The randomness of strength and deformation of concrete material is serious and should be considered both in theoretical analyses such as Finite Element Methods and engineering practice, specially for those structural ...The randomness of strength and deformation of concrete material is serious and should be considered both in theoretical analyses such as Finite Element Methods and engineering practice, specially for those structural members with a uniform stress field, where stresses or strains are approximately the same under loading. A mathematical ap- proach of producing a series of random variables of the ultimate tensile strain in concrete is proposed to describe the randomness ofconcrete deformation. With reinforced concrete finite elements a real model calculation method is found for the randomness of initial cracks determined by a minimum tension strain within the uniform stress fields of concrete members. The proposed methods in our paper have as aim to improve the existing method used by FEM and other rela- tive approaches, which normally pay less attention to randomness with consequences that may possibly differ from testing or practice. The method and sample computation as indicated is meaningful and comply with testing and engi- neering practice.展开更多
The damage variables of describing the material damage state should be chosen first when the research of concrete structures by use of theory of damage theory. The method of calculation of damage parameter by the meas...The damage variables of describing the material damage state should be chosen first when the research of concrete structures by use of theory of damage theory. The method of calculation of damage parameter by the measure of the change of the elastic modulus of concrete specimens is effectively. In this paper, the wedge splitting tests with double bearing of three groups of different initial crack lengths of concrete specimens were conducted, and the stress and the strain of the points with different distance from the initial crack tip measured and calculated, and the damage value with peak stress of the various points were calculated based on the stress-strain curves. From the results of the test, the damage parameter can be confirmed under the non-uniform stress field, and the initial crack length has some influence on the damage parameter, and the longer the initial crack length and the greater the damage parameter.展开更多
The combined effects of the magnetic field, permeable walls, Darcy velocity, and slip parameter on the steady flow of a fluid in a channel of uniform width are studied. The fluid flowing in the channel is assumed to b...The combined effects of the magnetic field, permeable walls, Darcy velocity, and slip parameter on the steady flow of a fluid in a channel of uniform width are studied. The fluid flowing in the channel is assumed to be homogeneous, incompressible, and Newtonian. Analytical solutions are constructed for the governing equations using Beavers-Joseph slip boundary conditions. Effects of the magnetic field, permeability, Darcy velocity, and slip parameter on the axial velocity, slip velocity, and shear stress are discussed in detail. It is shown that the Hartmann number, Darcy velocity, porous parameter, and slip parameter play a vital role in altering the flow and in turn the shear stress.展开更多
文摘The randomness of strength and deformation of concrete material is serious and should be considered both in theoretical analyses such as Finite Element Methods and engineering practice, specially for those structural members with a uniform stress field, where stresses or strains are approximately the same under loading. A mathematical ap- proach of producing a series of random variables of the ultimate tensile strain in concrete is proposed to describe the randomness ofconcrete deformation. With reinforced concrete finite elements a real model calculation method is found for the randomness of initial cracks determined by a minimum tension strain within the uniform stress fields of concrete members. The proposed methods in our paper have as aim to improve the existing method used by FEM and other rela- tive approaches, which normally pay less attention to randomness with consequences that may possibly differ from testing or practice. The method and sample computation as indicated is meaningful and comply with testing and engi- neering practice.
文摘The damage variables of describing the material damage state should be chosen first when the research of concrete structures by use of theory of damage theory. The method of calculation of damage parameter by the measure of the change of the elastic modulus of concrete specimens is effectively. In this paper, the wedge splitting tests with double bearing of three groups of different initial crack lengths of concrete specimens were conducted, and the stress and the strain of the points with different distance from the initial crack tip measured and calculated, and the damage value with peak stress of the various points were calculated based on the stress-strain curves. From the results of the test, the damage parameter can be confirmed under the non-uniform stress field, and the initial crack length has some influence on the damage parameter, and the longer the initial crack length and the greater the damage parameter.
文摘The combined effects of the magnetic field, permeable walls, Darcy velocity, and slip parameter on the steady flow of a fluid in a channel of uniform width are studied. The fluid flowing in the channel is assumed to be homogeneous, incompressible, and Newtonian. Analytical solutions are constructed for the governing equations using Beavers-Joseph slip boundary conditions. Effects of the magnetic field, permeability, Darcy velocity, and slip parameter on the axial velocity, slip velocity, and shear stress are discussed in detail. It is shown that the Hartmann number, Darcy velocity, porous parameter, and slip parameter play a vital role in altering the flow and in turn the shear stress.