期刊文献+
共找到60,383篇文章
< 1 2 250 >
每页显示 20 50 100
Improving Network Availability through Optimized Multipath Routing and Incremental Deployment Strategies
1
作者 Wei Zhang Haijun Geng 《Computers, Materials & Continua》 SCIE EI 2024年第7期427-448,共22页
Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts th... Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts the flow of data but also makes the network susceptible to failures in case the primary path is disrupted.In contrast,routing protocols that leverage multiple paths within the network offer a more resilient and efficient solution.Multipath routing,as a fundamental concept,surpasses the limitations of traditional shortest path first protocols.It not only redirects traffic to unused resources,effectively mitigating network congestion,but also ensures load balancing across the network.This optimization significantly improves network utilization and boosts the overall performance,making it a widely recognized efficient method for enhancing network reliability.To further strengthen network resilience against failures,we introduce a routing scheme known as Multiple Nodes with at least Two Choices(MNTC).This innovative approach aims to significantly enhance network availability by providing each node with at least two routing choices.By doing so,it not only reduces the dependency on a single path but also creates redundant paths that can be utilized in case of failures,thereby enhancing the overall resilience of the network.To ensure the optimal placement of nodes,we propose three incremental deployment algorithms.These algorithms carefully select the most suitable set of nodes for deployment,taking into account various factors such as node connectivity,traffic patterns,and network topology.By deployingMNTCon a carefully chosen set of nodes,we can significantly enhance network reliability without the need for a complete overhaul of the existing infrastructure.We have conducted extensive evaluations of MNTC in diverse topological spaces,demonstrating its effectiveness in maintaining high network availability with minimal path stretch.The results are impressive,showing that even when implemented on just 60%of nodes,our incremental deployment method significantly boosts network availability.This underscores the potential of MNTC in enhancing network resilience and performance,making it a viable solution for modern networks facing increasing demands and complexities.The algorithms OSPF,TBFH,DC and LFC perform fast rerouting based on strict conditions,while MNTC is not restricted by these conditions.In five real network topologies,the average network availability ofMNTCis improved by 14.68%,6.28%,4.76%and 2.84%,respectively,compared with OSPF,TBFH,DC and LFC. 展开更多
关键词 Multipath routing network availability incremental deployment schemes genetic algorithm
下载PDF
Ethical Decision-Making Framework Based on Incremental ILP Considering Conflicts
2
作者 Xuemin Wang Qiaochen Li Xuguang Bao 《Computers, Materials & Continua》 SCIE EI 2024年第3期3619-3643,共25页
Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values... Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems. 展开更多
关键词 Ethical decision-making inductive logic programming incremental learning conflicts
下载PDF
Hyperspectral Image Super-Resolution Network Based on Reinforcing Inter-Spectral Incremental Information
3
作者 Jialong Liang Qiang Li +2 位作者 Size Wang Charles Okanda Nyatega Xin Guan 《Journal of Beijing Institute of Technology》 EI CAS 2024年第4期307-325,共19页
Hyperspectral images typically have high spectral resolution but low spatial resolution,which impacts the reliability and accuracy of subsequent applications,for example,remote sensingclassification and mineral identi... Hyperspectral images typically have high spectral resolution but low spatial resolution,which impacts the reliability and accuracy of subsequent applications,for example,remote sensingclassification and mineral identification.But in traditional methods via deep convolution neural net-works,indiscriminately extracting and fusing spectral and spatial features makes it challenging toutilize the differentiated information across adjacent spectral channels.Thus,we proposed a multi-branch interleaved iterative upsampling hyperspectral image super-resolution reconstruction net-work(MIIUSR)to address the above problems.We reinforce spatial feature extraction by integrat-ing detailed features from different receptive fields across adjacent channels.Furthermore,we pro-pose an interleaved iterative upsampling process during the reconstruction stage,which progres-sively fuses incremental information among adjacent frequency bands.Additionally,we add twoparallel three dimensional(3D)feature extraction branches to the backbone network to extractspectral and spatial features of varying granularity.We further enhance the backbone network’sconstruction results by leveraging the difference between two dimensional(2D)channel-groupingspatial features and 3D multi-granularity features.The results obtained by applying the proposednetwork model to the CAVE test set show that,at a scaling factor of×4,the peak signal to noiseratio,spectral angle mapping,and structural similarity are 37.310 dB,3.525 and 0.9438,respec-tively.Besides,extensive experiments conducted on the Harvard and Foster datasets demonstratethe superior potential of the proposed model in hyperspectral super-resolution reconstruction. 展开更多
