simulates the secondary circuit of a PWR—Pressurized Water Reactor. The maintenance programs are being implemented based on the ability to diagnose modes of degradation and to take measures to prevent incipient failures, improving plant reliability and reducing maintenance costs. The approach described in this paper represents an alternative departure from the conventional qualitative techniques of system analysis. The methodology used in this project is based on signatures analysis, considering the pressure (psi) in the actuator and the stem displacement (mm) of the valve. Once the measurements baseline of the control valve is taken, it is possible to detect long-term deviations during valve lifetime, detecting in advance valve failures. This study makes use of MATLAB language through the “fuzzy logic toolbox” which uses the method of inference “Mamdani”, acting by fuzzy conjunction, through Triangular Norms (t-norm) and Triangular Conorms (t-conorm). The main goal is to obtain more detailed information contained in the measured data, correlating them to failure situations in the incipient stage.
基金supported by National Natural Science Foundation of China(Grant No.50675204)Zhejiang Provincial Natural Science Foundation of China(Grant No.D1080667)Open Foundation of the State Key Lab of Fluid Power Transmission and Control of Zhejiang University,China(Grant No.GZKF-2008005)
文摘The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response capability of the servo valve itself.To counteract such restriction,a novel scheme for an electro-hydraulic vibrator,controlled by a two-dimensional valve(2D valve) and a bias valve in parallel,is therefore proposed.The frequency,amplitude and offset are independently controlled by rotary speed,axial sliding of the spool of the 2D valve and axial sliding of the spool of the bias valve.The principle of separate control was presented and the regulation approach of frequency,amplitude and offset was discussed.A mathematical model of the hydraulic power mechanism for the proposed vibration exciter was established to investigate the relationship between the amplitude and the axial sliding of the 2D valve' spool,as well as that between the offset and the axial sliding of the bias valve's spool at various frequencies.An experimental system was built to validate the theoretical analysis.It is verified that the 2D exciter is capable of working smoothly in a frequency range of 5- 200 Hz.And its frequency,amplitude and offset can be controlled respectively by either closed loop or open loop method.There is a linear relationship between the output amplitude and the spool axial opening of the 2D valve until a point when the flow rate becomes saturate and the amplitude remains constant.The offset displacement of the cylinder's piston is linearly proportional to the axial displacement of the spool of the bias valve,when the valve opening is less than 25%.Thereafter,the slop of the offset curve decreases and tends to saturate.The proposed electro-hydraulic vibration controlled by the 2D valve not only facilitates the realization of high-frequency electro-hydraulic vibration,the high-accuracy of vibration can also be achieved by means of independent controls to the frequency,amplitude and offset.
文摘Industrial Control Systems(ICS)and SCADA(Supervisory Control and Data Acquisition)systems play a critical role in the management and regulation of critical infrastructure.SCADA systems brings us closer to the real-time application world.All process and equipment control capability is typically provided by a Distributed Control System(DCS)in industries such as power stations,agricultural systems,chemical and water treatment plants.Instead of control through DCS,this paper proposes a SCADA and PLC(Programmable Logic Controller)system to control the ratio control division and the assembly line division inside the chemical plant.A specific design and implementation method for development of SCADA/PLC based real time ratio control and automated assembly line system in a chemical plant is introduced.The assembly line division is further divided into sorting stage,filling stage and the auxiliary stage,which includes the capping unit,labelling unit and then the storage.In the ratio control division,we have defined the levels inside the mixer and ratio of the raw materials through human machine interface(HMI)panel.The ratio of raw materials is kept constant on the basis of flow rates of wild stream and manipulated stream.There is a flexibility in defining new levels and the ratios of the raw materials inside the mixer.But here we taken the predefined levels(low,medium,high)and ratios(3:4,2:1,2:5).Control valves are used for regulating the flow of the compositions.In the assembly line division,the containers are sorted on the basis of size and type of material used i.e.,big sized metallic containers and small sized non-metallic containers by inductive and capacitive proximity sensors.All the processes are facilitated with laser beam type or reflective type sensors on the conveyor system.Building a highly stable and dependable PLC/SCADA system instead of Distributed Control System is required to achieve automatic management and control of chemical industry processes to reduce waste manpower and physical resources,as well as to improve worker safety.
