期刊文献+
共找到4,128篇文章
< 1 2 207 >
每页显示 20 50 100
Assessing the corrosion protection property of coatings loaded with corrosion inhibitors using the real-time atmospheric corrosion monitoring technique
1
作者 Xiaoxue Wang Lulu Jin +8 位作者 Jinke Wang Rongqiao Wang Xiuchun Liu Kai Gao Jingli Sun Yong Yuan Lingwei Ma Hongchang Qian Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期119-126,共8页
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ... The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating. 展开更多
关键词 atmospheric corrosion monitoring technology corrosion inhibitor COATING carbon steel corrosion protection
下载PDF
Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption 被引量:1
2
作者 Zhiqiang Guo Di Lan +6 位作者 Zirui Jia Zhenguo Gao Xuetao Shi Mukun He Hua Guo Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期507-527,共21页
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con... Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments. 展开更多
关键词 Electrostatic spinning Component regulation Heterogeneous interfaces Electromagnetic wave absorption corrosion protection
下载PDF
Corrosion behavior of B10 copper-nickel alloy beneath a deposit caused by sulfate-reducing bacteria with carbon source starvation in marine environments
3
作者 JIN Zheng-yu WANG Zhi +7 位作者 FAN Yu-xing LIU Hai-xian LIU Ruo-ling ZHANG Yi YIN Yan-sheng LIU Hong-fang FAN Shao-jia LIU Hong-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3382-3393,共12页
Copper-nickel alloys can suffer severe localized corrosion in marine environments containing sulfate-reducing bacteria(SRB),but the effect of SRB on the under-deposit corrosion of copper-nickel alloys is unknown.In th... Copper-nickel alloys can suffer severe localized corrosion in marine environments containing sulfate-reducing bacteria(SRB),but the effect of SRB on the under-deposit corrosion of copper-nickel alloys is unknown.In this work,the corrosion behavior of B10 copper-nickel alloy beneath a deposit caused by SRB with carbon source starvation in artificial seawater was studied based on electrochemical measurements and surface analysis.Results demonstrate that SRB with an organic carbon starvation can survive in artificial water but most SRB cells have died.The survived SRB cells can attach to the bare and deposit-covered B10 copper-nickel alloy,leading to the corrosion acceleration.Due to the limitation of organic carbon source,the pitting corrosion of B10 copper-nickel alloy caused by SRB is not serious.However,serious pitting corrosion of the deposit-covered B10 copper-nickel alloy can be found both in abiotic and biotic conditions,and the pitting corrosion and uniform corrosion are further accelerated by SRB.There is a galvanic effect between the bare and deposit-covered specimens in the presence of SRB in the early stage but the galvanic effect after 5 d of testing can be neglected due to the low OCP difference values. 展开更多
关键词 sulfate-reducing bacteria copper-nickel alloys microbiologically influenced corrosion under-deposit corrosion pitting corrosion organic carbon starvation
下载PDF
Effect of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy
4
作者 Xian-wen YANG Ling-ying YE +1 位作者 Yong ZHANG Quan-shi CHENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2415-2430,共16页
The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties... The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties,local corrosion properties,and slow strain rate tensile stress corrosion tests.Microstructure characterization techniques such as metallographic microscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM)were also employed.The results indicate that the tensile strength of the alloy produced by T6I6 aging is similar to that produced by T6I4 aging,and it even exceeds 700 MPa.Furthermore,the yield strength increases by 52.7 MPa,reaching 654.8 MPa after T6I6 aging treatment.The maximum depths of intergranular corrosion(IGC)and exfoliation corrosion(EXCO)decrease from 116.3 and 468.5μm to 89.5 and 324.3μm,respectively.The stress corrosion factor also decreases from 2.1%to 1.6%.These findings suggest that the alloy treated with T6I6 aging exhibits both high strength and excellent stress corrosion cracking resistance.Similarly,when the alloy is treated with T6I4,T6I6 and T6I7 aging,the sizes of grain boundary precipitates(GBPs)are found to be 5.2,18.4,and 32.8 nm,respectively.The sizes of matrix precipitates are 4.8,5.7 and 15.7 nm,respectively.The atomic fractions of Zn in GBPs are 9.92 at.%,8.23 at.%and 6.87 at.%,respectively,while the atomic fractions of Mg are 12.66 at.%,8.43 at.%and 7.00 at.%,respectively.Additionally,the atomic fractions of Cu are 1.83 at.%,2.47 at.%and 3.41 at.%,respectively. 展开更多
关键词 7A75 aluminum alloy interrupted aging aging precipitation behavior mechanical properties intergranular corrosion exfoliation corrosion stress corrosion cracking
下载PDF
The corrosion characteristic and mechanism of Mg-5Y-1.5Nd-xZn-0.5Zr(x=0,2,4,6 wt.%)alloys in marine atmospheric environment
5
作者 Quantong Jiang Dongzhu Lu +2 位作者 Liren Cheng Nazhen Liu Baorong Hou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期139-158,共20页