关键词 image processing hyperspectral image super-solution incremental information
下载PDF
CNN-LSTM based incremental attention mechanism enabled phase-space reconstruction for chaotic time series prediction
4
作者 Xiao-Qian Lu Jun Tian +2 位作者 Qiang Liao Zheng-Wu Xu Lu Gan 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期77-90,共14页
To improve the prediction accuracy of chaotic time series and reconstruct a more reasonable phase space structure of the prediction network,we propose a convolutional neural network-long short-term memory(CNN-LSTM)pre... To improve the prediction accuracy of chaotic time series and reconstruct a more reasonable phase space structure of the prediction network,we propose a convolutional neural network-long short-term memory(CNN-LSTM)prediction model based on the incremental attention mechanism.Firstly,a traversal search is conducted through the traversal layer for finite parameters in the phase space.Then,an incremental attention layer is utilized for parameter judgment based on the dimension weight criteria(DWC).The phase space parameters that best meet DWC are selected and fed into the input layer.Finally,the constructed CNN-LSTM network extracts spatio-temporal features and provides the final prediction results.The model is verified using Logistic,Lorenz,and sunspot chaotic time series,and the performance is compared from the two dimensions of prediction accuracy and network phase space structure.Additionally,the CNN-LSTM network based on incremental attention is compared with long short-term memory(LSTM),convolutional neural network(CNN),recurrent neural network(RNN),and support vector regression(SVR)for prediction accuracy.The experiment results indicate that the proposed composite network model possesses enhanced capability in extracting temporal features and achieves higher prediction accuracy.Also,the algorithm to estimate the phase space parameter is compared with the traditional CAO,false nearest neighbor,and C-C,three typical methods for determining the chaotic phase space parameters.The experiments reveal that the phase space parameter estimation algorithm based on the incremental attention mechanism is superior in prediction accuracy compared with the traditional phase space reconstruction method in five networks,including CNN-LSTM,LSTM,CNN,RNN,and SVR. 展开更多
关键词 Chaotic time series incremental attention mechanism Phase-space reconstruction
下载PDF
Selective and Adaptive Incremental Transfer Learning with Multiple Datasets for Machine Fault Diagnosis
5
作者 Kwok Tai Chui Brij B.Gupta +1 位作者 Varsha Arya Miguel Torres-Ruiz 《Computers, Materials & Continua》 SCIE EI 2024年第1期1363-1379,共17页
The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation fo... The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation for automatically recognizing machine failure,and thus timely maintenance can ensure safe operations.Transfer learning is a promising solution that can enhance the machine fault diagnosis model by borrowing pre-trained knowledge from the source model and applying it to the target model,which typically involves two datasets.In response to the availability of multiple datasets,this paper proposes using selective and adaptive incremental transfer learning(SA-ITL),which fuses three algorithms,namely,the hybrid selective algorithm,the transferability enhancement algorithm,and the incremental transfer learning algorithm.It is a selective algorithm that enables selecting and ordering appropriate datasets for transfer learning and selecting useful knowledge to avoid negative transfer.The algorithm also adaptively adjusts the portion of training data to balance the learning rate and training time.The proposed algorithm is evaluated and analyzed using ten benchmark datasets.Compared with other algorithms from existing works,SA-ITL improves the accuracy of all datasets.Ablation studies present the accuracy enhancements of the SA-ITL,including the hybrid selective algorithm(1.22%-3.82%),transferability enhancement algorithm(1.91%-4.15%),and incremental transfer learning algorithm(0.605%-2.68%).These also show the benefits of enhancing the target model with heterogeneous image datasets that widen the range of domain selection between source and target domains. 展开更多
