Photoelectrochemical (PEC) small-molecule oxidation can selectively transform substrates into high-value-added fine chemicals and increase the rate of cathode hydrogen evolution. Nevertheless, achieving high-selectivi...Photoelectrochemical (PEC) small-molecule oxidation can selectively transform substrates into high-value-added fine chemicals and increase the rate of cathode hydrogen evolution. Nevertheless, achieving high-selectivity PEC oxidation of small molecules to produce specific products is a very challenging task. In general, selectivity can be improved by changing the surface catalyticsites of the photoanode and modulating the interfacial environments of the reactions. Herein, recent advances in approaches to improving selective PEC oxidation of small molecules are introduced. We first briefly discuss the basic concept and fundamentals of small-molecule PEC oxidation. The reported approaches to improving the performance of selective PEC oxidation of small molecules are highlighted from two aspects: (1) changing the surface properties of photoanodes by selecting suitable materials or modifying the photoanodes and (2) mediating the oxidation reactions using redox mediators. The PEC oxidation mechanism of these studies is emphasized. We also discuss the challenges in this research direction and offer a perspective on the further development of selective PEC-based small-molecule transformation.展开更多
The planting areas of mung bean are mostly arid and semi-arid areas, and lack of irrigation conditions. Many studies have reported that fertilization can increase drought resistance. In our previous research, optimize...The planting areas of mung bean are mostly arid and semi-arid areas, and lack of irrigation conditions. Many studies have reported that fertilization can increase drought resistance. In our previous research, optimized nitrogen (N), phosphorus (P) and potassium (K) combined fertilization model was established in mung bean. In the present study, the optimal fertilization was conducted in pot trails, and mung bean varieties Bailv9 and Bailv11 were used as materials, while the four water regimes, and three fertilization ratios of F120 (optimal fertilization), F100 (conventional fertilization), F50 (half of conventional fertilization) treatments were set, to compare each fertilization ratio effects and non-fertilization condition under each water regimes respectively. Under different water conditions, the investigation of N, P, and K effects of optimal fertilization showed that the yield of Bailv9 was not sensitive to water stress and had strong drought resistance;their water sensitivity index and drought resistance coefficient were BaiLv9 as Di = 0.89 and DC = 0.79. The yield of Bailv11 was sensitive to water stress, and their drought resistance was weak;their water sensitivity index and drought resistance coefficient were BL11 Di = 1.76 DC = 0.59, and under different water treatment conditions, Bailv9 and Bailv11 all had the best yield and other related traits increase in the F120 fertilization mode compared with other fertilization and non-fertilization conditions, and the average yield increases were 31.56% and 28.08%, respectively. The pot trails conduct the drought stress treatments in mung bean varieties Bailv9, Bailv11, Bailv935 and Bailv985 to determine the function of NPK optimized fertilization for improving plants growth in drought stress condition. Compared with the mung bean varieties treated with F50, F100, and F120, the yield of Bailv9 increased by 56.20%, 81.27%, and 107.22%, respectively;compared with that of F0, the yield of Bailv11 increased by 10.18%, 19.42%, and 45.88%, respectively;Bailv935 increased by 26.52%, 61.90%, 74.16% respectively, and Bailv985 increased by 23.78%, 56.92%, 87.62% respectively. The significant performances of optimized fertilization were also verified in 20 mung bean varieties in our filed trails. The research establishes a theoretical basis for introducing the model into production practice in the next step.展开更多
With the development of cities,China has entered an era of stock planning.The functions of old residential areas in urban development can no longer meet the needs of residents in the new era for a better life,and new ...With the development of cities,China has entered an era of stock planning.The functions of old residential areas in urban development can no longer meet the needs of residents in the new era for a better life,and new standards have been put forward for the quality of public spaces for living.This paper analyzes and sorts out the characteristics and problems of the public space in the old residential areas of Baihuazhou district.Combining superposition and intervention techniques,the spatial,historical,cultural and other characteristic elements of the residential areas are preserved to the greatest extent.The public space in the old residential areas of Baihuazhou District is updated and reconstructed in order to achieve the goal of improving the quality of its public space.展开更多
Objective:To explore the effect of the Plan-Do-Check-Action(PDCA)cycle on hand hygiene and nosocomial infection quality of or thopedic medical staff.Methods:The whole year of 2021 was selected to monitor the quality o...Objective:To explore the effect of the Plan-Do-Check-Action(PDCA)cycle on hand hygiene and nosocomial infection quality of or thopedic medical staff.Methods:The whole year of 2021 was selected to monitor the quality of hand hygiene and hospitalization.Follow-up monitoring and real-time recording during the period of morning shift and medical operation concentration time,and compare the compliance of hand hygiene before and after implementation,and evaluate the quality of nosocomial infection.Results:The hand hygiene compliance of doctors and nurses in stage P was 82%.The compliance of medical staff in stage D was 93%.The compliance of stage C was 94%and that of stage A was 95%.The quality score of hospital self-examination nosocomial infection was also significantly increased.Conclusions:The PDCA management cycle can effectively improve the compliance of hand hygiene and the nosocomial infection quality,which is wor thy of circulatory application in or thopedic nosocomial infection quality control,especially improving the quality of hand hygiene.展开更多
