BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the preval...BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the prevalence of COVID-19 is significantly higher in patients with liver cancer.However,this mechanism of action has not been clarified.Gene sets for COVID-19(GSE180226)and liver cancer(GSE87630)were obtained from the Gene Expression Omnibus database.After identifying the common differentially expressed genes(DEGs)of COVID-19 and liver cancer,functional enrichment analysis,protein-protein interaction network construction and scree-ning and analysis of hub genes were performed.Subsequently,the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed.RESULTS Of 518 common DEGs were obtained by screening for functional analysis.Fifteen hub genes including aurora kinase B,cyclin B2,cell division cycle 20,cell division cycle associated 8,nucleolar and spindle associated protein 1,etc.,were further identified from DEGs using the“cytoHubba”plugin.Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation,cell cycle and other functions,and they may serve as potential molecular markers for COVID-19 and liver cancer.Finally,we selected 10 of the hub genes for in vitro expression validation in liver cancer cells.CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19.These common pathways and key genes may provide new ideas for further mechanistic studies.展开更多
BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unkn...BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.展开更多
AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE1024...AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE102485 datasets,followed by gene ontology(GO)functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.Potential candidate drugs were screened using the CMap database.Subsequently,a protein-protein interaction(PPI)network was constructed to identify hypoxia-related hub genes.A nomogram was generated using the rms R package,and the correlation of hub genes was analyzed using the Hmisc R package.The clinical significance of hub genes was validated by comparing their expression levels between disease and normal groups and constructing receiver operating characteristic curve(ROC)curves.Finally,a hypoxia-related miRNA-transcription factor(TF)-Hub gene network was constructed using the NetworkAnalyst online tool.RESULTS:Totally 48 hypoxia-related DEGs and screened 10 potential candidate drugs with interaction relationships to upregulated hypoxia-related genes were identified,such as ruxolitinib,meprylcaine,and deferiprone.In addition,8 hub genes were also identified:glycogen phosphorylase muscle associated(PYGM),glyceraldehyde-3-phosphate dehydrogenase spermatogenic(GAPDHS),enolase 3(ENO3),aldolase fructose-bisphosphate C(ALDOC),phosphoglucomutase 2(PGM2),enolase 2(ENO2),phosphoglycerate mutase 2(PGAM2),and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3(PFKFB3).Based on hub gene predictions,the miRNA-TF-Hub gene network revealed complex interactions between 163 miRNAs,77 TFs,and hub genes.The results of ROC showed that the except for GAPDHS,the area under curve(AUC)values of the other 7 hub genes were greater than 0.758,indicating their favorable diagnostic performance.CONCLUSION:PYGM,GAPDHS,ENO3,ALDOC,PGM2,ENO2,PGAM2,and PFKFB3 are hub genes in DR,and hypoxia-related hub genes exhibited favorable diagnostic performance.展开更多
Background: Hypertension, also known as increased blood pressure, is a phenomenon in which blood flows in blood vessels and causes persistently higher-than-normal pressure on the vessel wall. The identification of nov...Background: Hypertension, also known as increased blood pressure, is a phenomenon in which blood flows in blood vessels and causes persistently higher-than-normal pressure on the vessel wall. The identification of novel prognostic and pathogenesis biomarkers plays a key role in the management of hypertension. Methods: The GSE7483 and GSE75815 datasets from the gene expression omnibus (GEO) database were used to identify the genes associated with hypertension that were differentially expressed genes (DEGs). The functional role of the DEGs was elucidated by gene body (GO) enrichment analysis. In addition, we performed an immune infiltration assay and GSEA on the DEGs of hypertensive patients and verified the expression of novel DEGs in the blood of hypertensive patients by RT-qPCR. Results: A total of 267 DEGs were identified from the GEO database. GO analysis revealed that these genes were associated mainly with biological processes such as fibroblast proliferation, cell structural organization, extracellular matrix organization, vasculature development regulation, and angiogenesis. We identified five possible biomarkers, Ecm1, Sparc, Sphk1, Thbsl, and Mecp2, which correlate with vascular development and angiogenesis characteristic of hypertension by bioinformatics, and explored the clinical expression levels of these genes by RT-qPCR, and found that Sparc, Sphk1, and Thbs1 showed significant up-regulation, in agreement with the results of the bioinformatics analysis. Conclusion: Our study suggested that Sparc, Sphk1 and Thbs1 may be potential novel biomarkers for the diagnosis, treatment and prognosis of hypertension and that they are involved in the regulation of vascular development and angiogenesis in hypertension.展开更多
Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton ...Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.展开更多
Fruitlet calyx shedding in pear plants is apparently regulated via numerous pathways that involve both environmental triggers and phytohormones cues such as auxin. In this study, we found at 10 days after full bloom (...Fruitlet calyx shedding in pear plants is apparently regulated via numerous pathways that involve both environmental triggers and phytohormones cues such as auxin. In this study, we found at 10 days after full bloom (DAFB) higher levels of indoleacetic acid (IAA) and tryptophan (Trp) in calyx persistence fruitlet (CPF) than calyx shedding fruitlet (CSF) ofDanshan Suli’ pear (Pyrus bretschneideri Rhed.). Consisting with this, the activity of indolealdehyde oxidase (IAAIdO), which promotes IAA synthesis, was remarkably increased, and that of peroxidase(POD), which degrades IAA, dropped markedly in CPF but not in CSF. Further, qRT-PCR results revealed that most of 31 PbrARFs (encoding auxin response factors) in Pyrus bretschneideri were highly expressed in CPF, whereas PbrARF4, PbrARF24 and PbrARF26 were significantly downregulated in CPF vis-a-vis CSF. Phylogenetic analysis revealed that 6 PbrARFs clustered in the group III, where PbrARF4 showed the closest affinity with AtARF1 that promotes organ abscission, indicating a putative role of PbrARF4 in mediating the process of calyx shedding in pear. In fact, the ectopic overexpression of PbrARF4 in Solanum lycopersicum resulted in an earlier-formed and deeper abscission layer (AL) in the transgenic plants, whose calyxes were more prone to wilt at the mature red stage (MR) compared with the control plants (wild-type). More importantly, expression levels of the abscission genes SILS and Sl Cel2 in transgenic plants overexpressing PbrARF4 were significantly upregulated in comparation with the WT, whereas those of Sl BI and Sl TAPG2 were considerably inhibited. Further, PbrJOINTLESS and PbrIDA,the two genes related to calyx shedding in pear, were up-regulated more in CSF than CPF. The findings contribute to a better understanding of PbrARFs involved in fruitlet calyx shedding of pear, which could prove beneficial to improving the quality of pear fruit.展开更多