关键词 Deep learning incremental learning machine fault diagnosis negative transfer transfer learning
下载PDF
A Hybrid Optimization Approach of Single Point Incremental Sheet Forming of AISI 316L Stainless Steel Using Grey Relation Analysis Coupled with Principal Component Analysiss
6
作者 A Visagan P Ganesh 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期160-166,共7页
We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were use... We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response. 展开更多
关键词 single point incremental forming AISI 316L taguchi grey relation analysis principal component analysis surface roughness scanning electron microscopy
下载PDF
A comparison study on structure-function relationship of polysaccharides obtained from sea buckthorn berries using different methods:antioxidant and bile acid-binding capacity 被引量:4
7
作者 Qiaoyun Li Zuman Dou +5 位作者 Qingfei Duan Chun Chen Ruihai Liu Yueming Jiang Bao Yang Xiong Fu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期494-505,共12页
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic... In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods. 展开更多
关键词 sea buckthorn Extraction method STRUCTURE Rheological properties Antioxidant activity Bile acid binding capacity
下载PDF
No effect of invasive tree species on aboveground biomass increments of oaks and pines in temperate forests 被引量:1
8
作者 Sebastian Bury Marcin K.Dyderski 《Forest Ecosystems》 SCIE CSCD 2024年第4期401-413,共13页
Prunus serotina and Robinia pseudoacacia are the most widespread invasive trees in Central Europe.In addition,according to climate models,decreased growth of many economically and ecologically important native trees w... Prunus serotina and Robinia pseudoacacia are the most widespread invasive trees in Central Europe.In addition,according to climate models,decreased growth of many economically and ecologically important native trees will likely be observed in the future.We aimed to assess the impact of these two neophytes,which differ in the biomass range and nitrogen-fixing abilities observed in Central European conditions,on the relative aboveground biomass increments of native oaks Qucrcus robur and Q.petraea and Scots pine Pinus sylvestris.We aimed to increase our understanding of the relationship between facilitation and competition between woody alien species and overstory native trees.We established 72 circular plots(0.05 ha)in two different forest habitat types and stands varying in age in western Poland.We chose plots with different abundances of the studied neophytes to determine how effects scaled along the quantitative invasion gradient.Furthermore,we collected growth cores of the studied native species,and we calculated aboveground biomass increments at the tree and stand levels.Then,we used generalized linear mixed-effects models to assess the impact of invasive species abundances on relative aboveground biomass increments of native tree species.We did not find a biologically or statistically significant impact of invasive R.pseudoacacia or P.serotina on the relative aboveground,biomass increments of native oaks and pines along the quantitative gradient of invader biomass or on the proportion of total stand biomass accounted for by invaders.The neophytes did not act as native tree growth stimulators but also did not compete with them for resources,which would escalate the negative impact of climate change on pines and oaks.The neophytes should not significantly modify the carbon sequestration capacity of the native species.Our work combines elements of the per capita effect of invasion with research on mixed forest management. 展开更多
关键词 Invasion ecology Exotic trees Relative aboveground biomass increment Competition FACILITATION Carbon sequestration
下载PDF
Filter Bank Networks for Few-Shot Class-Incremental Learning
9
作者 Yanzhao Zhou Binghao Liu +1 位作者 Yiran Liu Jianbin Jiao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期647-668,共22页