Patient safety is a serious global health issue.Nurses play a critical role in improving patient safety.This Special Focus Issue aims to report research and evidence-based practice about patient safety.This special is...Patient safety is a serious global health issue.Nurses play a critical role in improving patient safety.This Special Focus Issue aims to report research and evidence-based practice about patient safety.This special issue welcomes original research papers,perspectives,conceptual papers,case reports,systematic reviews,and scoping review articles that address a range of topics including,but not limited to,the following areas:The four Cs of safety:Culture,Competency,Consequences&Continuous improvement.展开更多
One of the major problems in the education sector is the reading skills of learners.Students enrolled in the Alternative Learning System(ALS)also experienced this scenario due to several circumstances.This study focus...One of the major problems in the education sector is the reading skills of learners.Students enrolled in the Alternative Learning System(ALS)also experienced this scenario due to several circumstances.This study focused on the improvement of reading comprehension skills of ALS learners by means of project RICE(Reading Intervention and Comprehension Enhancement)as well as the issues and challenges.A quasi-experimental design was utilized in this study which was participated by 54 learners,composed of 27 learners under the experimental group and 27 under the control group.The result revealed that the learners in the experimental group changed from frustration level to instructional level after the implementation of project RICE while the learners in the control group changed from instructional level to inde-pendent level,thereby signifying a significant difference and the effectiveness of the project.Additionally,issues with time and resources were often encountered by the learners.展开更多
Computer Algebra Systems have been extensively used in higher education. The reasons are many e.g., visualize mathematical problems, correlate real-world problems on a conceptual level, are flexible, simple to use, ac...Computer Algebra Systems have been extensively used in higher education. The reasons are many e.g., visualize mathematical problems, correlate real-world problems on a conceptual level, are flexible, simple to use, accessible from anywhere, etc. However, there is still room for improvement. Computer algebra system (CAS) optimization is the set of best practices and techniques to keep the CAS running optimally. Best practices are related to how to carry out a mathematical task or configure your system. In this paper, we are going to examine these techniques. The documentation sheets of CASs are the source of data that we used to compare them and examine their characteristics. The research results reveal that there are many tips that we can follow to accelerate performance.展开更多
Many approaches to neurodegenerative diseases that focus on amyloid-βclearance and gene therapy have not been successful.Some therapeutic applications focus on enhancing neuronal cell survival during the pathogenesis...Many approaches to neurodegenerative diseases that focus on amyloid-βclearance and gene therapy have not been successful.Some therapeutic applications focus on enhancing neuronal cell survival during the pathogenesis of neurodegenerative diseases,including mitochondrial dysfunction.Plasma membrane(PM)redox enzymes are crucial in maintaining cellular physiology and redox homeostasis in response to mitochondrial dysfunction.Neurohormetic phytochemicals are known to induce the expression of detoxifying enzymes under stress conditions.In this study,mechanisms of neuroprotective effects of 4-hydroxycinnamic acid(HCA)were examined by analyzing cell survival,levels of abnormal proteins,and mitochondrial functions in two different neuronal cells.HCA protected two neuronal cells exhibited high expression of PM redox enzymes and the consequent increase in the NAD^(+)/NADH ratio.Cells cultured with HCA showed delayed apoptosis and decreased oxidative/nitrative damage accompanied by decreased ROS production in the mitochondria.HCA increased the mitochondrial complexes I and II activities and ATP production.Also,HCA increased mitochondrial fusion and decreased mitochondrial fission.Overall,HCA maintains redox homeostasis and energy metabolism under oxidative/metabolic stress conditions.These findings suggest that HCA could be a promising therapeutic approach for neurodegenerative diseases.展开更多
Nanomaterials and low-salinity water(LSW)are two popular enhanced oil recovery(EOR)methods that have been widely studied in recent years.The former is used for in-depth conformance improvement and the latter for micro...Nanomaterials and low-salinity water(LSW)are two popular enhanced oil recovery(EOR)methods that have been widely studied in recent years.The former is used for in-depth conformance improvement and the latter for microscopic oil displacement(by altering the potential and contact angle).However,there are few literature on combining them to achieve synergistic effects,especially for tight sandstone res-ervoirs.Based on the reservoir conditions of the Jimusar Oilfield,this study investigated the oil recovery mechanism of the combined imbibition system,which was composed of black nanosheet(BN)and LSW.Its performances including decreasing interfacial tension,emulsification,and wettability alterations were evaluated.The imbibition differences between the single system of BN and LSW and the combined BN-LsW imbibition system were then compared.Results showed that the combined imbibition system had a better emulsification effect on the crude oil and could also alter the wettability of the core surface.Moreover,the combined system could increase both the imbibition rate and the ultimate oil recovery.The nuclear magnetic T2 spectrum also indicated that the addition of black nanosheets could divert more fluid into small pores and thus improve the microscopic sweep efficiency.展开更多