Turbot Scophthalmus maximus is an important mariculture fish species with high economic value.However,the bacterial diseases caused by Vibrio anguillarum infection bring huge economic losses to the turbot aquaculture ...Turbot Scophthalmus maximus is an important mariculture fish species with high economic value.However,the bacterial diseases caused by Vibrio anguillarum infection bring huge economic losses to the turbot aquaculture industry.To understand the immune response of the turbot against V.anguillarum infection and to explore novel immune-related genes,the transcriptome analysis of turbot spleen and gills were conducted after V.anguillarum infection.Differentially expressed genes(DEGs)were identified in spleen and gill of the turbot amounted to 17261 and 16436,respectively.A large number of immunerelated DEGs were enriched in cytokine-cytokine receptor interaction signaling pathway,and the others by the kyoto encyclopedia of genes and genomes(KEGG)enrichment.The gene ontology(GO)classification analysis revealed that V.anguillarum infection had the greatest effect on biological processes and cellular components.Twelve immune-related DEGs were identified in the spleen(cstl.1,egfl6,lamb21,v2rx4,calcr,and gpr78a)and gills(ghra,sh3gl2a,cst12,inhbaa,cxcl8,and il-1b)by heat map.The proteinprotein interaction(PPI)networks were constructed to analyze the immune mechanism.The results demonstrate that the maturation and antigen processing of major histocompatibility complex(MHC)class II molecule,and calcitonin-or adrenomedullin-regulated physiological activity were important events in the immunity of turbot against V.anguillarum infection.In the gills,the protein interactions in TGF-βsignaling pathway,production of inflammatory factors,and endocytosis regulation were most significant.Our research laid a foundation for discovering novel immune-related genes and enriching the knowledge of immune mechanisms of turbot against V.anguillarum infection.展开更多
Monitoring the prevalence of antimicrobial resistance genes(ARGs)is vital for addressing the global crisis of antibiotic-resistant bacterial infections.Despite its importance,the characterization of ARGs and microbiom...Monitoring the prevalence of antimicrobial resistance genes(ARGs)is vital for addressing the global crisis of antibiotic-resistant bacterial infections.Despite its importance,the characterization of ARGs and microbiome structures,as well as the identification of indicators for routine ARG monitoring in pig farms,are still lacking,particularly concerning variations in antimicrobial exposure in different countries or regions.Here,metagenomics and random forest machine learning were used to elucidate the ARG profiles,microbiome structures,and ARG contamination indicators in pig manure under different antimicrobial pressures between China and Europe.Results showed that Chinese pigs exposed to high-level antimicrobials exhibited higher total and plasmid-mediated ARG abundances compared to those in European pigs(P<0.05).ANT(6)-Ib,APH(3')-IIIa,and tet(40)were identified as shared core ARGs between the two pig populations.Furthermore,the core ARGs identified in pig populations were correlated with those found in human populations within the same geographical regions.Lactobacillus and Prevotella were identified as the dominant genera in the core microbiomes of Chinese and European pigs,respectively.Forty ARG markers and 43 biomarkers were able to differentiate between the Chinese and European pig manure samples with accuracies of 100%and 98.7%,respectively.Indicators for assessing ARG contamination in Chinese and European pigs also achieved high accuracy(r=0.72-0.88).Escherichia flexneri in both Chinese and European pig populations carried between 21 and 37 ARGs.The results of this study emphasize the importance of global collaboration in reducing antimicrobial resistance risk and provide validated indicators for evaluating the risk of ARG contamination in pig farms.展开更多
Background Brown adipose tissue(BAT)is known to be capable of non-shivering thermogenesis under cold stimulation,which is related to the mortality of animals.In the previous study,we observed that goat BAT is mainly l...Background Brown adipose tissue(BAT)is known to be capable of non-shivering thermogenesis under cold stimulation,which is related to the mortality of animals.In the previous study,we observed that goat BAT is mainly located around the kidney at birth,and changes to white adipose tissue(WAT)in the perirenal adipose tissue of goats within one month after birth.However,the regulatory factors underlying this change is remain unclear.In this study,we systematically studied the perirenal adipose tissue of goat kids in histological,cytological,and accompanying molecular level changes from 0 to 28 d after birth.Results Our study found a higher mortality rate in winter-born goat kids,with goat birthing data statistics.Then we used thermal imaging revealing high temperature in goat hips at postnatal 0 d and gradually decrease during 28 d.This is consistent with the region of perirenal BAT deposition and highlights its critical role in energy expenditure and body temperature regulation in goat kids.Additionally,we found a series of changes of BAT during the first 28 d after birth,such as whitening,larger lipid droplets,decreased mitochondrial numbers,and down-regulation of key thermogenesis-related genes(UCP1,DIO2,UCP2,CIDEA,PPARGC1a,C/EBPb,and C/EBPa).Then,we used RNA-seq found specific marker genes for goat adipose tissue and identified 12 new marker genes for BAT and 10 new marker genes for WAT of goats.Furthermore,12 candidate genes were found to potentially regulate goat BAT thermogenesis.The mechanism of the change of this biological phenomenon does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes.While apoptosis may play a limited role,it is largely not critical in this transition process.Conclusions We concluded that perirenal BAT plays a crucial role in thermoregulation in newborn goat kids,with notable species differences in the expression of adipose tissue marker genes,and we highlighted some potential marker genes for goat BAT and WAT.Additionally,the change from BAT to WAT does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes.展开更多
Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the ma...Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the major locus controlling this trait,modulates flowering time.We report that the three J-family genes influence soybean flowering time,with the triple mutant Guangzhou Mammoth-2 flowering late under short days by inhibiting transcription of E1-family genes.J-family genes offer promising allelic combinations for breeding.展开更多
Turnip mosaic virus(TuMV)is a devastating potyvirus pathogen that infects a wide variety of both cultivated and wild Brassicaceae plants.We urgently need more information and understanding of TuMV pathogenesis and the...Turnip mosaic virus(TuMV)is a devastating potyvirus pathogen that infects a wide variety of both cultivated and wild Brassicaceae plants.We urgently need more information and understanding of TuMV pathogenesis and the host responses involved in disease development in cruciferous crops.TuMV displays great versatility in viral pathogenesis,especially in its replication and intercellular movement.Moreover,in the coevolutionary arms races between TuMV and its hosts,the virus has evolved to co-opt host factors to facilitate its infection and counter host defense responses.This review mainly focuses on recent advances in understanding the viral factors that contribute to the TuMV infection cycle and the host resistance mechanism in Brassica.Finally,we propose some future research directions on TuMV pathogenesis and control strategies to design durable TuMV-resistant Brassica crops.展开更多
Populus alba‘Berolinensis’is a fast-growing,high-yielding species with strong biotic and abiotic stress resistance,and widely planted for timber,shelter belts and aesthetic purposes.In this study,molecular developme...Populus alba‘Berolinensis’is a fast-growing,high-yielding species with strong biotic and abiotic stress resistance,and widely planted for timber,shelter belts and aesthetic purposes.In this study,molecular development is explored and the important genes regulating xylem forma-tion in P.alba‘Berolinensis’under artificial bending treat-ments was identified.Anatomical investigation indicated that tension wood(TW)was characterized by eccentric growth of xylem and was enriched in cellulose;the degree of ligni-fication was lower than for normal wood(NW)and oppo-site wood(OW).RNA-Seq-based transcriptome analysis was performed using developing xylem from three wood types(TW,OW and NW).A large number of differentially expressed genes(DEGs)were screened and 4889 counted.In GO and KEGG enrichment results,genes involved in plant hormone signal transduction,phenylpropanoid biosynthesis,and cell wall and secondary cell wall biogenesis play major roles in xylem development under artificial bending.Eight expansin(PalEXP)genes were identified from the RNA-seq data;four were differentially expressed during tension wood formation.Phylogenetic analysis indicated that PalEXLB1 belongs to the EXPB subfamily and that the other PalEXPs are members of the EXPA subfamily.A transcriptional regulatory network construction showed 10 transcription factors located in the first and second layers upstream of EXP,including WRKY,ERF and bHLH.RT‒qPCR analy-sis in leaves,stems and roots combined with transcriptome analysis suggests that PalEXPA2,PalEXPA4 and PalEXPA15 play significant regulatory roles in cell wall formation during tension wood development.The candidate genes involved in xylem cell wall development during tension wood formation marks an important step toward identifying the molecular regulatory mechanism of xylem development and wood property improvement in P.alba‘Berolinensis’.展开更多