文摘Cavitation is a destructive phenomenon in control valves.In order to delay cavitation,a multi-series of perforated cylindrical plates,called trims,are used.Previously,the effects of orifice diameter and different types of trims have been investigated.In this study,by numerical analysis,a globe control valve was investigated by employing four different cases(without trim,with one trim,with two and three trims)and the impact of the number of these trims on the intensity,formation region and the initiation point of cavitation was analyzed.It was found that the addition of one stage or two stages of trims reduces the intensity and delays the onset of cavitation,relative to the valve without trim.However,no significant differences in terms of intensity and initiation point of cavitation were observed in the cases where two or three trims were used.Therefore,due to the high cost of producing the trims,and the severe drop in flow coefficient,it is not economically and technically justified to increase the number of trims to more than three.
基金This project is supported by National Natural Science Foundation of China(No.59875076).
文摘The simulation model of a valve control hydraulic system with long pipe isestablished in Simulink4.0, and then the step responses of the systems with difference pipeparameters are investigated by simulation. Simulation results show that the long pipes will slowdown the step response of system and make it fluctuate periodically. The results of simulationconform to the results of experiment on the whole, which proves the mathematic model is correct.
基金Supported by National Natural Science Foundation of China(Grant No.51605417)Key Project of Hebei Provincial Natural Science Foundation,China(Grant No.E2016203264)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)
文摘Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system still has problems, such as strong nonlinearity, and time?varying parameters. This makes HIVC force control very diffcult and complex. How to improve the control performance of the HIVC force control system and find the influence rule of the system parameters on the control performance is very significant. Firstly, the mathematical model of HIVC force control system is established. Then the mathematical expression for parameter sensitivity matrix is obtained by applying matrix sensitivity analysis(PSM). Then, aimed at the sinusoidal response under(three factors and three levels) working conditions, the simulation and the experiment are conducted. While the error between the simulation and experiment can’t be avoided. Therefore, combined with the range analysis, the error in the two performance indexes of sinusoidal response under the whole working condition is analyzed. Besides, the sensitivity variation pattern for each system parameter under the whole working condition is figured out. Then the two sensitivity indexes for the three system parameters, which are supply pressure, proportional gain and initial displacement of piston, are proved experimentally. The proposed method significantly reveals the sensitivity characteristics of HIVC force control system, which can make the contribution to improve the control performance.
基金Supported by National Natural Science Foundation of China(Grant Nos.51406184,21276241)Science Foundation of Zhejiang Sci-Tech University of China(Grant No.14022005-Y)
文摘Globe control valve is widely used in chemical, petroleum and hydraulic industries, and its throttling feature is achieved by the adopting of valve plug. However, very limited information is available in literature regarding the influence of valve plug on the internal and external features in globe control valves. Thus the effect of valve plug is studied by CFD and experiment in this paper. It is obtained from external features that the pressure drop between upstream and downstream pressure-sampling position increases exponentially with flow rate. And for small valve opening, the increment of pressure drop decreases with the increase of cone angle(β). However, with the increase of valve opening, the effect of cone angle diminishes significantly. It is also found that the cone angle has little effect on flow coefficient(Cv) when the valve opening is larger than 70%. But for the cases less than 70%, Cv curve varies from an arc to a straight line. The variation of valve performance is caused by the change of internal flow. The results of internal flow show that cone angle has negligible effect on flow properties for the cases of valve opening larger than 70%. However, when valve opening is smaller than 70%, the pressure drop of orifice decreases with the increase of β, making the reduction in value and scope of the high speed zone around the conical surface of valve plug, and then results in a decreasing intensity of adjacent downstream vortex. Meanwhile, it is concluded from the results that the increase of cone angle will be beneficial for the anti-cavitation and anti-erosion of globe control valve. This paper focuses on the internal and external features of globe control valve that caused by the variation of cone angle, arriving at some results beneficial for the design and usage of globe control valve.
文摘The physical model of -20 diesel oil and force model of injector controlvalve of common rail system is built. The changes of the fluid thickness are investigated on thebase of the results of CFD and experiments for control valve of injector. The results indicate thata fluid thickness of 0.02-0.03 mm between the poppet and valve guide is sufficient to dampen anyexcessive control valve poppet bouncing.
