Chemical synapses are asymmetric intercellular junc. tions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temp...Chemical synapses are asymmetric intercellular junc. tions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion chan- nels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.展开更多
Using polyethylene glycol(PEG) or glycerol as the plasticizer, we synthesized the hydrogels from poly(ethylene glycol) diacrylate(PEGDA), polyvinylpyrrolidone(PVP) and poly(vinyl alcohol)(PVA) under UV rad...Using polyethylene glycol(PEG) or glycerol as the plasticizer, we synthesized the hydrogels from poly(ethylene glycol) diacrylate(PEGDA), polyvinylpyrrolidone(PVP) and poly(vinyl alcohol)(PVA) under UV radiation. The effects of different plasticizers on the mechanical properties and adhesion properties of the hydrogels were investigated. The results show that the plasticizer can improve the elongation and peeling force. The most pronotmced changes in the tensile property of the hydrogels are due to the addition of glycerol followed by PEG, the lower the plasticizer's molecular weight, the greater its effect. The maximum peeling force is 0.317 or 0.257 N with PEG or glycerol as plasticizer, respectively, and their adhesion properties are due to the formation of hydrogen bonds.展开更多
Derived from dry powder coating of metals, electrostatic powder coating for pharmaceuticals is a technology for coating drug solid dosage forms. In this technology, coating powders, containing coating polymers, pigmen...Derived from dry powder coating of metals, electrostatic powder coating for pharmaceuticals is a technology for coating drug solid dosage forms. In this technology, coating powders, containing coating polymers, pigments, and other excipients, are directly sprayed onto the surface of the solid dosage forms through an electrostatic gun without using any organic solvent or water. The deposited coating powders are further cured to form a coating film. Electrostatic powder coating technology has many advantages compared to other pharmaceutical coating methods. It can eliminate the limitations caused by the organic solvent in solvent coating such as environmental issues and health problems. And electrostatic powder coating technology also surpasses aqueous coating due to its shorter processing time and less energy consumption, leading to a lower overall cost. Furthermore, the utilization of electrical attraction can promote the movement of coating powders towards the substrate, leading to an enhanced coating powder adhesion and coating efficiency, which make it more promising compared to other dry coating technologies. The objective of this review is to summarize the coating principles, apparatus, and formulations of different electrostatic powder coating technologies, giving their advantages and limitations and also analyzing the future application in the industry for each technology展开更多
文摘Chemical synapses are asymmetric intercellular junc. tions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion chan- nels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.
文摘Using polyethylene glycol(PEG) or glycerol as the plasticizer, we synthesized the hydrogels from poly(ethylene glycol) diacrylate(PEGDA), polyvinylpyrrolidone(PVP) and poly(vinyl alcohol)(PVA) under UV radiation. The effects of different plasticizers on the mechanical properties and adhesion properties of the hydrogels were investigated. The results show that the plasticizer can improve the elongation and peeling force. The most pronotmced changes in the tensile property of the hydrogels are due to the addition of glycerol followed by PEG, the lower the plasticizer's molecular weight, the greater its effect. The maximum peeling force is 0.317 or 0.257 N with PEG or glycerol as plasticizer, respectively, and their adhesion properties are due to the formation of hydrogen bonds.
文摘Derived from dry powder coating of metals, electrostatic powder coating for pharmaceuticals is a technology for coating drug solid dosage forms. In this technology, coating powders, containing coating polymers, pigments, and other excipients, are directly sprayed onto the surface of the solid dosage forms through an electrostatic gun without using any organic solvent or water. The deposited coating powders are further cured to form a coating film. Electrostatic powder coating technology has many advantages compared to other pharmaceutical coating methods. It can eliminate the limitations caused by the organic solvent in solvent coating such as environmental issues and health problems. And electrostatic powder coating technology also surpasses aqueous coating due to its shorter processing time and less energy consumption, leading to a lower overall cost. Furthermore, the utilization of electrical attraction can promote the movement of coating powders towards the substrate, leading to an enhanced coating powder adhesion and coating efficiency, which make it more promising compared to other dry coating technologies. The objective of this review is to summarize the coating principles, apparatus, and formulations of different electrostatic powder coating technologies, giving their advantages and limitations and also analyzing the future application in the industry for each technology