Background:Atherosclerosis is a chronic cardiovascular disease of great concern.However,it is difficult to establish a direct connection between conventional small animal models and clinical practice.The pig's gen...Background:Atherosclerosis is a chronic cardiovascular disease of great concern.However,it is difficult to establish a direct connection between conventional small animal models and clinical practice.The pig's genome,physiology,and anatomy reflect human biology better than other laboratory animals,which is crucial for studying the pathogenesis of atherosclerosis.Methods:We used whole-genome sequencing data from nine Bama minipigs to perform a genome-wide linkage analysis,and further used bioinformatic tools to filter and identify underlying candidate genes.Candidate gene function prediction was performed using the online prediction tool STRING 12.0.Immunohistochemistry and immunofluorescence were used to detect the expression of proteins encoded by candidate genes.Results:We mapped differential single nucleotide polymorphisms(SNPs)to genes and obtained a total of 102 differential genes,then we used GO and KEGG pathway enrichment analysis to identify four candidate genes,including SLA-1,SLA-2,SLA-3,and TAP2.nsSNPs cause changes in the primary and tertiary structures of SLA-I and TAP2 proteins,the primary structures of these two proteins have undergone amino acid changes,and the tertiary structures also show slight changes.In addition,immunohistochemistry and immunofluorescence results showed that the expression changes of TAP2 protein in coronary arteries showed a trend of increasing from the middle layer to the inner layer.Conclusions:We have identified SLA-I and TAP2 as potential susceptibility genes of atherosclerosis,highlighting the importance of antigen processing and immune response in atherogenesis.展开更多
Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to underst...Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to understand the influences of different upland crop planting systems on soil N_(2)O emissions.In this study,we focused on two representative rotation systems in Central China:rapeseed–rice(RR)and wheat–rice(WR).We examined the biotic and abiotic processes underlying the impacts of these upland plantings on soil N_(2)O emissions.The results revealed that during the rapeseed-cultivated seasons in the RR rotation system,the average N_(2)O emissions were 1.24±0.20 and 0.81±0.11 kg N ha^(–1)for the first and second seasons,respectively.These values were comparable to the N_(2)O emissions observed during the first and second wheat-cultivated seasons in the WR rotation system(0.98±0.25 and 0.70±0.04 kg N ha^(–1),respectively).This suggests that upland cultivation has minimal impacts on soil N_(2)O emissions in the two rotation systems.Strong positive correlations were found between N_(2)O fluxes and soil ammonium(NH_(4)^(+)),nitrate(NO_(3)^(–)),microbial biomass nitrogen(MBN),and the ratio of soil dissolved organic carbon(DOC)to NO_(3)^(–)in both RR and WR rotation systems.Moreover,the presence of the AOA-amoA and nirK genes were positively associated with soil N_(2)O fluxes in the RR and WR systems,respectively.This implies that these genes may have different potential roles in facilitating microbial N_(2)O production in various upland plantation models.By using a structural equation model,we found that soil moisture,mineral N,MBN,and the AOA-amoA gene accounted for over 50%of the effects on N_(2)O emissions in the RR rotation system.In the WR rotation system,soil moisture,mineral N,MBN,and the AOA-amoA and nirK genes had a combined impact of over 70%on N_(2)O emissions.These findings demonstrate the interactive effects of functional genes and soil factors,including soil physical characteristics,available carbon and nitrogen,and their ratio,on soil N_(2)O emissions during upland cultivation seasons under rice-upland rotations.展开更多
The nutritional composition and overall quality of maize kernels are largely determined by the key chemical com-ponents:protein,oil,and starch.Nevertheless,the genetic basis underlying these nutritional quality traits...The nutritional composition and overall quality of maize kernels are largely determined by the key chemical com-ponents:protein,oil,and starch.Nevertheless,the genetic basis underlying these nutritional quality traits during grainfilling remains poorly understood.In this study,the concentrations of protein,oil,and starch were studied in 204 recombinant inbred lines resulting from a cross between DH1M and T877 at four different stages post-pollination.All the traits exhibited considerable phenotypic variation.During the grain-filling stage,the levels of protein and starch content generally increased,whereas oil content decreased,with significant changes observed between 30 and 40 days after pollination.Quantitative trait locus(QTL)mapping was conducted and a total of 32 QTLs,comprising 14,12,and 6 QTLs for grain protein,oil,and starch content were detected,respectively.Few QTLs were consistently detectable across different time points.By integrating QTL analysis,glo-bal gene expression profiling,and comparative genomics,we identified 157,86,and 54 differentially expressed genes harboring nonsynonymous substitutions between the parental lines for grain protein,oil,and starch con-tent,respectively.Subsequent gene function annotation prioritized 15 candidate genes potentially involved in reg-ulating grain quality traits,including those encoding transcription factors(NAC,MADS-box,bZIP,and MYB),cell wall invertase,cellulose-synthase-like protein,cell division cycle protein,trehalase,auxin-responsive factor,and phloem protein 2-A13.Our study offers significant insights into the genetic architecture of maize kernel nutritional quality and identifies promising QTLs and candidate genes,which are crucial for the genetic enhance-ment of these traits in maize breeding programs.展开更多
Hypotrichs are one of the highly differentiated ciliated lineages which play important roles in ecological, environmental,evolutionary and basic biological studies. In the present study, we investigated the living cha...Hypotrichs are one of the highly differentiated ciliated lineages which play important roles in ecological, environmental,evolutionary and basic biological studies. In the present study, we investigated the living characteristics, infraciliature, nuclear apparatus, ontogenesis and phylogenetic position of a marine hypotrichous ciliate, Apokeronopsis wrighti Long et al., 2008, which was isolated from coastal waters in Shenzhen, China. The new isolate resembles the type population in terms of morphological characteristics, morphometrics, and SSU rRNA gene sequence that is with a 99.7% similarity. Ontogenesis of A. wrighti is characterized by oral primordium for the proter as well as marginal and dorsal kineties anlagen in both filial products formed de novo, and the cirral row arranged along the paroral and endoral arises from several anterior frontoventral-transverse cirral streaks. Phylogenetic analyses based on SSU and concatenated gene data suggest that five species of Apokeronopsis form a monophyletic clade, and the genus Apokeronopsis is closely related to Thigmokeronopsis and Metaurostylopsis.展开更多