Graphene flakes(GF)have been prepared and assessed as a material for improving flow in oil pipelines under the effect of an electric field.In particular,different amounts of GFs have been considered in order to determ...Graphene flakes(GF)have been prepared and assessed as a material for improving flow in oil pipelines under the effect of an electric field.In particular,different amounts of GFs have been considered in order to determine the optimal flow conditions.The GFs were prepared from graphite foam,derived from the dehydration of sugar with a particle size of 500-600μm,which was dispersed in ethanol and exfoliated in a ball mill under a shear force.After 15 h of exfoliation,sonication,and subsequent high-speed centrifugation at 3000 rpm,irregular-shaped GFs of 50-140 nm were produced and characterized using scanning electron microscopy,X-ray diffractometry,atomic force microscopy,and Raman spectroscopy.The prepared graphene sheets have been found to display excellent morphology and good graphitic structure.Experiments on flow improvement were conducted using the central composite rotatable design method for three parameters:stimulation time(15,30,45,and 60 s),applied voltage(150,170,200,and 220 V),and concentration of the GFs(0,100,200,and 400 mg/L).The optimal conditions for improved crude oil flow were then determined using the STATISTICA and WinQSB software packages.The results have confirmed the effectiveness of the use of the prepared GFs as a flow improver for crude oil,where the flow improvement is essentially a result of a reduction in viscosity and suppression of friction in the crude oil system.展开更多
Mobile Ad-hoc Networks(MANETs)connect numerous nodes to communicate data from the sender node to the target node.Due to the lack of an infrastructure network,mobile nodes communicate through wireless without an access...Mobile Ad-hoc Networks(MANETs)connect numerous nodes to communicate data from the sender node to the target node.Due to the lack of an infrastructure network,mobile nodes communicate through wireless without an access point.MANET does not have a centralized controller and has a dynamic network topology,which increases link failure and energy consumption resulting in excessive path delay,loss of Quality of service(QoS),and reduced throughput during data communication.Congestion is a significant problem when the QoS of the link carrying the data is degraded.Routing is one of the vital challenges of MANET due to the very dynamic and distributed nature of MANET.This article introduces a Mobility-Based Optimized Multipath Routing Protocol(MBOMRP)and an Efficient Reliable Link-State Transmission(ERLST)algorithm to overcome these problems.The proposed Mobility-Based Optimized Multipath Routing Protocol(MBOMRP)is utilized for route discovery and maintenance to efficiently avoid traffic and sleeping nodes.ERLST algorithm is used for efficient data transmission to increase QoS measurement parameters like throughput,Packet Delivery Ratio(PDR),and minimize the latency performance.The proposed MBOMRP-ERLST algorithm improves data communication network lifetime,avoids link failures,and provides efficient results compared with previous algorithms.展开更多
Highway test and detection technology play a very important role in controlling the quality of road and bridge engineering and improving the maintenance of roads and bridges.The study of highway bridge test detection ...Highway test and detection technology play a very important role in controlling the quality of road and bridge engineering and improving the maintenance of roads and bridges.The study of highway bridge test detection technology is both theoretically and practically useful.Road and bridge test and detection is a complicated task.With the development of science and technology,highway and bridge engineering test and detection technology has also made great progress.The continuous improvement of test and detection technology has brought good social benefits to road and bridge construction.This article discusses the problems in test and detection technology of highway bridges and how to improve the quality of test and detection.展开更多
FeAl/TiC composites were fabricated by hot pressing blended elemental powders. The effects of Ni-doping on thedensification and mechanical properties of the composites were studied. Results show that the density of th...FeAl/TiC composites were fabricated by hot pressing blended elemental powders. The effects of Ni-doping on thedensification and mechanical properties of the composites were studied. Results show that the density of the composites decreases with the content of TiC increasing, and the addition of Ni significantly improves the densificationprocess by enhancing mass transfer in the bonding phase. The mechanical properties of the composites are closelyrelated with their porosity. Besides increasing the density of the composites, the addition of Ni improves the mechanical properties by other three effects: solution-strengthening the bonding phase, strengthening the FeAI-TiC interfaceand increasing ductile fracture in FeAl phase.展开更多
Throughout its more than 5000-year history, China has a long tradition of encouraging active engagement in physical and sport activities This enduring tradition, however, has been facing some major headwinds as China ...Throughout its more than 5000-year history, China has a long tradition of encouraging active engagement in physical and sport activities This enduring tradition, however, has been facing some major headwinds as China continues to expe- rience demographic and environmental changes related to aging, urbanization, and lifestyle shifts.展开更多