Deep Convolution Neural Networks(DCNNs)can capture discriminative features from large datasets.However,how to incrementally learn new samples without forgetting old ones and recognize novel classes that arise in the d... Deep Convolution Neural Networks(DCNNs)can capture discriminative features from large datasets.However,how to incrementally learn new samples without forgetting old ones and recognize novel classes that arise in the dynamically changing world,e.g.,classifying newly discovered fish species,remains an open problem.We address an even more challenging and realistic setting of this problem where new class samples are insufficient,i.e.,Few-Shot Class-Incremental Learning(FSCIL).Current FSCIL methods augment the training data to alleviate the overfitting of novel classes.By contrast,we propose Filter Bank Networks(FBNs)that augment the learnable filters to capture fine-detailed features for adapting to future new classes.In the forward pass,FBNs augment each convolutional filter to a virtual filter bank containing the canonical one,i.e.,itself,and multiple transformed versions.During back-propagation,FBNs explicitly stimulate fine-detailed features to emerge and collectively align all gradients of each filter bank to learn the canonical one.FBNs capture pattern variants that do not yet exist in the pretraining session,thus making it easy to incorporate new classes in the incremental learning phase.Moreover,FBNs introduce model-level prior knowledge to efficiently utilize the limited few-shot data.Extensive experiments on MNIST,CIFAR100,CUB200,andMini-ImageNet datasets show that FBNs consistently outperformthe baseline by a significantmargin,reporting new state-of-the-art FSCIL results.In addition,we contribute a challenging FSCIL benchmark,Fishshot1K,which contains 8261 underwater images covering 1000 ocean fish species.The code is included in the supplementary materials. 展开更多
关键词 Deep learning incremental learning few-shot learning Filter Bank Networks
下载PDF
Influence of Irregular Coastlines on a Tornadic Mesovortex in the Pearl River Delta during the Monsoon Season. Part Ⅰ:Pre-storm Environment and Storm Evolution 被引量:1
10
作者 Lanqiang BAI Dan YAO +4 位作者 Zhiyong MENG Yu ZHANG Xianxiang HUANG Zhaoming LI Xiaoding YU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1115-1131,共17页
The Pearl River Delta(PRD),a tornado hotspot,forms a distinct trumpet-shaped coastline that concaves toward the South China Sea.During the summer monsoon season,low-level southwesterlies over the PRD’s sea surface te... The Pearl River Delta(PRD),a tornado hotspot,forms a distinct trumpet-shaped coastline that concaves toward the South China Sea.During the summer monsoon season,low-level southwesterlies over the PRD’s sea surface tend to be turned toward the west coast,constituting a convergent wind field along with the landward-side southwesterlies,which influences regional convective weather.This two-part study explores the roles of this unique land–sea contrast of the trumpet-shaped coastline in the formation of a tornadic mesovortex within monsoonal flows in this region.Part I primarily presents observational analyses of pre-storm environments and storm evolutions.The rotating storm developed in a lowshear environment(not ideal for a supercell)under the interactions of three air masses under the influence of the land–sea contrast,monsoon,and storm cold outflows.This intersection zone(or“triple point”)is typically characterized by local enhancements of ambient vertical vorticity and convergence.Based on a rapid-scan X-band phased-array radar,finger-like echoes were recognized shortly after the gust front intruded on the triple point.Developed over the triple point,they rapidly wrapped up with a well-defined low-level mesovortex.It is thus presumed that the triple point may have played roles in the mesovortex genesis,which will be demonstrated in Part II with multiple sensitivity numerical simulations.The findings also suggest that when storms pass over the boundary intersection zone in the PRD,the expected possibility of a rotating storm occurring is relatively high,even in a low-shear environment.Improved knowledge of such environments provides additional guidance to assess the regional tornado risk. 展开更多
关键词 TORNADO mesovortex surface boundary land–sea contrast MONSOON
下载PDF
Incremental Learning Based on Data Translation and Knowledge Distillation
11
作者 Tan Cheng Jielong Wang 《International Journal of Intelligence Science》 2023年第2期33-47,共15页
Recently, deep convolutional neural networks (DCNNs) have achieved remarkable results in image classification tasks. Despite convolutional networks’ great successes, their training process relies on a large amount of... Recently, deep convolutional neural networks (DCNNs) have achieved remarkable results in image classification tasks. Despite convolutional networks’ great successes, their training process relies on a large amount of data prepared in advance, which is often challenging in real-world applications, such as streaming data and concept drift. For this reason, incremental learning (continual learning) has attracted increasing attention from scholars. However, incremental learning is associated with the challenge of catastrophic forgetting: the performance on previous tasks drastically degrades after learning a new task. In this paper, we propose a new strategy to alleviate catastrophic forgetting when neural networks are trained in continual domains. Specifically, two components are applied: data translation based on transfer learning and knowledge distillation. The former translates a portion of new data to reconstruct the partial data distribution of the old domain. The latter uses an old model as a teacher to guide a new model. The experimental results on three datasets have shown that our work can effectively alleviate catastrophic forgetting by a combination of the two methods aforementioned. 展开更多