The microstructure and precipitated phases of as-cast Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffract... The microstructure and precipitated phases of as-cast Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffraction.The exposure corrosion experiment of these magnesium alloys was tested in South China Sea and KEXUE vessel atmospheric environment.The corrosion characteristic and mechanism of magnesium alloys of Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were analyzed by weight loss rate,corrosion depth,corrosion products and corrosion morphologies.The electrochemical corrosion tests were also measured in the natural seawater.The comprehensive results showed that Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy existed the best corrosion resistance whether in the marine atmospheric environment and natural seawater environment.That depended on the microstructure,type and distribution of precipitated phases in Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy.Sufficient quantity anodic precipitated phases in the microstructure of Mg-5Y-1.5Nd-4Zn-0.5Zr alloy played the key role in the corrosion resistance. 展开更多
关键词 Marine atmospheric environment Exposure corrosion Magnesium alloy corrosion rate corrosion mechanism
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:3
6
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
New insights on the high-corrosion resistance of UHP Mg-Ge alloys tested in a simulated physiological environment 被引量:1
7
作者 Ting Liu Xingrui Chen +4 位作者 Jeffrey Venezuela Yuan Wang Zhiming Shi Wenyi Chen Matthew Dargusch 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1026-1044,共19页
UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP M... UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP Mg-0.5Ge and UHP Mg-1Ge alloys showed superior corrosion resistance compared to UHP Mg and WE43,with the Mg-1Ge exhibiting the best corrosion performance.The exceptional corrosion resistance of the UHP alloy is attributed to(i)Mg_(2)Ge’s ability to suppress cathodic kinetics,(ii)Ge’s capability to accelerate the formation of a highly passive layer,and the(iii)low amounts of corrosion-accelerating impurities. 展开更多
关键词 UHP Mg-Ge alloy Cathodic kinetics suppression Biodegradable metals In vitro corrosion Magnesium corrosion.
下载PDF
Effect of cathode protection on Desulfovibrio desulfuricans corrosion of X80 steel in a marine tidal environment
8
作者 ZHOU Xiao-bao WANG Zi-hao +4 位作者 OU-YANG Ze-lun SU Hui WANG Yong LI Zhi WU Tang-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3612-3627,共16页
The study systematically investigated the impact of zinc sacrificial anode(Zn-SA)cathode protection on the corrosion of X80 steel caused by Desulfovibrio desulfuricans(D.desulfuricans)in a marine tidal environment.Uti... The study systematically investigated the impact of zinc sacrificial anode(Zn-SA)cathode protection on the corrosion of X80 steel caused by Desulfovibrio desulfuricans(D.desulfuricans)in a marine tidal environment.Utilizing weight-loss analysis,electrochemical measurements,Raman spectroscopy,and 3D morphology microscopy,the research unveiled significant findings.Unprotected steel suffered pronounced localized corrosion in the presence of D.desulfuricans in the marine tidal environment.However,the implementation of Zn-SA cathode protection notably reduced the activity of both planktonic and sessile D.desulfuricans cells.Over time,the accumulation of calcareous deposits within the corrosion products increased,as evidenced by a rise in the resistance of the corrosion produt film(Rf).Remarkably,Zn-SA cathode protection demonstrated substantial inhibition of the steel’s corrosion rate,albeit exhibiting reduced efficiency as the vertical height of the steel within the tidal environment increased. 展开更多
关键词 X80 pipeline steel microbial corrosion marine tidal corrosion Desulfovibro desulfuricans cathode protection
下载PDF
In-situ AFM and quasi-in-situ studies for localized corrosion in Mg-9Al-1Fe-(Gd) alloys under 3.5 wt.% NaCl environment
9
作者 Junping Shen Tao Lai +7 位作者 Zheng Yin Yang Chen Kun Wang Hong Yan Honggun Song Ruiliang Liu Chao Luo Zhi Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1170-1185,共16页
Revealing the localized corrosion process of Mg alloy is considered as one of the most significant ways for improving its corrosion resistance.The reliable monitor should be high distinguishability and real-time in li... Revealing the localized corrosion process of Mg alloy is considered as one of the most significant ways for improving its corrosion resistance.The reliable monitor should be high distinguishability and real-time in liquid environment.Herein,Mg-9Al-1Fe and Mg-9Al-1Fe-1Gd alloys were designed to highlight the impact of intermetallic on the corrosion behaviour.In-situ AFM with a special electrolyte circulation system and quasi-in-situ SEM observation were used to monitor the corrosion process of the designed alloys.SEM-EDS and TEM-SAED were applied to identify the intermetallic in the designed alloys,and their volta potentials were measured by SKPFM.According to the real-time and real-space in-situ AFM monitor,the corrosion process consisted of dissolution of anodicα-Mg phase,accumulation of corrosion products around cathodic phase and shedding of some fine cathodic phase.Then,the localized corrosion process of Mg alloy was revealed combined with the results of the monitor of corrosion process and Volta potential difference. 展开更多
关键词 Magnesium Localized corrosion In-situ AFM SKPFM corrosion behaviour.