This study explores CAMTA genes in the rare and endangered Chinese plant species,Liriodendron chinense.Despite the completion of whole-genome sequencing,the roles of CAMTA genes in calcium regulation and stress respon...This study explores CAMTA genes in the rare and endangered Chinese plant species,Liriodendron chinense.Despite the completion of whole-genome sequencing,the roles of CAMTA genes in calcium regulation and stress responses in this species remain largely unexplored.Within the L.chinense genome,we identified two CAMTA genes,Lchi09764 and Lchi222536,characterized by four functional domains:CG-1,TIG,ANK repeats,and IQ motifs.Our analyses,including phylogenetic investigations,cis-regulatory element analyses,and chromosomal location studies,aim to elucidate the defining features of CAMTA genes in L.chinense.Applying Weighted Gene Co-Expression Network Analysis(WGCNA),we explored the impact of CAMTA genes on different organs and their regulation under abiotic stress conditions.The identification of significant gene modules and the prediction of promoter binding sites revealed co-expressed genes associated with CAMTA transcription factors.In summary,this study provides initial insights into CAMTA genes in L.chinense,laying the groundwork for future research on their evolution and biological roles.This knowledge enhancement contributes to a better understanding of plant responses to environmental stress—an essential aspect of plant biology.展开更多
AIM:To investigate the stability of the seven housekeeping genes:beta-actin(ActB),glyceraldehyde-3-phosphate dehydrogenase(GAPDH),18s ribosomal unit 5(18s),cyclophilin A(CycA),hypoxanthine-guanine phosphoribosyl trans...AIM:To investigate the stability of the seven housekeeping genes:beta-actin(ActB),glyceraldehyde-3-phosphate dehydrogenase(GAPDH),18s ribosomal unit 5(18s),cyclophilin A(CycA),hypoxanthine-guanine phosphoribosyl transferase(HPRT),ribosomal protein large P0(36B4)and terminal uridylyl transferase 1(U6)in the diabetic retinal tissue of rat model.METHODS:The expression of these seven genes in rat retinal tissues was determined using real-time quantitative reverse transcription polymerase chain reaction(RT-qPCR)in two groups;normal control rats and streptozotocininduced diabetic rats.The stability analysis of gene expression was investigated using geNorm,NormFinder,BestKeeper,and comparative delta-Ct(ΔCt)algorithms.RESULTS:The 36B4 gene was stably expressed in the retinal tissues of normal control animals;however,it was less stable in diabetic retinas.The 18s gene was expressed consistently in both normal control and diabetic rats’retinal tissue.That this gene was the best reference for data normalisation in RT-qPCR studies that used the retinal tissue of streptozotocin-induced diabetic rats.Furthermore,there was no ideal gene stably expressed for use in all experimental settings.CONCLUSION:Identifying relevant genes is a need for achieving RT-qPCR validity and reliability and must be appropriately achieved based on a specific experimental setting.展开更多
BACKGROUND Liver cancer(LIHC)is a malignant tumor that occurs in the liver and has a high mortality in cancer.The ING family genes were identified as tumor suppressor genes.Dysregulated expression of these genes can l...BACKGROUND Liver cancer(LIHC)is a malignant tumor that occurs in the liver and has a high mortality in cancer.The ING family genes were identified as tumor suppressor genes.Dysregulated expression of these genes can lead to cell cycle arrest,senescence and/or apoptosis.ING family genes are promising targets for anticancer therapy.However,their role in LIHC is still not well understood.AIM To have a better understanding of the important roles of ING family members in LIHC.METHODS A series of bioinformatics approaches(including gene expression analysis,genetic alteration analysis,survival analysis,immune infiltration analysis,prediction of upstream microRNAs(miRNAs)and long noncoding RNAs(lncRNAs)of ING1,and ING1-related gene functional enrichment analysis)was applied to study the expression profile,clinical relationship,prognostic significance and immune infiltration of ING in LIHC.The relationship between ING family genes expression and tumor associated immune checkpoints was investigated in LIHC.The molecular mechanism of ING1 mediated hepatocarcinogenesis was preliminarily discussed.RESULTS mRNA/protein expression of different ING family genes in LIHC was analyzed in different databases,showing that ING family genes were highly expressed in LIHC.In 47 samples from 366 LIHC patients,the ING family genes were altered at a rate of 13%.By comprehensively analyzing the expression,clinical pathological parameters and prognostic value of ING family genes,ING1/5 was identified.ING1/5 was related to poor prognosis of LIHC,suggesting that they may play key roles in LIHC tumorigenesis and progression.One of the target miRNAs of ING1 was identified as hsa-miR-214-3p.Two upstream lncRNAs of hsa-miR-214-3p,U91328.1,and HCG17,were identified.At the same time,we found that the expression of ING family genes was correlated with immune cell infiltration and immune checkpoint genes.CONCLUSION This study lays a foundation for further research on the potential mechanism and clinical value of ING family genes in the treatment and prognosis of LIHC.展开更多
This study aimed to examine the effects of inoculating Fritillaria taipaiensis P.Y.Li leaves with different strains ofpotassium-solubilizing bacteria (KSB), or combinations thereof, focusing on aspects of photosynthes...This study aimed to examine the effects of inoculating Fritillaria taipaiensis P.Y.Li leaves with different strains ofpotassium-solubilizing bacteria (KSB), or combinations thereof, focusing on aspects of photosynthesis and physiologicaland biochemical characteristics. At present, some studies have only studied the rhizosphere microbialcommunity characteristics of F. taipaiensis and have not discussed the effects of different microbial species on thegrowth promotion of F. taipaiensis. This paper will start from the perspective of potassium-solubilizing bacteria toconduct an in-depth study. Seed cultivation commenced at the base with three different KSBs in early October2022. The growth of F. taipaiensis leaves was observed after different treatments. Both single-plant and compoundinoculations were executed. A total of eight treatment groups were established, with aseptic fertilizer and sterilizedsoil functioning as the control group. The results reveal that intercellular CO_(2) concentration (Ci), stomatal conductance(Gs), and transpiration rate (Tr) were at their apex in the S7 group. Most treatment groups exhibited anincrease in leaf area, photosynthetic pigment content, soluble sugar, soluble protein, Superoxide Dismutase(SOD), Peroxidase (POD), Catalase (CAT) activities, and proline content. The expression levels of POD, SOD,and CAT genes were evaluated, following inoculation with different KSB. The highest was the S7 group. Theinoculation with various KSB, or combinations thereof, appears to bolster the growth and development of F. taipaiensis.The composite inoculation group S7, comprising Bacillus cereus, Burkholderia cepacia, and Bacillus subtilis,manifested the most favorable impact on the diverse indices of F. taipaiensis, thereby furnishing valuableinsights for the selection of bacterial fertilizer in the artificial cultivation of F. taipaiensis.展开更多
文摘BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the prevalence of COVID-19 is significantly higher in patients with liver cancer.However,this mechanism of action has not been clarified.Gene sets for COVID-19(GSE180226)and liver cancer(GSE87630)were obtained from the Gene Expression Omnibus database.After identifying the common differentially expressed genes(DEGs)of COVID-19 and liver cancer,functional enrichment analysis,protein-protein interaction network construction and scree-ning and analysis of hub genes were performed.Subsequently,the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed.RESULTS Of 518 common DEGs were obtained by screening for functional analysis.Fifteen hub genes including aurora kinase B,cyclin B2,cell division cycle 20,cell division cycle associated 8,nucleolar and spindle associated protein 1,etc.,were further identified from DEGs using the“cytoHubba”plugin.Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation,cell cycle and other functions,and they may serve as potential molecular markers for COVID-19 and liver cancer.Finally,we selected 10 of the hub genes for in vitro expression validation in liver cancer cells.CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19.These common pathways and key genes may provide new ideas for further mechanistic studies.