关键词 incremental Domain Learning Data Translation Knowledge Distillation Cat-astrophic Forgetting
下载PDF
ILIDViz:An incremental learning-based visual analysis system for network anomaly detection
12
作者 Xuefei TIAN Zhiyuan WU +2 位作者 Junxiang CAO Shengtao CHEN Xiaoju DONG 《Virtual Reality & Intelligent Hardware》 EI 2023年第6期471-489,共19页
Background With the development of information technology,there is a significant increase in the number of network traffic logs mixed with various types of cyberattacks.Traditional intrusion detection systems(IDSs)are... Background With the development of information technology,there is a significant increase in the number of network traffic logs mixed with various types of cyberattacks.Traditional intrusion detection systems(IDSs)are limited in detecting new inconstant patterns and identifying malicious traffic traces in real time.Therefore,there is an urgent need to implement more effective intrusion detection technologies to protect computer security.Methods In this study,we designed a hybrid IDS by combining our incremental learning model(KANSOINN)and active learning to learn new log patterns and detect various network anomalies in real time.Conclusions Experimental results on the NSLKDD dataset showed that KAN-SOINN can be continuously improved and effectively detect malicious logs.Meanwhile,comparative experiments proved that using a hybrid query strategy in active learning can improve the model learning efficiency. 展开更多
关键词 Intrusion detection Machine learning incremental learning Active learning Visual analysis
下载PDF
Assessments of Data-Driven Deep Learning Models on One-Month Predictions of Pan-Arctic Sea Ice Thickness 被引量:1
13
作者 Chentao SONG Jiang ZHU Xichen LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1379-1390,共12页
In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,ma... In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications. 展开更多
关键词 Arctic sea ice thickness deep learning spatiotemporal sequence prediction transfer learning
下载PDF
Arctic Sea Ice Variations in the First Half of the 20th Century:A New Reconstruction Based on Hydrometeorological Data 被引量:1
14
作者 Vladimir A.SEMENOV Tatiana A.ALDONINA +2 位作者 Fei LI Noel Sebastian KEENLYSIDE Lin WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1483-1495,1686-1693,共21页
The shrinking Arctic sea-ice area(SIA) in recent decades is a striking manifestation of the ongoing climate change.Variations of the Arctic sea ice have been continuously observed by satellites since 1979, relatively ... The shrinking Arctic sea-ice area(SIA) in recent decades is a striking manifestation of the ongoing climate change.Variations of the Arctic sea ice have been continuously observed by satellites since 1979, relatively well monitored since the 1950s, but are highly uncertain in the earlier period due to a lack of observations. Several reconstructions of the historical gridded sea-ice concentration(SIC) data were recently presented based on synthesized regional sea-ice observations or by applying a hybrid model–empirical approach. Here, we present an SIC reconstruction for the period1901–2019 based on established co-variability between SIC and surface air temperature, sea surface temperature, and sea level pressure patterns. The reconstructed sea-ice data for March and September are compared to the frequently used Had ISST1.1 and SIBT1850 datasets. Our reconstruction shows a large decrease in SIA from the 1920 to 1940 concurrent with the Early 20th Century Warming event in the Arctic. Such a negative SIA anomaly is absent in Had ISST1.1 data. The amplitude of the SIA anomaly reaches about 0.8 mln km^(2) in March and 1.5 mln km^(2) in September. The anomaly is about three times stronger than that in the SIBT1850 dataset. The larger decrease in SIA in September is largely due to the stronger SIC reduction in the western sector of the Arctic Ocean in the 70°–80°N latitudinal zone. Our reconstruction provides gridded monthly data that can be used as boundary conditions for atmospheric reanalyses and model experiments to study the Arctic climate for the first half of the 20th century. 展开更多
关键词 Arctic sea ice Arctic climate early 20th century warming climate variability