下载PDF
Development and progress in polymer materials foranti-corrosion and anti-fouling applications:A review
10
作者 LYU Ren-jiang WANG Nan +5 位作者 ZHANG Rui-yong GAO Guang-tao LI Sheng-xi DUAN Ji-zhou HOU Bao-rong SAND Wolfgang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3547-3569,共23页
Corrosion has always been a difficult problem that troubles and restricts the application and development ofengineering materials.By endowing coatings on metal surfaces with polymer material,it is possible to protect ... Corrosion has always been a difficult problem that troubles and restricts the application and development ofengineering materials.By endowing coatings on metal surfaces with polymer material,it is possible to protect othermaterials from factors including acid and alkali,water vapor,bacteria.Therefore,it is necessary to summarize theresearch progress of polymer materials in the field of pollution and corrosion prevention in recent years.This articlesummarizes four types of polymer materials with good weather resistance:polyurethane(PU),polydimethylsiloxane(PDMS),polyvinylidene fluoride(PVDF),and polyvinylidene chloride(PVDC).These four polymer materials aresuitable for making polymer anti-corrosion or anti-fouling materials and each has its own characteristics.PU can firmlyadhere to various substrates,effectively protecting and extending their lifespan,but the environmentally friendly varietiescurrently used,namely water-borne polyurethanes(WPU),generally have poor mechanical properties.PDMS is nontoxicand has excellent hydrophobicity,but its static anti-fouling ability is insufficient when applied in the field of antifouling.PVDF has good chemical resistance and high mechanical properties,good UV resistance making it suitable foroutdoor use like in the marine environment.However,PVDF lacks flexibility after molding and its manufacturing cost isrelatively high.PVDC has excellent water vapor barrier properties,but poor adhesion to metal material surfaces.Therefore,researchers need to modify these four polymers when using them to solve the problem of corrosion orbiofouling.The article will review the research progress of four types of polymers in recent years from the perspectivesof anti-corrosion,anti-fouling,and a strategy named as self-healing that is beneficial for protecting polymer surfacesfrom mechanical damage,and summarize the modification methods adopted by researchers when applying thesematerials.Finally,a summary of the application and the prospects of these polymer materials are presented. 展开更多
关键词 ANTI-corrosion POLYMER corrosion ANTI-FOULING SELF-HEALING
下载PDF
Understanding the corrosion and bio-corrosion behaviour of Magnesium composites – a critical review
11
作者 Prithivirajan Sekar S.K.Panigrahi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期890-939,共50页
Realising the potential of Magnesium(Mg),several globally leading ventures have invested in the Mg industry,but their relatively poor corrosion resistance is a never ending saga till date.The corrosion and bio-corrosi... Realising the potential of Magnesium(Mg),several globally leading ventures have invested in the Mg industry,but their relatively poor corrosion resistance is a never ending saga till date.The corrosion and bio-corrosion behaviour of Mg has gained research attention and still remains a hot topic in the application of automobile,aerospace and biomedical industries.The intrinsic high electrochemical nature of Mg limits their utilization in diverse application.This scenario has prompted the development of Mg composites with an aim to achieve superior corrosion and bio-corrosion resistance.The present review enlightens the influence of grain size(GS),secondary phase,texture,type of matrix and reinforcement on the corrosion and bio-corrosion behaviour of Mg composites.Firstly,the corrosion and bio-corrosion behaviour of Mg composites manufactured by primary and secondary processing routes are elucidated.Secondly,the comprehensive corrosion and bio-corrosion mechanisms of these Mg composites are proposed.Thirdly,the individual role of GS,texture and corrosive medium on corrosion and bio-corrosion behaviour of Mg composites are clarified and revealed.The challenges encountered,unanswered issues in this field are explained in detail and accordingly the scope for future research is framed.The review is presented from basic concrete background to advanced corrosion mechanisms with an aim of creating interest among the readers like students,researchers and industry experts from various research backgrounds.Indeed,the corrosion and bio-corrosion behaviour of Mg composites are critically reviewed for the first time to:(i)contribute to the body of knowledge,(ii)foster research and development,(iii)make breakthrough,and(iv)create life changing innovations in the field of Mg composite corrosion. 展开更多
关键词 corrosion Bio corrosion Magnesium alloys Magnesium composites Magnesium implants.