基金Supported by National Natural Science Foundation of China,No.82100594.
文摘BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.
基金Supported by Scientific Research Project of Xianning Central Hospital in 2022 (No.2022XYB020)Science and Technology Plan Project of Xianning Municipal in 2022 (No.2022SFYF014).
文摘AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE102485 datasets,followed by gene ontology(GO)functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.Potential candidate drugs were screened using the CMap database.Subsequently,a protein-protein interaction(PPI)network was constructed to identify hypoxia-related hub genes.A nomogram was generated using the rms R package,and the correlation of hub genes was analyzed using the Hmisc R package.The clinical significance of hub genes was validated by comparing their expression levels between disease and normal groups and constructing receiver operating characteristic curve(ROC)curves.Finally,a hypoxia-related miRNA-transcription factor(TF)-Hub gene network was constructed using the NetworkAnalyst online tool.RESULTS:Totally 48 hypoxia-related DEGs and screened 10 potential candidate drugs with interaction relationships to upregulated hypoxia-related genes were identified,such as ruxolitinib,meprylcaine,and deferiprone.In addition,8 hub genes were also identified:glycogen phosphorylase muscle associated(PYGM),glyceraldehyde-3-phosphate dehydrogenase spermatogenic(GAPDHS),enolase 3(ENO3),aldolase fructose-bisphosphate C(ALDOC),phosphoglucomutase 2(PGM2),enolase 2(ENO2),phosphoglycerate mutase 2(PGAM2),and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3(PFKFB3).Based on hub gene predictions,the miRNA-TF-Hub gene network revealed complex interactions between 163 miRNAs,77 TFs,and hub genes.The results of ROC showed that the except for GAPDHS,the area under curve(AUC)values of the other 7 hub genes were greater than 0.758,indicating their favorable diagnostic performance.CONCLUSION:PYGM,GAPDHS,ENO3,ALDOC,PGM2,ENO2,PGAM2,and PFKFB3 are hub genes in DR,and hypoxia-related hub genes exhibited favorable diagnostic performance.
文摘Background: Hypertension, also known as increased blood pressure, is a phenomenon in which blood flows in blood vessels and causes persistently higher-than-normal pressure on the vessel wall. The identification of novel prognostic and pathogenesis biomarkers plays a key role in the management of hypertension. Methods: The GSE7483 and GSE75815 datasets from the gene expression omnibus (GEO) database were used to identify the genes associated with hypertension that were differentially expressed genes (DEGs). The functional role of the DEGs was elucidated by gene body (GO) enrichment analysis. In addition, we performed an immune infiltration assay and GSEA on the DEGs of hypertensive patients and verified the expression of novel DEGs in the blood of hypertensive patients by RT-qPCR. Results: A total of 267 DEGs were identified from the GEO database. GO analysis revealed that these genes were associated mainly with biological processes such as fibroblast proliferation, cell structural organization, extracellular matrix organization, vasculature development regulation, and angiogenesis. We identified five possible biomarkers, Ecm1, Sparc, Sphk1, Thbsl, and Mecp2, which correlate with vascular development and angiogenesis characteristic of hypertension by bioinformatics, and explored the clinical expression levels of these genes by RT-qPCR, and found that Sparc, Sphk1, and Thbs1 showed significant up-regulation, in agreement with the results of the bioinformatics analysis. Conclusion: Our study suggested that Sparc, Sphk1 and Thbs1 may be potential novel biomarkers for the diagnosis, treatment and prognosis of hypertension and that they are involved in the regulation of vascular development and angiogenesis in hypertension.
基金supported by the Jiangsu Natural Science Foundation,China(BK20231468)the Fundamental Research Funds for the Central Universities,China(ZJ24195012)+3 种基金the National Natural Science Foundation in China(31871668)the Jiangsu Key R&D Program,China(BE2022384)the Xinjiang Uygur Autonomous Region Science and Technology Support Program,China(2021E02003)the Jiangsu Collaborative Innovation Center for Modern Crop Production Project,China(No.10)。
文摘Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.
基金supported by the China Agriculture Research System (Grant No.CARS-28-14)。
文摘Fruitlet calyx shedding in pear plants is apparently regulated via numerous pathways that involve both environmental triggers and phytohormones cues such as auxin. In this study, we found at 10 days after full bloom (DAFB) higher levels of indoleacetic acid (IAA) and tryptophan (Trp) in calyx persistence fruitlet (CPF) than calyx shedding fruitlet (CSF) ofDanshan Suli’ pear (Pyrus bretschneideri Rhed.). Consisting with this, the activity of indolealdehyde oxidase (IAAIdO), which promotes IAA synthesis, was remarkably increased, and that of peroxidase(POD), which degrades IAA, dropped markedly in CPF but not in CSF. Further, qRT-PCR results revealed that most of 31 PbrARFs (encoding auxin response factors) in Pyrus bretschneideri were highly expressed in CPF, whereas PbrARF4, PbrARF24 and PbrARF26 were significantly downregulated in CPF vis-a-vis CSF. Phylogenetic analysis revealed that 6 PbrARFs clustered in the group III, where PbrARF4 showed the closest affinity with AtARF1 that promotes organ abscission, indicating a putative role of PbrARF4 in mediating the process of calyx shedding in pear. In fact, the ectopic overexpression of PbrARF4 in Solanum lycopersicum resulted in an earlier-formed and deeper abscission layer (AL) in the transgenic plants, whose calyxes were more prone to wilt at the mature red stage (MR) compared with the control plants (wild-type). More importantly, expression levels of the abscission genes SILS and Sl Cel2 in transgenic plants overexpressing PbrARF4 were significantly upregulated in comparation with the WT, whereas those of Sl BI and Sl TAPG2 were considerably inhibited. Further, PbrJOINTLESS and PbrIDA,the two genes related to calyx shedding in pear, were up-regulated more in CSF than CPF. The findings contribute to a better understanding of PbrARFs involved in fruitlet calyx shedding of pear, which could prove beneficial to improving the quality of pear fruit.
基金the National Key Research and Development Program of the Ministry of Science and Technology(CN)(No.2022YFD2400401)the Key Research and Development Plan of Shandong Province(CN)(for Academician Team in Shandong)(No.2023ZLYS02)+1 种基金the Fundamental Research Funds for the Central Universities(No.202261029)the Enterprise Authorized Project(No.20200025)。
文摘Turbot Scophthalmus maximus is an important mariculture fish species with high economic value.However,the bacterial diseases caused by Vibrio anguillarum infection bring huge economic losses to the turbot aquaculture industry.To understand the immune response of the turbot against V.anguillarum infection and to explore novel immune-related genes,the transcriptome analysis of turbot spleen and gills were conducted after V.anguillarum infection.Differentially expressed genes(DEGs)were identified in spleen and gill of the turbot amounted to 17261 and 16436,respectively.A large number of immunerelated DEGs were enriched in cytokine-cytokine receptor interaction signaling pathway,and the others by the kyoto encyclopedia of genes and genomes(KEGG)enrichment.The gene ontology(GO)classification analysis revealed that V.anguillarum infection had the greatest effect on biological processes and cellular components.Twelve immune-related DEGs were identified in the spleen(cstl.1,egfl6,lamb21,v2rx4,calcr,and gpr78a)and gills(ghra,sh3gl2a,cst12,inhbaa,cxcl8,and il-1b)by heat map.The proteinprotein interaction(PPI)networks were constructed to analyze the immune mechanism.The results demonstrate that the maturation and antigen processing of major histocompatibility complex(MHC)class II molecule,and calcitonin-or adrenomedullin-regulated physiological activity were important events in the immunity of turbot against V.anguillarum infection.In the gills,the protein interactions in TGF-βsignaling pathway,production of inflammatory factors,and endocytosis regulation were most significant.Our research laid a foundation for discovering novel immune-related genes and enriching the knowledge of immune mechanisms of turbot against V.anguillarum infection.