下载PDF
A Novel Incremental Attribute Reduction Algorithm Based on Intuitionistic Fuzzy Partition Distance
15
作者 Pham Viet Anh Nguyen Ngoc Thuy +2 位作者 Nguyen Long Giang Pham Dinh Khanh Nguyen The Thuy 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2971-2988,共18页
Attribute reduction,also known as feature selection,for decision information systems is one of the most pivotal issues in machine learning and data mining.Approaches based on the rough set theory and some extensions w... Attribute reduction,also known as feature selection,for decision information systems is one of the most pivotal issues in machine learning and data mining.Approaches based on the rough set theory and some extensions were proved to be efficient for dealing with the problemof attribute reduction.Unfortunately,the intuitionistic fuzzy sets based methods have not received much interest,while these methods are well-known as a very powerful approach to noisy decision tables,i.e.,data tables with the low initial classification accuracy.Therefore,this paper provides a novel incremental attribute reductionmethod to dealmore effectivelywith noisy decision tables,especially for highdimensional ones.In particular,we define a new reduct and then design an original attribute reduction method based on the distance measure between two intuitionistic fuzzy partitions.It should be noted that the intuitionistic fuzzypartitiondistance iswell-knownas aneffectivemeasure todetermine important attributes.More interestingly,an incremental formula is also developed to quickly compute the intuitionistic fuzzy partition distance in case when the decision table increases in the number of objects.This formula is then applied to construct an incremental attribute reduction algorithm for handling such dynamic tables.Besides,some experiments are conducted on real datasets to show that our method is far superior to the fuzzy rough set based methods in terms of the size of reduct and the classification accuracy. 展开更多
关键词 incremental attribute reduction intuitionistic fuzzy sets partition distance measure dynamic decision tables
下载PDF
Physical and mechanical properties and microstructures of submarine soils in the Yellow Sea 被引量:1
16
作者 Zhuangcai Tian Yihua Chang +6 位作者 Sichao Chen Gengchen Wang Yanhong Hu Chuan Guo Lei Jia Lei Song Jianhua Yue 《Deep Underground Science and Engineering》 2024年第2期197-206,共10页
In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical propertie... In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction. 展开更多
关键词 direct shear test MICROSCOPE physical properties submarine soil Yellow sea
下载PDF
Multi-scale Incremental Analysis Update Scheme and Its Application to Typhoon Mangkhut(2018)Prediction
17
作者 Yan GAO Jiali FENG +4 位作者 Xin XIA Jian SUN Yulong MA Dongmei CHEN Qilin WAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第1期95-109,共15页
In the traditional incremental analysis update(IAU)process,all analysis increments are treated as constant forcing in a model’s prognostic equations over a certain time window.This approach effectively reduces high-f... In the traditional incremental analysis update(IAU)process,all analysis increments are treated as constant forcing in a model’s prognostic equations over a certain time window.This approach effectively reduces high-frequency oscillations introduced by data assimilation.However,as different scales of increments have unique evolutionary speeds and life histories in a numerical model,the traditional IAU scheme cannot fully meet the requirements of short-term forecasting for the damping of high-frequency noise and may even cause systematic drifts.Therefore,a multi-scale IAU scheme is proposed in this paper.Analysis increments were divided into different scale parts using a spatial filtering technique.For each scale increment,the optimal relaxation time in the IAU scheme was determined by the skill of the forecasting results.Finally,different scales of analysis increments were added to the model integration during their optimal relaxation time.The multi-scale IAU scheme can effectively reduce the noise and further improve the balance between large-scale and small-scale increments in the model initialization stage.To evaluate its performance,several numerical experiments were conducted to simulate the path and intensity of Typhoon Mangkhut(2018)and showed that:(1)the multi-scale IAU scheme had an obvious effect on noise control at the initial stage of data assimilation;(2)the optimal relaxation time for large-scale and small-scale increments was estimated as 6 h and 3 h,respectively;(3)the forecast performance of the multi-scale IAU scheme in the prediction of Typhoon Mangkhut(2018)was better than that of the traditional IAU scheme.The results demonstrate the superiority of the multi-scale IAU scheme. 展开更多