Based on the geochemical data obtained from the national project about the prevention and control of soil contamination, this paper explored the properties of soil chemical elements in Huanghuaihai Plain, Shandong Pro...Based on the geochemical data obtained from the national project about the prevention and control of soil contamination, this paper explored the properties of soil chemical elements in Huanghuaihai Plain, Shandong Province. The results showed that among the grade-one nutritive elements in soil, organic matter, nitrogen and phosphorus were relatively deficient while potassium was rich. Meanwhile, as the grade-two nutritive elements, calcium oxide and magnesium oxide were relatively short and sulfur’s content was abundant. About the other beneficial and trace nutri-tive elements, iron oxide, manganese, molybdenum and boron were deficient, but the content of chlorine was high, hardly lack. The main barriers to improving land productivity were soil salinization and soil heavy metal contamination. The values of soil integrated fertility index that most of the soil in the study area is middle-lower fertilized. Specifical y, the low fertility area and lower fertility area are 6 1604 and 1 244 km2 respectively, occupying about 97.43% and 1.97% of the total area. The moderate fertility soil has an area of 172 km2, occupying about 0.27% of the total area. The higher fertility soil covers an area of 128 km2, while the high fertility area of only 76 km2. This article proposed scientific fertilization, elimination of soil obsta-cle, remediation of heavy-metal-contaminated soil and other effective measures to improve land productivity according to the basic investigation results, which provides a good technological support for the planning and development of good-quality and high-benefit agriculture.展开更多
Previous work puts forward a random edge rewiring method which is capable of improving the network robustness noticeably, while it lacks further discussions about how to improve the robustness faster. In this study, t...Previous work puts forward a random edge rewiring method which is capable of improving the network robustness noticeably, while it lacks further discussions about how to improve the robustness faster. In this study, the detailed analysis of the structures of improved networks show that regenerating the edges between high-degree nodes can enhance the robustness against a targeted attack. Therefore, we propose a novel rewiring strategy based on regenerating more edges between high-degree nodes, called smart rewiring, which could speed up the increase of the robustness index effectively. The smart rewiring method also explains why positive degree-degree correlation could enhance network robustness.展开更多
With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation method...With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation methods very attractive. In this paper, we propose a two-phase rate adaptation strategy to improve users' real-time video Qo E. First, to measure and assess video Qo E, we provide a continuous Qo E prediction engine modeled by RNN recurrent neural network. Different from traditional Qo E models which consider the Qo E-aware factors separately or incompletely, our RNN-Qo E model accounts for three descriptive factors(video quality, rebuffering, and rate change) and reflects the impact of cognitive memory and recency. Besides, the video playing is separated into the initial startup phase and the steady playback phase, and we takes different optimization goals for each phase: the former aims at shortening the startup delay while the latter ameliorates the video quality and the rebufferings. Simulation results have shown that RNN-Qo E can follow the subjective Qo E quite well, and the proposed strategy can effectively reduce the occurrence of rebufferings caused by the mismatch between the requested video rates and the fluctuated throughput and attains standout performance on real-time Qo E compared with classical rate adaption methods.展开更多
Successful cancer therapy depends on selective killing of tumor cells while sparing normal cells. Selectivity can be achieved through treatment strategies that target tumor cells. A recent report from the Li laborato...Successful cancer therapy depends on selective killing of tumor cells while sparing normal cells. Selectivity can be achieved through treatment strategies that target tumor cells. A recent report from the Li laboratory (1) describes an elegant strategy to selectively kill tumor cells by combining several targeting strategies based on cell biological, physical, and molecular (genetic) properties of tumor and normal cells that enhances tumor cell killing in vitro and in an in vivo tumor xenograft model. The idea of using a multiplex targeting approach is reminiscent of strategies in which several antibiotics are used to treat bacterial infections while minimizing the chance that rare antibiotic-resistant mutants will arise within a population.展开更多
The liver is the most frequent site of metastasis in colorectal cancer with up to a quarter of patients having liver metastases at the time of initial diagnosis and a further third subsequently developing liver lesion...The liver is the most frequent site of metastasis in colorectal cancer with up to a quarter of patients having liver metastases at the time of initial diagnosis and a further third subsequently developing liver lesions.Patients who present with metastatic liver disease after treatment of the primary(termed metachronous disease)receive care focused on this new metastatic disease.In contrast,the management of patients who present with colorectal cancer and concurrent liver展开更多
基金the National Natural Science Foundation of China (No. 22136005)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB36000000).