基金supported by the Foundation for the National Key R&D Program(2022YFD1800400)Innovative Research Groups of the National Natural Science Foundation of China(32121004)Natural Science Foundation of Guangdong Province of China(2021A1515011159)。
文摘Monitoring the prevalence of antimicrobial resistance genes(ARGs)is vital for addressing the global crisis of antibiotic-resistant bacterial infections.Despite its importance,the characterization of ARGs and microbiome structures,as well as the identification of indicators for routine ARG monitoring in pig farms,are still lacking,particularly concerning variations in antimicrobial exposure in different countries or regions.Here,metagenomics and random forest machine learning were used to elucidate the ARG profiles,microbiome structures,and ARG contamination indicators in pig manure under different antimicrobial pressures between China and Europe.Results showed that Chinese pigs exposed to high-level antimicrobials exhibited higher total and plasmid-mediated ARG abundances compared to those in European pigs(P<0.05).ANT(6)-Ib,APH(3')-IIIa,and tet(40)were identified as shared core ARGs between the two pig populations.Furthermore,the core ARGs identified in pig populations were correlated with those found in human populations within the same geographical regions.Lactobacillus and Prevotella were identified as the dominant genera in the core microbiomes of Chinese and European pigs,respectively.Forty ARG markers and 43 biomarkers were able to differentiate between the Chinese and European pig manure samples with accuracies of 100%and 98.7%,respectively.Indicators for assessing ARG contamination in Chinese and European pigs also achieved high accuracy(r=0.72-0.88).Escherichia flexneri in both Chinese and European pig populations carried between 21 and 37 ARGs.The results of this study emphasize the importance of global collaboration in reducing antimicrobial resistance risk and provide validated indicators for evaluating the risk of ARG contamination in pig farms.
基金This work was financially supported by The National Key Research and Development Program of China(No.2022YFD1300202)The National Natural Science Foundation of China(No.32372834)+2 种基金Chongqing Modern Agricultural Industry Technology System(CQMAITS202313)the Collection,Utilization and Innovation of Germplasm Resources by Research Institutes and Enterprises of Chongqing,China(cqnyncw-kqlhtxm)the Chongqing Postgraduate Research Innovation Project(CYB22141).
文摘Background Brown adipose tissue(BAT)is known to be capable of non-shivering thermogenesis under cold stimulation,which is related to the mortality of animals.In the previous study,we observed that goat BAT is mainly located around the kidney at birth,and changes to white adipose tissue(WAT)in the perirenal adipose tissue of goats within one month after birth.However,the regulatory factors underlying this change is remain unclear.In this study,we systematically studied the perirenal adipose tissue of goat kids in histological,cytological,and accompanying molecular level changes from 0 to 28 d after birth.Results Our study found a higher mortality rate in winter-born goat kids,with goat birthing data statistics.Then we used thermal imaging revealing high temperature in goat hips at postnatal 0 d and gradually decrease during 28 d.This is consistent with the region of perirenal BAT deposition and highlights its critical role in energy expenditure and body temperature regulation in goat kids.Additionally,we found a series of changes of BAT during the first 28 d after birth,such as whitening,larger lipid droplets,decreased mitochondrial numbers,and down-regulation of key thermogenesis-related genes(UCP1,DIO2,UCP2,CIDEA,PPARGC1a,C/EBPb,and C/EBPa).Then,we used RNA-seq found specific marker genes for goat adipose tissue and identified 12 new marker genes for BAT and 10 new marker genes for WAT of goats.Furthermore,12 candidate genes were found to potentially regulate goat BAT thermogenesis.The mechanism of the change of this biological phenomenon does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes.While apoptosis may play a limited role,it is largely not critical in this transition process.Conclusions We concluded that perirenal BAT plays a crucial role in thermoregulation in newborn goat kids,with notable species differences in the expression of adipose tissue marker genes,and we highlighted some potential marker genes for goat BAT and WAT.Additionally,the change from BAT to WAT does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes.
基金supported by the National Key Research and Development Program of China(2023YFD1200600 to Xiaoya Lin)National Natural Science Foundation of China(32090060 to Fanjiang Kong,32001568 to Xiaoya Lin,31930083 to Baohui Liu,and 31901500 to Tiantian Bu)China Postdoctoral Science Foundation(2019 M652839 to Liyu Chen)。
文摘Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the major locus controlling this trait,modulates flowering time.We report that the three J-family genes influence soybean flowering time,with the triple mutant Guangzhou Mammoth-2 flowering late under short days by inhibiting transcription of E1-family genes.J-family genes offer promising allelic combinations for breeding.
基金supported by a grant from Chinese Agriculture Research System of MOF and MARA (Grant No.CARS-24-C-04)Zhejiang Provincial Natural Science Foundation (Grant No.LZ24C140001)+1 种基金National Natural Science Foundation of China (Grant Nos.32370144,32070165)the K.C.Wong Magna Fund in Ningbo University。
文摘Turnip mosaic virus(TuMV)is a devastating potyvirus pathogen that infects a wide variety of both cultivated and wild Brassicaceae plants.We urgently need more information and understanding of TuMV pathogenesis and the host responses involved in disease development in cruciferous crops.TuMV displays great versatility in viral pathogenesis,especially in its replication and intercellular movement.Moreover,in the coevolutionary arms races between TuMV and its hosts,the virus has evolved to co-opt host factors to facilitate its infection and counter host defense responses.This review mainly focuses on recent advances in understanding the viral factors that contribute to the TuMV infection cycle and the host resistance mechanism in Brassica.Finally,we propose some future research directions on TuMV pathogenesis and control strategies to design durable TuMV-resistant Brassica crops.
基金funded by the Fundamental Research Funds for the Central Universities(2572019CT02)Heilongjiang Touyan Innovation Team Program(Tree Genetics and Breeding Innovation Team)The Overseas Expertise Introduction Project for Discipline Innovation(B16010).