下载PDF
Expired drugs as vapor-phase corrosion inhibitors of copper in simulated marine atmospheric environment
12
作者 WANG Xin-wei ZHANG Tian-long +4 位作者 LI Yan-tao YANG Li-hui XU Wei-chen DISNA Ratnasekera HAN Tao 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3570-3582,共13页
Urea,paracetamol and glutamine(based on the expired drugs)were selected as vapor-phase corrosion inhibitors(VCIs)to study their corrosion protection effect on red copper in simulated marine atmospheric environment by ... Urea,paracetamol and glutamine(based on the expired drugs)were selected as vapor-phase corrosion inhibitors(VCIs)to study their corrosion protection effect on red copper in simulated marine atmospheric environment by using weight loss,electrochemical measurement techniques(specially designed electrochemical testing device for simulating marine atmospheric environments)and surface morphology characterization analysis(SEM/EDS,XRD,RAMAN,XPS).Weight loss results show that the three corrosion inhibitors have good corrosion inhibition effect on red copper,and the corrosion inhibition efficiency in the order of glutamine(83.62%)>urea(68.46%)>paracetamol(61.47%).Surface morphology characterization analysis provides evidence of adsorption of corrosion inhibitors molecules on the red copper surface,thus forming a protective film that blocked the red copper surface from the aggressive chloride ion attack. 展开更多
关键词 marine corrosion and protection vapor-phase corrosion inhibitor(VCI) COPPER expired drugs marine atmospheric environment
下载PDF
Galvanic corrosion behavior of AZ91D alloy/45 steel couple under magnetic field
13
作者 Xin Zhang Wan Mei +4 位作者 Zehua Zhou Shaoqun Jiang Gang Wang Xiangru Shi Zehua Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3794-3805,共12页
Galvanic corrosion behavior of AZ91D alloy/45 steel couple in 3.5 wt.%NaCl solution under 0,0.2 and 0.4 T magnetic field were studied by microstructure observation,immersion test and electrochemical measurement.The mi... Galvanic corrosion behavior of AZ91D alloy/45 steel couple in 3.5 wt.%NaCl solution under 0,0.2 and 0.4 T magnetic field were studied by microstructure observation,immersion test and electrochemical measurement.The mixed potential theory was used to estimate the galvanic current density and the mixed potential of the galvanic corrosion between AZ91D alloy and 45 steel.The results indicated that magnetic field could accelerate the corrosion of AZ91D alloy,and impede the corrosion process of 45 steel.The effect of magnetic field on corrosion sensibility and corrosion rate of these two alloys increased as the intensity rising.The galvanic corrosion rate of the couple was accelerated by magnetic field.With the magnetic field intensity rising,the galvanic corrosion sensibility and corrosion rate of the couple increased.The effects of magnetic field on the galvanic corrosion performance of the couple and the corrosion behavior of AZ91D alloy and 45 steel were due to the appearance of field gradient force and magnetohydrodynamic(MHD)force.The mixed potential theory has a certain accuracy to estimate the Ecouple and icouple values in this work. 展开更多
关键词 Magnetic field corrosion behavior Galvanic corrosion The mixed potential theory
下载PDF
Understanding of tribocorrosion and corrosion characteristics of304L stainless steel in hot concentrated nitric acid solution
14
作者 LIU Zheng ZHANG Lian-min +3 位作者 LIU Chen-chen TAN Ke-di MA Ai-li ZHENG Yu-gui 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3657-3673,共17页
Spent fuel reprocessing plays a pivotal role in achieving efficient recycling of nuclear fuel.Among thedifferent forms of failure encountered in spent fuel reprocessing,tribocorrosion stands out as a critical concern.... Spent fuel reprocessing plays a pivotal role in achieving efficient recycling of nuclear fuel.Among thedifferent forms of failure encountered in spent fuel reprocessing,tribocorrosion stands out as a critical concern.Herein,the tribocorrosion behavior,as well as the corrosion behavior,of 304L stainless steel(SS)in high-temperatureconcentrated nitric acid was investigated.The results indicated that 304L SS formed a thin(1.54 nm)and stable passivefilm on the surface,imparting high resistance to nitric acid corrosion.Meanwhile,it was found that the synergistic effectbetween corrosion and wear accounted for a high total tribocorrosion weight loss of over 85%,implying the dominantrole of the synergistic effect in the tribocorrosion process.Furthermore,the wear of 304L SS in deionized water revealedboth abrasive and adhesive wear characterizations,whereas the tribocorrosion in nitric acid only exhibited abrasive wearfeature.Eventually,the tribocorrosion and corrosion models of 304L SS in hot concentrated nitric acid were proposedbased on the comprehensive experimental findings. 展开更多