文摘Photoelectrochemical (PEC) small-molecule oxidation can selectively transform substrates into high-value-added fine chemicals and increase the rate of cathode hydrogen evolution. Nevertheless, achieving high-selectivity PEC oxidation of small molecules to produce specific products is a very challenging task. In general, selectivity can be improved by changing the surface catalyticsites of the photoanode and modulating the interfacial environments of the reactions. Herein, recent advances in approaches to improving selective PEC oxidation of small molecules are introduced. We first briefly discuss the basic concept and fundamentals of small-molecule PEC oxidation. The reported approaches to improving the performance of selective PEC oxidation of small molecules are highlighted from two aspects: (1) changing the surface properties of photoanodes by selecting suitable materials or modifying the photoanodes and (2) mediating the oxidation reactions using redox mediators. The PEC oxidation mechanism of these studies is emphasized. We also discuss the challenges in this research direction and offer a perspective on the further development of selective PEC-based small-molecule transformation.
文摘The planting areas of mung bean are mostly arid and semi-arid areas, and lack of irrigation conditions. Many studies have reported that fertilization can increase drought resistance. In our previous research, optimized nitrogen (N), phosphorus (P) and potassium (K) combined fertilization model was established in mung bean. In the present study, the optimal fertilization was conducted in pot trails, and mung bean varieties Bailv9 and Bailv11 were used as materials, while the four water regimes, and three fertilization ratios of F120 (optimal fertilization), F100 (conventional fertilization), F50 (half of conventional fertilization) treatments were set, to compare each fertilization ratio effects and non-fertilization condition under each water regimes respectively. Under different water conditions, the investigation of N, P, and K effects of optimal fertilization showed that the yield of Bailv9 was not sensitive to water stress and had strong drought resistance;their water sensitivity index and drought resistance coefficient were BaiLv9 as Di = 0.89 and DC = 0.79. The yield of Bailv11 was sensitive to water stress, and their drought resistance was weak;their water sensitivity index and drought resistance coefficient were BL11 Di = 1.76 DC = 0.59, and under different water treatment conditions, Bailv9 and Bailv11 all had the best yield and other related traits increase in the F120 fertilization mode compared with other fertilization and non-fertilization conditions, and the average yield increases were 31.56% and 28.08%, respectively. The pot trails conduct the drought stress treatments in mung bean varieties Bailv9, Bailv11, Bailv935 and Bailv985 to determine the function of NPK optimized fertilization for improving plants growth in drought stress condition. Compared with the mung bean varieties treated with F50, F100, and F120, the yield of Bailv9 increased by 56.20%, 81.27%, and 107.22%, respectively;compared with that of F0, the yield of Bailv11 increased by 10.18%, 19.42%, and 45.88%, respectively;Bailv935 increased by 26.52%, 61.90%, 74.16% respectively, and Bailv985 increased by 23.78%, 56.92%, 87.62% respectively. The significant performances of optimized fertilization were also verified in 20 mung bean varieties in our filed trails. The research establishes a theoretical basis for introducing the model into production practice in the next step.
文摘With the development of cities,China has entered an era of stock planning.The functions of old residential areas in urban development can no longer meet the needs of residents in the new era for a better life,and new standards have been put forward for the quality of public spaces for living.This paper analyzes and sorts out the characteristics and problems of the public space in the old residential areas of Baihuazhou district.Combining superposition and intervention techniques,the spatial,historical,cultural and other characteristic elements of the residential areas are preserved to the greatest extent.The public space in the old residential areas of Baihuazhou District is updated and reconstructed in order to achieve the goal of improving the quality of its public space.