关键词 multi-scale incremental analysis updates optimal relaxation time 2-D discrete cosine transform GRAPES_MESO Typhoon Mangkhut(2018)
下载PDF
Projecting Wintertime Newly Formed Arctic Sea Ice through Weighting CMIP6 Model Performance and Independence 被引量:1
18
作者 Jiazhen ZHAO Shengping HE +2 位作者 Ke FAN Huijun WANG Fei LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1465-1482,共18页
Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Ar... Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained). 展开更多
关键词 wintertime newly formed Arctic sea ice model democracy model weighting scheme model performance model independence
下载PDF
Ecological problems and ecological restoration zoning of the Aral Sea 被引量:1
19
作者 BAO Anming YU Tao +7 位作者 XU Wenqiang LEI Jiaqiang JIAPAER Guli CHEN Xi Tojibaev KOMILJON Shomurodov KHABIBULLO Xabibullaev B SAGIDULLAEVICH Idirisov KAMALATDIN 《Journal of Arid Land》 SCIE CSCD 2024年第3期315-330,共16页
The Aral Sea was the fourth largest lake in the world but it has shrunk dramatically as a result of irrational human activities, triggering the "Aral Sea ecological crisis". The ecological problems of the Ar... The Aral Sea was the fourth largest lake in the world but it has shrunk dramatically as a result of irrational human activities, triggering the "Aral Sea ecological crisis". The ecological problems of the Aral Sea have attracted widespread attention, and the alleviation of the Aral Sea ecological crisis has reached a consensus among the five Central Asian countries(Kazakhstan, Uzbekistan, Tajikistan, Kyrgyzstan, and Turkmenistan). In the past decades, many ecological management measures have been implemented for the ecological restoration of the Aral Sea. However, due to the lack of regional planning and zoning, the results are not ideal. In this study, we mapped the ecological zoning of the Aral Sea from the perspective of ecological restoration based on soil type, soil salinity, surface water, groundwater table, Normalized Difference Vegetation Index(NDVI), land cover, and aerosol optical depth(AOD) data. Soil salinization and salt dust are the most prominent ecological problems in the Aral Sea. We divided the Aral Sea into 7 first-level ecological restoration subregions(North Aral Sea catchment area in the downstream of the Syr Darya River(Subregion Ⅰ);artificial flood overflow area in the downstream of the Aral Sea(Subregion Ⅱ);physical/chemical remediation area of the salt dust source area in the eastern part of the South Aral Sea(Subregion Ⅲ);physical/chemical remediation area of severe salinization in the central part of the South Aral Sea(Subregion Ⅳ);existing water surface and potential restoration area of the South Aral Sea(Subregion Ⅴ);Aral Sea vegetation natural recovery area(Subregion Ⅵ);and vegetation planting area with slight salinization in the South Aral Sea(Subregion Ⅶ)) and 14 second-level ecological restoration subregions according to the ecological zoning principles. Implementable measures are proposed for each ecological restoration subregion. For Subregion Ⅰ and Subregion Ⅱ with lower elevations, artificial flooding should be carried out to restore the surface of the Aral Sea. Subregion Ⅲ and Subregion Ⅳ have severe salinization, making it difficult for vegetation to grow. In these subregions, it is recommended to cover and pave the areas with green biomatrix coverings and environmentally sustainable bonding materials. In Subregion Ⅴ located in the central and western parts of the South Aral Sea, surface water recharge should be increased to ensure that this subregion can maintain normal water levels. In Subregion Ⅵ and Subregion Ⅶ where natural conditions are suitable for vegetation growth, measures such as afforestation and buffer zones should be implemented to protect vegetation. This study could provide a reference basis for future comprehensive ecological management and restoration of the Aral Sea. 展开更多
关键词 ecological restoration zoning salt and dust storms soil salinization ecological crisis Aral sea Central Asia
下载PDF
Deep-large faults controlling on the distribution of the venting gas hydrate system in the middle of the Qiongdongnan Basin, South China Sea 被引量:2
20
作者 Jin-feng Ren Hai-jun Qiu +6 位作者 Zeng-gui Kuang Ting-wei Li Yu-lin He Meng-jie Xu Xiao-xue Wang Hong-fei Lai Jin Liang 《China Geology》 CAS CSCD 2024年第1期36-50,共15页
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra... Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates. 展开更多
关键词 Venting gas hydrates Deep-large faults Gas chimney Gas-escape pipes High-resolution 3D seismic Logging while drilling Qiongdongnan Basin South China sea
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部