期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Semiactive variable stiffness control for parametric vibration of cables 被引量:1
1
作者 李惠 陈文礼 欧进萍 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第2期215-222,共8页
In this paper, a semiactive variable stiffness (SVS) device is used to decrease cable oscillations caused by parametric excitation, and the equation of motion of the parametric vibration of the cable with this SVS d... In this paper, a semiactive variable stiffness (SVS) device is used to decrease cable oscillations caused by parametric excitation, and the equation of motion of the parametric vibration of the cable with this SVS device is presented. The ON/OFF control algorithm is used to operate the SVS control device. The vibration response of the cable with the SVS device is numerically studied for a variety of additional stiffness combinations in both the frequency and time domains and for both parametric and classical resonance vibration conditions. The numerical studies further consider the cable sag effect. From the numerical results, it is shown that the SVS device effectively suppresses the cable resonance vibration response, and as the stiffness of the device increases, the device achieves greater suppression of vibration. Moreover, it was shown that the SVS device increases the critical axial displacement of the excitation under cable parametric vibration conditions. 展开更多
关键词 CABLE semiactive control semiactive variable stiffness control parametric vibration RESONANCE NONLINEARITY
下载PDF
Force Control Compensation Method with Variable Load Stiffness and Damping of the Hydraulic Drive Unit Force Control System 被引量:10
2
作者 KONG Xiangdong BA Kaixian +3 位作者 YU Bin CAO Yuan ZHU Qixin ZHAO Hualong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期454-464,共11页
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force... Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness. 展开更多
关键词 quadruped robot force control system hydraulic drive unit force control compensation method variable load stiffness and damping simulation
下载PDF
Development of a Wire Driven Robot for Grinding with Stiffness Adapted
3
作者 ZHANG Bo 1,2, ZHAO Ming-yang 2 (1. Graduate School of the Chinese Academy of Sciences, Beijing 100039 , China 2. Robotics Laboratory, Shenyang Institute of Automation, Chinese Academy of S ciences, Shenyang 110016, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期81-82,共2页
Along with development of new design and machining me thod production with more complex surface can be manufactured. Researching on th e new equipment used for surface disposal has become the important matter. Grind i... Along with development of new design and machining me thod production with more complex surface can be manufactured. Researching on th e new equipment used for surface disposal has become the important matter. Grind ing and polishing are a common surface processing method. A new type wire driven parallel robot used for grinding processing is proposed in this paper. Wire driven parallel robot is developed from parallel robot and serial wire driven r obot. Steel wire is used to replace the leg of parallel robot. Compared with par allel robot, this kind of robot has lager workspace, lower weight, higher rigidi ty and higher load/deadweight ratio. And the stiffness of robot is controlled by changing the tension of wire. The robot proposed in this paper has three DOF. T he moving part is driven by four wires, three of them are used to drive and the rest to keep them tension, with a restraining machine. The position sensors are installed in restraining machine. The position of terminating of end-effecter c an be ascertained in the space. The tension sensors are installed in each wire t o form force feedback system. By changing the tension the force on the workpiece can be controlled. Also the stiffness of robot can be adjusted. 展开更多
关键词 wire driven parallel robot stiffness control
下载PDF
Variable stiffness control algorithm for high-rising buildings of closely spaced frequencies based on wavelet transforms
4
作者 滕军 鲁志雄 闫安志 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第5期600-606,共7页
To establish the algorithm of SAT-TMD system with the wavelet transform(WT),the modal mass participation ratio is proposed to distinguish if the high-rising structure has the characteristic of closely distributed freq... To establish the algorithm of SAT-TMD system with the wavelet transform(WT),the modal mass participation ratio is proposed to distinguish if the high-rising structure has the characteristic of closely distributed frequencies.A time varying analytical model of high-rising structure such as TV-tower with the SAT-TMD is developed.The proposed new idea is to use WT to identify the dominant frequency of structural response in a segment time,and track its variation as a function of time to retune the SAT-TMD.The effectiveness of SAT-TMD is investigated and it is more robust to change in building stiffness and damping than that of the TMD with a fixed frequency corresponding to a fixed mode frequency of the building.It is proved that SAT-TMD is particularly effective in reducing the response even when the building stiffness is changed by ±15%;whereas the TMD loses its effectiveness under such building stiffness variations. 展开更多
关键词 variable stiffness control semi-active tunable TMD(SAT-TMD) wavelet transforms closely spaced frequencies modal mass participation ratio
下载PDF
Quantifying a critical marl thickness for vertical fracture extension using field data and numerical experiments 被引量:1
5
作者 Filiz Afsar Elco Luijendijk 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第6期2135-2145,共11页
In fractured reservoirs characterized by low matrix permeability,fracture networks control the main fluid flow paths.However,in layered reservoirs,the vertical extension of fractures is often restricted to single laye... In fractured reservoirs characterized by low matrix permeability,fracture networks control the main fluid flow paths.However,in layered reservoirs,the vertical extension of fractures is often restricted to single layers.In this study,we explored the effect of changing marl/shale thickness on fracture extension using comprehensive field data and numerical modeling.The field data were sampled from coastal exposures of Liassic limestone-marl/shale alternations in Wales and Somerset(Bristol Channel Basin,UK).The vertical fracture traces of more than 4000 fractures were mapped in detail.Six sections were selected to represent a variety of layer thicknesses.Besides the field data also thin sections were analyzed.Numerical models of fracture extension in a two-layer limestone-marl system were based on field data and laboratory measurements of Young's moduli.The modeled principal stress magnitude σ3 along the lithological contact was used as an indication for fracture extension through marls.Field data exhibit good correlation(R^2=0.76) between fracture extension and marl thickness,the thicker the marl layer the fewer fractures propagate through.The model results show that almost no tensile stress reaches the top of the marl layer when the marls are thicker than 30 cm.For marls that are less than 20 cm,the propagation of stress is more dependent on the stiffness of the marls.The higher the contrast between limestone and marl stiffness the lower the stress that is transmitted into the marl layer.In both model experiments and field data the critical marl thickness for fracture extension is ca.15-20 cm.This quantification of critical marl thicknesses can be used to improve predictions of fracture networks and permeability in layered rocks.Up-or downsampling methods often ignore spatially continuous impermeable layers with thicknesses that are under the detection limit of seismic data.However,ignoring these layers can lead to overestimates of the overall permeability.Therefore,the understanding of how fractures propagate and terminate through impermeable layers will help to improve the characterization of conventional reservoirs. 展开更多
关键词 Boundary element modelling Marl/limestone multilayer Layer thickness and stiffness control PERMEABILITY Fractured reservoirs
下载PDF
Test and numerical simulation of a new type of hybrid control technique
6
作者 孟庆利 张敏政 陈栋 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第2期305-310,共6页
In this paper, a new hybrid control technique, based on a combination of base-isolation and semi-active variable stiffness/damping in a superstructure, is presented. To illustrate the efficiency of the proposed contro... In this paper, a new hybrid control technique, based on a combination of base-isolation and semi-active variable stiffness/damping in a superstructure, is presented. To illustrate the efficiency of the proposed control system, model tests on a mini-electromagnetic shaking table and a numerical simulation were performed. The test and numerical calculation results indicate that this new hybrid control mode with additional damping and smaller additional stiffness can achieve a better control efficiency. 展开更多
关键词 base-isolation semi-active variable stiffness/damping control hybrid control shaking table model test
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部