基金supported by Henan Province Higher Education Teaching Reform Research and Practice Project(No.2021SJGLX333)。
文摘Objective:To explore the effect of the Plan-Do-Check-Action(PDCA)cycle on hand hygiene and nosocomial infection quality of or thopedic medical staff.Methods:The whole year of 2021 was selected to monitor the quality of hand hygiene and hospitalization.Follow-up monitoring and real-time recording during the period of morning shift and medical operation concentration time,and compare the compliance of hand hygiene before and after implementation,and evaluate the quality of nosocomial infection.Results:The hand hygiene compliance of doctors and nurses in stage P was 82%.The compliance of medical staff in stage D was 93%.The compliance of stage C was 94%and that of stage A was 95%.The quality score of hospital self-examination nosocomial infection was also significantly increased.Conclusions:The PDCA management cycle can effectively improve the compliance of hand hygiene and the nosocomial infection quality,which is wor thy of circulatory application in or thopedic nosocomial infection quality control,especially improving the quality of hand hygiene.
文摘Patient safety is a serious global health issue.Nurses play a critical role in improving patient safety.This Special Focus Issue aims to report research and evidence-based practice about patient safety.This special issue welcomes original research papers,perspectives,conceptual papers,case reports,systematic reviews,and scoping review articles that address a range of topics including,but not limited to,the following areas:The four Cs of safety:Culture,Competency,Consequences&Continuous improvement.
文摘One of the major problems in the education sector is the reading skills of learners.Students enrolled in the Alternative Learning System(ALS)also experienced this scenario due to several circumstances.This study focused on the improvement of reading comprehension skills of ALS learners by means of project RICE(Reading Intervention and Comprehension Enhancement)as well as the issues and challenges.A quasi-experimental design was utilized in this study which was participated by 54 learners,composed of 27 learners under the experimental group and 27 under the control group.The result revealed that the learners in the experimental group changed from frustration level to instructional level after the implementation of project RICE while the learners in the control group changed from instructional level to inde-pendent level,thereby signifying a significant difference and the effectiveness of the project.Additionally,issues with time and resources were often encountered by the learners.
文摘Computer Algebra Systems have been extensively used in higher education. The reasons are many e.g., visualize mathematical problems, correlate real-world problems on a conceptual level, are flexible, simple to use, accessible from anywhere, etc. However, there is still room for improvement. Computer algebra system (CAS) optimization is the set of best practices and techniques to keep the CAS running optimally. Best practices are related to how to carry out a mathematical task or configure your system. In this paper, we are going to examine these techniques. The documentation sheets of CASs are the source of data that we used to compare them and examine their characteristics. The research results reveal that there are many tips that we can follow to accelerate performance.
基金supported by the National Research Foundation of Korea(NRF)of the Korean Government(NRF-2021R1F1A1051212)by Logsynk Co.Ltd.(2-2021-1435-001).
文摘Many approaches to neurodegenerative diseases that focus on amyloid-βclearance and gene therapy have not been successful.Some therapeutic applications focus on enhancing neuronal cell survival during the pathogenesis of neurodegenerative diseases,including mitochondrial dysfunction.Plasma membrane(PM)redox enzymes are crucial in maintaining cellular physiology and redox homeostasis in response to mitochondrial dysfunction.Neurohormetic phytochemicals are known to induce the expression of detoxifying enzymes under stress conditions.In this study,mechanisms of neuroprotective effects of 4-hydroxycinnamic acid(HCA)were examined by analyzing cell survival,levels of abnormal proteins,and mitochondrial functions in two different neuronal cells.HCA protected two neuronal cells exhibited high expression of PM redox enzymes and the consequent increase in the NAD^(+)/NADH ratio.Cells cultured with HCA showed delayed apoptosis and decreased oxidative/nitrative damage accompanied by decreased ROS production in the mitochondria.HCA increased the mitochondrial complexes I and II activities and ATP production.Also,HCA increased mitochondrial fusion and decreased mitochondrial fission.Overall,HCA maintains redox homeostasis and energy metabolism under oxidative/metabolic stress conditions.These findings suggest that HCA could be a promising therapeutic approach for neurodegenerative diseases.
基金funded by the Karamay Innovative Environment Construction Plan(Innovative Talents)Project(No.20212022hjcxrc0015)the Research Foundation of China University of Petroleum-Beijing at Karamay(No.XQZX20200010)+3 种基金the University Scientific Research Project of Xinjiang Uygur Autonomous Region(No.XJEDU2019Y067)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2019D01B57)the CNPC Strategic Cooperation Science and Technology Project(No.ZLZX2020-01-04-04)the Sichuan Province Regional Innovation Cooperation Project(No.2020YFQ0036).