基金This work was supported by the National Natural Science Foundation of China (No.G60474001) the Research Fund for Doctoral Program of Chinese Higher Education (No.G20040422059).
文摘Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.
基金supported by the National Natural Science Foundation of China(No.60874024,90816028)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.200801450019)
文摘The problem of transient stability for a single machine infinite bus system with turbine main steam valve control is addressed by means of a novel adaptive backstepping method in this paper.The recursive design procedure of the proposed controller is much simpler than that of the existing controller based on conventional adaptive backstepping method.In the system,the damping coefficient is measured inaccurately,and the reactance of transmission line also contains a few uncertainties.A nonlinear robust controller and parameter updating laws are obtained simultaneously.The system does not need to be linearized,and the closed-loop error system is guaranteed to be asymptotically stable.The design procedure and simulation results demonstrate the effectiveness of the proposed design.
基金Key Science-Technology Foundation of Hunan Province, China (No. 05GK2007).
文摘Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dynamic model is set up by means of mechanism analysis. For the purpose of checking the validity of the modeling method, a prototype workpiece of the valve is manufactured for comparison test, and its simulation result follows the experimental result quite well. An associated performance index is founded considering the response time, overshoot and saving energy, and five structural parameters are selected to adjust for deriving the optimal associated performance index. The optimization problem is solved by the genetic algorithm (GA) with necessary constraints. Finally, the properties of the optimized valve are compared with those of the prototype workpiece, and the results prove that the dynamic performance indexes of the optimized valve are much better than those of the prototype workpiece.
基金This work was supported by the National Natural Science Foundation of China (No. 60574013).
文摘A new approach for nonlinear adaptive control of turbine main steam valve is developed. In comparison with the existing controller based on "classical" adaptive backstepping, this method does not follow the classical certaintyequivalence principle in the design of adaptive control law. We introduce this approach, for the first time, to power systems and present a novel parameter estimator and dynamic feedback controller for a single machine infinite bus (SMIB) system with steam valve control. This system contains unknown parameters such as reactance of transmission lines. Besides preserving useful nonlinearities and the real-time estimation of uncertain parameters, the proposed approach possesses better performances with respect to the response of the system and the speed of adaptation. The simulation results demonstrate that the proposed approach is better than the design based on "classical" adaptive backstepping in terms of properties of stability and parameter estimation, and recovers the performance of the "full-information" controller. Hence, the proposed method provides an alternative for engineers in applications.
基金supported by the International S&T Cooperation Program of China(GrantNo.2010DFB43660)National Natural Science Foundation of China(Grant No.51375286)Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.16JF005)
文摘Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matlab/Simulink indicates that there is much more overshoot and fluctuating during the valve-positioning process. In order to improve the valve-positioning precision, the control method of trapezoidal velocity curve was studied. The simulation result showed that the positioning steady-state error was less than 0.0056%, whereas the peak error was less than 0.016% by using trapezoidal velocity curve at 10 positioning steps. A valve-positioning precision experimental device for the stepper motor of basis weight control valve was developed. The experiment results showed that the error ratio of 1/10000 positioning steps was 4% by using trapezoidal velocity curve. Furthermore, the error ratio of 10/10000 positioning steps was 0.5%. It proved that the valve-positioning precision of trapezoidal velocity curve was much higher than that of the constant frequency pulse signal control strategy. The new control method of trapezoidal velocity curve can satisfy the precision requirement of 10000 steps.
文摘Partial pressure, system vibration and asymmetric system dynamic performance exit in asymmetric cylinder controller by symmetric valve hydraulic system. To solve this problem in the force control system, model reference adaptive controller is designed using equilibrium point stability theory and output error equation polynomial. The reference model is selected in such a way that it meets the system dynamic performance. Hardware configuration of asymmetric cylinder controlled by asymmetric valve hydraulic system is replaced by intelligent control algorithm, thus the cost is lowered and easy to application. Simulation results demonstrate that the proposed adaptive control sheme has good adaptive ability and well solves asymmetric dynamic performance problem. The designed adaptive controller is fairly robust to load disturbance and system parameter variation.