文摘Populus alba‘Berolinensis’is a fast-growing,high-yielding species with strong biotic and abiotic stress resistance,and widely planted for timber,shelter belts and aesthetic purposes.In this study,molecular development is explored and the important genes regulating xylem forma-tion in P.alba‘Berolinensis’under artificial bending treat-ments was identified.Anatomical investigation indicated that tension wood(TW)was characterized by eccentric growth of xylem and was enriched in cellulose;the degree of ligni-fication was lower than for normal wood(NW)and oppo-site wood(OW).RNA-Seq-based transcriptome analysis was performed using developing xylem from three wood types(TW,OW and NW).A large number of differentially expressed genes(DEGs)were screened and 4889 counted.In GO and KEGG enrichment results,genes involved in plant hormone signal transduction,phenylpropanoid biosynthesis,and cell wall and secondary cell wall biogenesis play major roles in xylem development under artificial bending.Eight expansin(PalEXP)genes were identified from the RNA-seq data;four were differentially expressed during tension wood formation.Phylogenetic analysis indicated that PalEXLB1 belongs to the EXPB subfamily and that the other PalEXPs are members of the EXPA subfamily.A transcriptional regulatory network construction showed 10 transcription factors located in the first and second layers upstream of EXP,including WRKY,ERF and bHLH.RT‒qPCR analy-sis in leaves,stems and roots combined with transcriptome analysis suggests that PalEXPA2,PalEXPA4 and PalEXPA15 play significant regulatory roles in cell wall formation during tension wood development.The candidate genes involved in xylem cell wall development during tension wood formation marks an important step toward identifying the molecular regulatory mechanism of xylem development and wood property improvement in P.alba‘Berolinensis’.
基金supported by the Special Scientific Research Project of Army Laboratory Animals(No.SYDW[2020]01)National Natural Science Foundation of ChinaNo.32370568。
文摘Background:Atherosclerosis is a chronic cardiovascular disease of great concern.However,it is difficult to establish a direct connection between conventional small animal models and clinical practice.The pig's genome,physiology,and anatomy reflect human biology better than other laboratory animals,which is crucial for studying the pathogenesis of atherosclerosis.Methods:We used whole-genome sequencing data from nine Bama minipigs to perform a genome-wide linkage analysis,and further used bioinformatic tools to filter and identify underlying candidate genes.Candidate gene function prediction was performed using the online prediction tool STRING 12.0.Immunohistochemistry and immunofluorescence were used to detect the expression of proteins encoded by candidate genes.Results:We mapped differential single nucleotide polymorphisms(SNPs)to genes and obtained a total of 102 differential genes,then we used GO and KEGG pathway enrichment analysis to identify four candidate genes,including SLA-1,SLA-2,SLA-3,and TAP2.nsSNPs cause changes in the primary and tertiary structures of SLA-I and TAP2 proteins,the primary structures of these two proteins have undergone amino acid changes,and the tertiary structures also show slight changes.In addition,immunohistochemistry and immunofluorescence results showed that the expression changes of TAP2 protein in coronary arteries showed a trend of increasing from the middle layer to the inner layer.Conclusions:We have identified SLA-I and TAP2 as potential susceptibility genes of atherosclerosis,highlighting the importance of antigen processing and immune response in atherogenesis.
基金the National Key Research and Development Program of China(2017YFD0800102)the Hubei Provincial Key Research and Development Program,China(2021BCA156)。
文摘Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to understand the influences of different upland crop planting systems on soil N_(2)O emissions.In this study,we focused on two representative rotation systems in Central China:rapeseed–rice(RR)and wheat–rice(WR).We examined the biotic and abiotic processes underlying the impacts of these upland plantings on soil N_(2)O emissions.The results revealed that during the rapeseed-cultivated seasons in the RR rotation system,the average N_(2)O emissions were 1.24±0.20 and 0.81±0.11 kg N ha^(–1)for the first and second seasons,respectively.These values were comparable to the N_(2)O emissions observed during the first and second wheat-cultivated seasons in the WR rotation system(0.98±0.25 and 0.70±0.04 kg N ha^(–1),respectively).This suggests that upland cultivation has minimal impacts on soil N_(2)O emissions in the two rotation systems.Strong positive correlations were found between N_(2)O fluxes and soil ammonium(NH_(4)^(+)),nitrate(NO_(3)^(–)),microbial biomass nitrogen(MBN),and the ratio of soil dissolved organic carbon(DOC)to NO_(3)^(–)in both RR and WR rotation systems.Moreover,the presence of the AOA-amoA and nirK genes were positively associated with soil N_(2)O fluxes in the RR and WR systems,respectively.This implies that these genes may have different potential roles in facilitating microbial N_(2)O production in various upland plantation models.By using a structural equation model,we found that soil moisture,mineral N,MBN,and the AOA-amoA gene accounted for over 50%of the effects on N_(2)O emissions in the RR rotation system.In the WR rotation system,soil moisture,mineral N,MBN,and the AOA-amoA and nirK genes had a combined impact of over 70%on N_(2)O emissions.These findings demonstrate the interactive effects of functional genes and soil factors,including soil physical characteristics,available carbon and nitrogen,and their ratio,on soil N_(2)O emissions during upland cultivation seasons under rice-upland rotations.
基金supported by the Key Research and Development Program of Jiangsu Province(BE2022343)the Seed Industry Revitalization Project of Jiangsu Province(JBGS[2021]009)+2 种基金the National Natural Science Foundation of China(32061143030 and 31972487)Jiangsu Province University Basic Science Research Project(21KJA210002)the Innovative Research Team of Universities in Jiangsu Province,the High-End Talent Project of Yangzhou University,the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),and Qing Lan Project of Jiangsu Province.
文摘The nutritional composition and overall quality of maize kernels are largely determined by the key chemical com-ponents:protein,oil,and starch.Nevertheless,the genetic basis underlying these nutritional quality traits during grainfilling remains poorly understood.In this study,the concentrations of protein,oil,and starch were studied in 204 recombinant inbred lines resulting from a cross between DH1M and T877 at four different stages post-pollination.All the traits exhibited considerable phenotypic variation.During the grain-filling stage,the levels of protein and starch content generally increased,whereas oil content decreased,with significant changes observed between 30 and 40 days after pollination.Quantitative trait locus(QTL)mapping was conducted and a total of 32 QTLs,comprising 14,12,and 6 QTLs for grain protein,oil,and starch content were detected,respectively.Few QTLs were consistently detectable across different time points.By integrating QTL analysis,glo-bal gene expression profiling,and comparative genomics,we identified 157,86,and 54 differentially expressed genes harboring nonsynonymous substitutions between the parental lines for grain protein,oil,and starch con-tent,respectively.Subsequent gene function annotation prioritized 15 candidate genes potentially involved in reg-ulating grain quality traits,including those encoding transcription factors(NAC,MADS-box,bZIP,and MYB),cell wall invertase,cellulose-synthase-like protein,cell division cycle protein,trehalase,auxin-responsive factor,and phloem protein 2-A13.Our study offers significant insights into the genetic architecture of maize kernel nutritional quality and identifies promising QTLs and candidate genes,which are crucial for the genetic enhance-ment of these traits in maize breeding programs.