文摘Nanomaterials and low-salinity water(LSW)are two popular enhanced oil recovery(EOR)methods that have been widely studied in recent years.The former is used for in-depth conformance improvement and the latter for microscopic oil displacement(by altering the potential and contact angle).However,there are few literature on combining them to achieve synergistic effects,especially for tight sandstone res-ervoirs.Based on the reservoir conditions of the Jimusar Oilfield,this study investigated the oil recovery mechanism of the combined imbibition system,which was composed of black nanosheet(BN)and LSW.Its performances including decreasing interfacial tension,emulsification,and wettability alterations were evaluated.The imbibition differences between the single system of BN and LSW and the combined BN-LsW imbibition system were then compared.Results showed that the combined imbibition system had a better emulsification effect on the crude oil and could also alter the wettability of the core surface.Moreover,the combined system could increase both the imbibition rate and the ultimate oil recovery.The nuclear magnetic T2 spectrum also indicated that the addition of black nanosheets could divert more fluid into small pores and thus improve the microscopic sweep efficiency.
文摘Graphene flakes(GF)have been prepared and assessed as a material for improving flow in oil pipelines under the effect of an electric field.In particular,different amounts of GFs have been considered in order to determine the optimal flow conditions.The GFs were prepared from graphite foam,derived from the dehydration of sugar with a particle size of 500-600μm,which was dispersed in ethanol and exfoliated in a ball mill under a shear force.After 15 h of exfoliation,sonication,and subsequent high-speed centrifugation at 3000 rpm,irregular-shaped GFs of 50-140 nm were produced and characterized using scanning electron microscopy,X-ray diffractometry,atomic force microscopy,and Raman spectroscopy.The prepared graphene sheets have been found to display excellent morphology and good graphitic structure.Experiments on flow improvement were conducted using the central composite rotatable design method for three parameters:stimulation time(15,30,45,and 60 s),applied voltage(150,170,200,and 220 V),and concentration of the GFs(0,100,200,and 400 mg/L).The optimal conditions for improved crude oil flow were then determined using the STATISTICA and WinQSB software packages.The results have confirmed the effectiveness of the use of the prepared GFs as a flow improver for crude oil,where the flow improvement is essentially a result of a reduction in viscosity and suppression of friction in the crude oil system.
文摘Mobile Ad-hoc Networks(MANETs)connect numerous nodes to communicate data from the sender node to the target node.Due to the lack of an infrastructure network,mobile nodes communicate through wireless without an access point.MANET does not have a centralized controller and has a dynamic network topology,which increases link failure and energy consumption resulting in excessive path delay,loss of Quality of service(QoS),and reduced throughput during data communication.Congestion is a significant problem when the QoS of the link carrying the data is degraded.Routing is one of the vital challenges of MANET due to the very dynamic and distributed nature of MANET.This article introduces a Mobility-Based Optimized Multipath Routing Protocol(MBOMRP)and an Efficient Reliable Link-State Transmission(ERLST)algorithm to overcome these problems.The proposed Mobility-Based Optimized Multipath Routing Protocol(MBOMRP)is utilized for route discovery and maintenance to efficiently avoid traffic and sleeping nodes.ERLST algorithm is used for efficient data transmission to increase QoS measurement parameters like throughput,Packet Delivery Ratio(PDR),and minimize the latency performance.The proposed MBOMRP-ERLST algorithm improves data communication network lifetime,avoids link failures,and provides efficient results compared with previous algorithms.
文摘Highway test and detection technology play a very important role in controlling the quality of road and bridge engineering and improving the maintenance of roads and bridges.The study of highway bridge test detection technology is both theoretically and practically useful.Road and bridge test and detection is a complicated task.With the development of science and technology,highway and bridge engineering test and detection technology has also made great progress.The continuous improvement of test and detection technology has brought good social benefits to road and bridge construction.This article discusses the problems in test and detection technology of highway bridges and how to improve the quality of test and detection.
基金This work was supported by Hunan Provincial Natural Science Foundation.
文摘FeAl/TiC composites were fabricated by hot pressing blended elemental powders. The effects of Ni-doping on thedensification and mechanical properties of the composites were studied. Results show that the density of the composites decreases with the content of TiC increasing, and the addition of Ni significantly improves the densificationprocess by enhancing mass transfer in the bonding phase. The mechanical properties of the composites are closelyrelated with their porosity. Besides increasing the density of the composites, the addition of Ni improves the mechanical properties by other three effects: solution-strengthening the bonding phase, strengthening the FeAI-TiC interfaceand increasing ductile fracture in FeAl phase.