基金Supported by the National Natural Science Foundation of China(No.51505412)the Independent Study Program for Young Teachers in Yanshan University(No.14LGB004)
文摘Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound control method is proposed. This compound controller consists of two components: one is a traditional PID for the feedback control to guarantee stability of the system; the other is the CMAC control algorithm to form a feed-forward control for achieving high control precision and short response time of the controlled plant. Then the CMAC-PID compound control method is used in the digital valve control servo system to improve its control performance. Through simulation and experiment,the proposed CMAC-PID compound control method is superior to the traditional PID control for enhancing stability and robustness,and thus this compound control can be used as a new control strategy for the digital valve control servo system.
基金This work was supported by National Natural Science Foundations of China (No503360501,50323001)
文摘An experimental study on flowrate and stability of a type of control valve of 600MW supercritical steam-turbine was presented by measuring instruments of static, dynamic pressure and vibration in self-designed test rig. The investigation shows that flow coefficient is 30% up more than that of the control valve of GX-1 type used widely in domestic power plants now, as small-medium lifts. If the relative lift (h/D) is less than 20%, the valve can always work steadily in all the pressure ratios. When the h/D is between 20% to 24%, big vibration of valve stem occurs if the pressure ratio is between 0.7 to 0.8. When h/D is more than 25%, relatively great vibration happens in a wide range of pressure ratios of 0.4 to 0.85.
文摘A set of novel nonlinear variable structure excitation and steam-valving controllers are proposed in this paper. On the basis of the classical dynamic equations of a generator, excitation control and steam valving control are simultaneously considered. Design of these controllers combines the differential geometry theory with the variable structure controlling theory. The mathematical model in the form of "an affine nonlinear system" is set up for the control design of a large-scale power plant. The dynamic performance of the nonlinear variable structure controllers proposed for a single machine connected to an infinite bus power system is simulated. Simulation results show that the nonlinear variable structure excitation and steam-valving controllers give satisfactory dynamic performance and good robustness.
基金supported by the National Natural Science Foundation of China(Grant No.52174064)
文摘Determining the venting time of a gas trunk pipeline segment provides an important basis for formulating an emergency plan in the advent of unexpected accidents.As the natural gas venting process corresponds to the transient flow,it is necessary to establish a transient hydraulic-thermal simulation model in order to determine the venting time.In this paper,based on two kinds of venting scenarios in which there is only one venting point in the venting system of a gas trunk pipeline segment—namely,where the venting point is either at one of the two ends or at the junction of two gas trunk pipeline segments—transient hydraulic-thermal simulation models are established.The models consist of gas flow governing equations,the gas state equation,gas physical property equations,initial conditions,and appropriate boundary conditions.The implicit central difference method is used to discretize the gas flow partial differential equations,and the trust-region-dogleg algorithm is used to solve the equations corresponding to each time step,in order to dynamically simulate the whole venting process.The judgment condition for the end of the venting process is that the average pressure of gas trunk pipeline segment is less than 0.11 MPa(actual pressure).Comparing the simulation results of the proposed model with those of the OLGA software and real operational data,we find that the venting time error is less than 10%.On this basis,a venting valve opening control principle is proposed,which prevents the venting noise from exceeded the specified noise value(85 d B)in the venting design of domestic gas pipeline projects.The established calculation model for venting time(dynamic simulation model)for a gas trunk pipeline segment and the proposed opening control principle of venting valve provide reference for the optimal operation of gas pipeline venting systems.
文摘The paper deals with the simulation and the experimental verification of the hydraulic behavior of an electro-hydraulic load-sensing proportional control valve. An innovative CAE (computer aided engineering) methodology, developed combining CFD (computational fluid dynamics) simulations with lumped and distributed numerical modeling, is firstly introduced and tailored by comparing the numerical results with measurements coming from an experimental campaign performed for a wide range of pressure loads and metered flow rates. Then, both the reliability and the limits of the numerical approach are highlighted through a detailed numerical vs. experimental comparison, involving the pressure of the main hydraulic lines, the flow rate through the first section and the local compensator displacement. Finally, the CAE methodology has been applied for assessing the internal ducts hydraulic permeability and the local compensator spring pre-load influence on the control valve metering curves. At the end of this analysis, an optimized design configuration, featuring a maximum controlled volumetric flow rate increased of more than 25%, has been proposed.