基金supported by the Natural Science Foundation of Shaanxi Province(Nos.2023-JC-QN-0214,2023JC-QN-0185)the Postdoctoral Science Foundation of Shaanxi Province(No.2023BSHEDZZ199)the Fundamental Research Funds for the Central Universities(No.GK202207019)。
文摘Hypotrichs are one of the highly differentiated ciliated lineages which play important roles in ecological, environmental,evolutionary and basic biological studies. In the present study, we investigated the living characteristics, infraciliature, nuclear apparatus, ontogenesis and phylogenetic position of a marine hypotrichous ciliate, Apokeronopsis wrighti Long et al., 2008, which was isolated from coastal waters in Shenzhen, China. The new isolate resembles the type population in terms of morphological characteristics, morphometrics, and SSU rRNA gene sequence that is with a 99.7% similarity. Ontogenesis of A. wrighti is characterized by oral primordium for the proter as well as marginal and dorsal kineties anlagen in both filial products formed de novo, and the cirral row arranged along the paroral and endoral arises from several anterior frontoventral-transverse cirral streaks. Phylogenetic analyses based on SSU and concatenated gene data suggest that five species of Apokeronopsis form a monophyletic clade, and the genus Apokeronopsis is closely related to Thigmokeronopsis and Metaurostylopsis.
基金This research was funded by the National Natural Science Foundation of China(No.31971682)the Research Startup Fund for High-Level and High-Educated Talents of Nanjing Forestry University.
文摘This study explores CAMTA genes in the rare and endangered Chinese plant species,Liriodendron chinense.Despite the completion of whole-genome sequencing,the roles of CAMTA genes in calcium regulation and stress responses in this species remain largely unexplored.Within the L.chinense genome,we identified two CAMTA genes,Lchi09764 and Lchi222536,characterized by four functional domains:CG-1,TIG,ANK repeats,and IQ motifs.Our analyses,including phylogenetic investigations,cis-regulatory element analyses,and chromosomal location studies,aim to elucidate the defining features of CAMTA genes in L.chinense.Applying Weighted Gene Co-Expression Network Analysis(WGCNA),we explored the impact of CAMTA genes on different organs and their regulation under abiotic stress conditions.The identification of significant gene modules and the prediction of promoter binding sites revealed co-expressed genes associated with CAMTA transcription factors.In summary,this study provides initial insights into CAMTA genes in L.chinense,laying the groundwork for future research on their evolution and biological roles.This knowledge enhancement contributes to a better understanding of plant responses to environmental stress—an essential aspect of plant biology.
基金Supported by grant from Fundamental Research Grant Scheme by Ministry of Higher Education(MoHE)600-IRMI/FRGS 5/3(101/2019).
文摘AIM:To investigate the stability of the seven housekeeping genes:beta-actin(ActB),glyceraldehyde-3-phosphate dehydrogenase(GAPDH),18s ribosomal unit 5(18s),cyclophilin A(CycA),hypoxanthine-guanine phosphoribosyl transferase(HPRT),ribosomal protein large P0(36B4)and terminal uridylyl transferase 1(U6)in the diabetic retinal tissue of rat model.METHODS:The expression of these seven genes in rat retinal tissues was determined using real-time quantitative reverse transcription polymerase chain reaction(RT-qPCR)in two groups;normal control rats and streptozotocininduced diabetic rats.The stability analysis of gene expression was investigated using geNorm,NormFinder,BestKeeper,and comparative delta-Ct(ΔCt)algorithms.RESULTS:The 36B4 gene was stably expressed in the retinal tissues of normal control animals;however,it was less stable in diabetic retinas.The 18s gene was expressed consistently in both normal control and diabetic rats’retinal tissue.That this gene was the best reference for data normalisation in RT-qPCR studies that used the retinal tissue of streptozotocin-induced diabetic rats.Furthermore,there was no ideal gene stably expressed for use in all experimental settings.CONCLUSION:Identifying relevant genes is a need for achieving RT-qPCR validity and reliability and must be appropriately achieved based on a specific experimental setting.
基金Supported by Talent Scientific Research Start-up Foundation of Wannan Medical College,No.WYRCQD2023045.
文摘BACKGROUND Liver cancer(LIHC)is a malignant tumor that occurs in the liver and has a high mortality in cancer.The ING family genes were identified as tumor suppressor genes.Dysregulated expression of these genes can lead to cell cycle arrest,senescence and/or apoptosis.ING family genes are promising targets for anticancer therapy.However,their role in LIHC is still not well understood.AIM To have a better understanding of the important roles of ING family members in LIHC.METHODS A series of bioinformatics approaches(including gene expression analysis,genetic alteration analysis,survival analysis,immune infiltration analysis,prediction of upstream microRNAs(miRNAs)and long noncoding RNAs(lncRNAs)of ING1,and ING1-related gene functional enrichment analysis)was applied to study the expression profile,clinical relationship,prognostic significance and immune infiltration of ING in LIHC.The relationship between ING family genes expression and tumor associated immune checkpoints was investigated in LIHC.The molecular mechanism of ING1 mediated hepatocarcinogenesis was preliminarily discussed.RESULTS mRNA/protein expression of different ING family genes in LIHC was analyzed in different databases,showing that ING family genes were highly expressed in LIHC.In 47 samples from 366 LIHC patients,the ING family genes were altered at a rate of 13%.By comprehensively analyzing the expression,clinical pathological parameters and prognostic value of ING family genes,ING1/5 was identified.ING1/5 was related to poor prognosis of LIHC,suggesting that they may play key roles in LIHC tumorigenesis and progression.One of the target miRNAs of ING1 was identified as hsa-miR-214-3p.Two upstream lncRNAs of hsa-miR-214-3p,U91328.1,and HCG17,were identified.At the same time,we found that the expression of ING family genes was correlated with immune cell infiltration and immune checkpoint genes.CONCLUSION This study lays a foundation for further research on the potential mechanism and clinical value of ING family genes in the treatment and prognosis of LIHC.
基金a Key Project of the Natural Science Foundation of Chongqing Education Committee(KJZD-K202101201).
文摘This study aimed to examine the effects of inoculating Fritillaria taipaiensis P.Y.Li leaves with different strains ofpotassium-solubilizing bacteria (KSB), or combinations thereof, focusing on aspects of photosynthesis and physiologicaland biochemical characteristics. At present, some studies have only studied the rhizosphere microbialcommunity characteristics of F. taipaiensis and have not discussed the effects of different microbial species on thegrowth promotion of F. taipaiensis. This paper will start from the perspective of potassium-solubilizing bacteria toconduct an in-depth study. Seed cultivation commenced at the base with three different KSBs in early October2022. The growth of F. taipaiensis leaves was observed after different treatments. Both single-plant and compoundinoculations were executed. A total of eight treatment groups were established, with aseptic fertilizer and sterilizedsoil functioning as the control group. The results reveal that intercellular CO_(2) concentration (Ci), stomatal conductance(Gs), and transpiration rate (Tr) were at their apex in the S7 group. Most treatment groups exhibited anincrease in leaf area, photosynthetic pigment content, soluble sugar, soluble protein, Superoxide Dismutase(SOD), Peroxidase (POD), Catalase (CAT) activities, and proline content. The expression levels of POD, SOD,and CAT genes were evaluated, following inoculation with different KSB. The highest was the S7 group. Theinoculation with various KSB, or combinations thereof, appears to bolster the growth and development of F. taipaiensis.The composite inoculation group S7, comprising Bacillus cereus, Burkholderia cepacia, and Bacillus subtilis,manifested the most favorable impact on the diverse indices of F. taipaiensis, thereby furnishing valuableinsights for the selection of bacterial fertilizer in the artificial cultivation of F. taipaiensis.