文摘Throughout its more than 5000-year history, China has a long tradition of encouraging active engagement in physical and sport activities This enduring tradition, however, has been facing some major headwinds as China continues to expe- rience demographic and environmental changes related to aging, urbanization, and lifestyle shifts.
基金Supported by Multi-goal Geochemical Survey in Laoling-Hekou Regions,Shandong Province of National Soil Survey and Pollution Prevention(GZTR20060104)~~
文摘Based on the geochemical data obtained from the national project about the prevention and control of soil contamination, this paper explored the properties of soil chemical elements in Huanghuaihai Plain, Shandong Province. The results showed that among the grade-one nutritive elements in soil, organic matter, nitrogen and phosphorus were relatively deficient while potassium was rich. Meanwhile, as the grade-two nutritive elements, calcium oxide and magnesium oxide were relatively short and sulfur’s content was abundant. About the other beneficial and trace nutri-tive elements, iron oxide, manganese, molybdenum and boron were deficient, but the content of chlorine was high, hardly lack. The main barriers to improving land productivity were soil salinization and soil heavy metal contamination. The values of soil integrated fertility index that most of the soil in the study area is middle-lower fertilized. Specifical y, the low fertility area and lower fertility area are 6 1604 and 1 244 km2 respectively, occupying about 97.43% and 1.97% of the total area. The moderate fertility soil has an area of 172 km2, occupying about 0.27% of the total area. The higher fertility soil covers an area of 128 km2, while the high fertility area of only 76 km2. This article proposed scientific fertilization, elimination of soil obsta-cle, remediation of heavy-metal-contaminated soil and other effective measures to improve land productivity according to the basic investigation results, which provides a good technological support for the planning and development of good-quality and high-benefit agriculture.
基金Supported by the Open Cooperation Research in National University of Defense Technology(NUDT)under Grant No 2014021the Graduate Innovation Fund of NUDT under Grant No B150501
文摘Previous work puts forward a random edge rewiring method which is capable of improving the network robustness noticeably, while it lacks further discussions about how to improve the robustness faster. In this study, the detailed analysis of the structures of improved networks show that regenerating the edges between high-degree nodes can enhance the robustness against a targeted attack. Therefore, we propose a novel rewiring strategy based on regenerating more edges between high-degree nodes, called smart rewiring, which could speed up the increase of the robustness index effectively. The smart rewiring method also explains why positive degree-degree correlation could enhance network robustness.
基金supported by the National Nature Science Foundation of China(NSFC 60622110,61471220,91538107,91638205)National Basic Research Project of China(973,2013CB329006),GY22016058
文摘With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation methods very attractive. In this paper, we propose a two-phase rate adaptation strategy to improve users' real-time video Qo E. First, to measure and assess video Qo E, we provide a continuous Qo E prediction engine modeled by RNN recurrent neural network. Different from traditional Qo E models which consider the Qo E-aware factors separately or incompletely, our RNN-Qo E model accounts for three descriptive factors(video quality, rebuffering, and rate change) and reflects the impact of cognitive memory and recency. Besides, the video playing is separated into the initial startup phase and the steady playback phase, and we takes different optimization goals for each phase: the former aims at shortening the startup delay while the latter ameliorates the video quality and the rebufferings. Simulation results have shown that RNN-Qo E can follow the subjective Qo E quite well, and the proposed strategy can effectively reduce the occurrence of rebufferings caused by the mismatch between the requested video rates and the fluctuated throughput and attains standout performance on real-time Qo E compared with classical rate adaption methods.
基金supported by NIH grant R01 GM084020the Japan National Institute of Radiological Sciences International Open Laboratory Program
文摘Successful cancer therapy depends on selective killing of tumor cells while sparing normal cells. Selectivity can be achieved through treatment strategies that target tumor cells. A recent report from the Li laboratory (1) describes an elegant strategy to selectively kill tumor cells by combining several targeting strategies based on cell biological, physical, and molecular (genetic) properties of tumor and normal cells that enhances tumor cell killing in vitro and in an in vivo tumor xenograft model. The idea of using a multiplex targeting approach is reminiscent of strategies in which several antibiotics are used to treat bacterial infections while minimizing the chance that rare antibiotic-resistant mutants will arise within a population.
文摘The liver is the most frequent site of metastasis in colorectal cancer with up to a quarter of patients having liver metastases at the time of initial diagnosis and a further third subsequently developing liver lesions.Patients who present with metastatic liver disease after treatment of the primary(termed metachronous disease)receive care focused on this new metastatic disease.In contrast,the management of patients who present with colorectal cancer and concurrent liver