关键词 304L stainless steel TRIBOcorrosion corrosion hot nitric acid mechanism model
下载PDF
Simulation of Corrosion-Induced Cracking of Reinforced Concrete Based on Fracture Phase Field Method
15
作者 Xiaozhou Xia Changsheng Qin +2 位作者 Guangda Lu Xin Gu Qing Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2257-2276,共20页
Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle frac... Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle fracture of concrete,the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model.The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load.Then,the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC.The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with homogeneous macroscopically or heterogeneous with different polygonal aggregate distributions at the mesoscopic scale.Then,the effects of the protective layer on the crack propagation trajectory and cracking resistance are investigated,illustrating that the cracking angle and cracking resistance increase with the increase of the protective layer thickness,consistent with the experimental observation.Finally,the corrosion-induced cracking process of concrete specimens with large and small spacing rebars is simulated,and the interaction of multiple corrosion cracking is easily influenced by the reinforcement spacing,which increases with the decrease of the steel bar interval.These conclusions play an important role in the design of engineering anti-corrosion measures.The fracture phase field model can provide strong support for the life assessment of RC structures. 展开更多
关键词 Fracture phase field corrosion-induced cracking non-uniform corrosion expansion protective layer thickness reinforcement concrete
下载PDF
New Problems of Boiler Corrosion after Coupling Combustion of Coal and Biomass and Anti-Corrosion Technologies
16
作者 Lei Wang Ziran Ma +4 位作者 Chunlin Zhao Jiali Zhou Hongyan Wang Ge Li Ningling Zhou 《Journal of Renewable Materials》 EI CAS 2024年第4期799-814,共16页
This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon redu... This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon reduction.However,the corrosive effects of alkali metal compounds,sulfur(S)and chlorine(Cl)elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels.We investigate the corrosion mechanisms,as well as the transfer of Cl and alkali metal elements during this process.Comparative corrosion analyses are conducted among coal-fired boilers,pure biomass boilers and boilers with coupled combustion.Various biomass types in co-firing are studied to understand different corrosion outcomes.The main factors influencing corrosion include the physicochemical properties of biomass feedstock,furnace temperature and heating surface materials,with the chemical composition and ash content of biomass playing a dominant role.Currently,the methods used for anti-corrosion include water washing pretreatment of biomass feedstock,application of novel alloys and coatings and the development of additives to inhibit fouling,ash deposition and corrosion.Efficient inhibitors are economical and easy to produce.Additionally,biomass can be converted into biomass gasification gas,although challenges related to tar still need to be addressed. 展开更多
关键词 BIOMASS coupled combustion corrosion mechanism anti-corrosion measures
下载PDF
Modern Corrosion Mapping of Storage Tank Bottoms--Notable Advancements in Critical Zone Coverage,Inspection Efficiency and Data Integrity
17
作者 Andrew J.Simpson Matthew A.Boat 《Journal of Civil Engineering and Architecture》 2024年第3期148-153,共6页
Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential ri... Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential risk to life.There is a direct correlation between report quality and equipment capability.The more able the equipment is-in terms of efficient data gathering,signal to noise ratio,positioning,and coverage-the more actionable the report is.This results in optimal maintenance and repair strategies providing the report is clear and well presented.Furthermore,when considering tank floor storage inspection it is essential that asset owners have total confidence in inspection findings and the ensuing reports.Tank floor inspection equipment must not only be efficient and highly capable,but data sets should be traceable and integrity maintained throughout.Corrosion mapping of large surface areas such as storage tank bottoms is an inherently arduous and time-consuming process.MFL(magnetic flux leakage)based tank bottom scanners present a well-established and highly rated method for inspection.There are many benefits of using modern MFL technology to generate actionable reports.Chief among these includes efficiency of coverage while gaining valuable information regarding defect location,severity,surface origin and the extent of coverage.More recent advancements in modern MFL tank bottom scanners afford the ability to scan and record data sets at areas of the tank bottom which were previously classed as dead zones or areas not scanned due to physical restraints.An example of this includes scanning the CZ(critical zone)which is the area close to the annular to shell junction weld.Inclusion of these additional dead zones increases overall inspection coverage,quality and traceability.Inspection of the CZ areas allows engineers to quickly determine the integrity of arguably the most important area of the tank bottom.Herein we discuss notable developments in CZ coverage,inspection efficiency and data integrity that combines to deliver an actionable report.The asset owner can interrogate this report to develop pertinent and accurate maintenance and repair strategies. 展开更多
关键词 Storage tank tank bottom CZ MFL stars corrosion corrosion-mapping EFFICIENCY COVERAGE paperless reporting data traceability
下载PDF
Study of the Effect of Acetic Acid and Phosphate on Copper Corrosion by Immersion Tests
18
作者 Yuna Yamaguchi Kaho Sugiura +4 位作者 Toyohiro Arima Fuka Takahashi Itaru Ikeda Yutaka Yamada Osamu Sakurada 《Materials Sciences and Applications》 2024年第1期15-23,共9页
It was reported that hemispheric corrosion occurred in copper tubes in an acetic acid environment. When hemispheric corrosion occurred, corrosion could easily progress if water then flowed into the copper pipe, and co... It was reported that hemispheric corrosion occurred in copper tubes in an acetic acid environment. When hemispheric corrosion occurred, corrosion could easily progress if water then flowed into the copper pipe, and countermeasures were needed. Therefore, we studied the copper corrosion caused by acetic acid. The present work investigated the relationship between the corrosion form of copper and acetic acid concentration using phosphorous-deoxidized copper, and reported that hemispherical corrosion was observed at acetic acid concentrations of 0.01 to 1 vol.% (0.002 to 0.2 mol·L<sup>-1</sup>) in the immersion test. In this study, the effects of acetic acid and phosphate on copper corrosion were examined using oxygen-free copper in immersion tests. The results suggested that different concentrations of phosphate in acetic acid solutions and the presence or absence of acetic acid and phosphate affected the corrosion of copper, resulting in different corrosion forms and corrosion progress. 展开更多
关键词 Acetic Acid PHOSPHATE Oxygen-Free Copper Hemispherical corrosion Ant-Nest corrosion
下载PDF
Experimental Study on Corrosion of Stainless Steel in Low Temperature Multi effect Seawater Desalination
19
作者 Shiyi Zhang Xinggang Ma 《Frontiers of Metallurgical Industry》 2024年第2期25-31,共7页
Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the... Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the most suitable corrosion detection method based on specific practical multi working conditions,discuss the interference factors that affect metal corrosion during experimental simulation,and the advantages of newly developed sheet metal.The new development of composite board panels,with the substrate and composite materials applying their respective capabilities for MED,will bring breakthrough progress to the scientific research and engineering applica-tion of composite boards. 展开更多
关键词 seawater desalination corrosion mechanism of stainless steel composite board lamination corrosion rate
下载PDF
High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts 被引量:3
20
作者 Bo Wang Jiawei Li +2 位作者 Zhihui Xie Gengjie Wang Gang Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期155-164,共10页
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were... A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments. 展开更多
关键词 aluminum alloy ELECTROLESS nickel coating corrosion ADHESION
下载PDF
上一页 1 2 207 下一页 到第
使用帮助 返回顶部