This work summarizes the structure and operating features of a high-performance 3-stage dual-delay-path (DDP) voltage-controlled ring oscillator (VCRO) with self-biased delay cells for Phase-Locked Loop (PLL) structur...This work summarizes the structure and operating features of a high-performance 3-stage dual-delay-path (DDP) voltage-controlled ring oscillator (VCRO) with self-biased delay cells for Phase-Locked Loop (PLL) structurebased clock generation and digital system driving. For a voltage supply V<sub>DD</sub> = 1.8 V, the resulting set of performance parameters include power consumption P<sub><sub></sub>DC</sub> = 4.68 mW and phase noise PN@1MHz = -107.8 dBc/Hz. From the trade-off involving P<sub>DC</sub> and PN, a system level high performance is obtained considering a reference figure-of-merit ( FoM = -224 dBc/Hz ). Implemented at schematic level by applying CMOS-based technology (UMC L180), the proposed VCRO was designed at Cadence environment and optimized at MunEDA WiCkeD tool.展开更多
The Internet of things(IoT) as an important application of future communication networks puts a high premium on delay issues. Thus when Io T applications meet heterogeneous networks(HetNets) where macro cells are over...The Internet of things(IoT) as an important application of future communication networks puts a high premium on delay issues. Thus when Io T applications meet heterogeneous networks(HetNets) where macro cells are overlaid with small cells, some traditional problems need rethinking. In this paper, we investigate the delay-addressed association problem in two-tier Het Nets considering different backhaul technologies. Specifically, millimeter wave and fiber links are used to provide high-capacity backhaul for small cells. We first formulate the user association problem to minimize the total delay which depends on the probability of successful transmission, the number of user terminals(UTs), and the number of base stations(BSs). And then two algorithms for active mode and mixed mode are proposed to minimize the network delay. Simulation results show that algorithms based on mutual selection between UTs and BSs have better performance than those based on distance. And algorithms for mixed modes have less delay than those for active mode when the number of BSs is large enough, compared to the number of UTs.展开更多
This paper presents a low-power small-area digitally controlled oscillator (DCO) using an inverters interlaced cascaded delay cell (IICDC). It uses a coarse-fine architecture with binary-weighted delay stages for ...This paper presents a low-power small-area digitally controlled oscillator (DCO) using an inverters interlaced cascaded delay cell (IICDC). It uses a coarse-fine architecture with binary-weighted delay stages for the delay range and resolution. The coarse-tuning stage of the DCO uses IICDC, which is power and area efficient with low phase noise, as compared with conventional delay cells. The ADPLL with a DCO is fabricated in the UMC 180-nm CMOS process with an active area of 0.071 mm2. The output frequency range is 140-600 MHz at the power supply of 1.8 V. The power consumption is 2.34 mW@ a 200 MHz output.展开更多
In this article we consider the kth-order discrete delay survival red blood cells model. The general form of the discrete dynamical system is rewritten as Xn+l = f(Pn,δn,xn,... ,xn+1) where Pn,δn converge to the...In this article we consider the kth-order discrete delay survival red blood cells model. The general form of the discrete dynamical system is rewritten as Xn+l = f(Pn,δn,xn,... ,xn+1) where Pn,δn converge to the parametric values P and 6. We show that when the parameters are replaced by sequences, the stability results of the original system still hold.展开更多
Objective To generate and characterize anti-idiotypic monoclonal antibody (Ab2) that bears the internal image of nasopharyngeal carcinoma (NPC) associated antigen. Methods Using NPC monoclonal antibody (Ab1) as immu...Objective To generate and characterize anti-idiotypic monoclonal antibody (Ab2) that bears the internal image of nasopharyngeal carcinoma (NPC) associated antigen. Methods Using NPC monoclonal antibody (Ab1) as immunogen, hybridoma cells were obtained by fusion of SP2/0 myeloma cells with immunized murine spleen cells. Positive clones were screened by Sandwich ELISA and a binding inhibition test. To determine whether Ab2 possess the internal image of the original antigen or not, mice were immunized with Ab2. ELISA and the competitive inhibition assay tested anti-anti-idiotypic antibodies (Ab3) in anti-sera. Cell-mediated immunity to tumors induced by Ab2 was investigated by a delayed-type hypersensitivity response and the mouse T-cell proliferation assay. Results Anti-idiotypic monoclonal antibodies against the monoclonal anti-NPC antibodies FC2 and HNL5 were generated that recognize NPC associated antigens. These Ab2, which were designated 2H4 and 5D3, could inhibit the binding of FC2 or HNL5 to NPC cell lines. Anti-sera from the immunized mice, which contained Ab3, could compete with FC2 or HNL5 for binding with NPC cell by a competitive inhibition assay. Mice immunized with 2H4 or 5D3 coupled with keyhole limpet hemocyanin (KLH), showed a positive and specific delayed-type hypersensitivity (DTH) reaction after stimulation by NPC cells. The mouse T cell proliferative assay indicated that there was a significantly higher proliferative response of the splenocytes in the experimental groups than that in control groups. Conclusions Anti-idiotypic antibodies 2H4 and 5D3 are Ab2 beta bearing the internal image of the epitope of NPC associated antigen. Either 2H4 or 5D3 expressing three-dimensional shapes that resemble the structure of natural antigens could induce humoral and cellular immune response.展开更多
A digitally controlled oscillator(DCO) using a three-transistor XOR gate as the variable load has been presented.A delay cell using an inverter and a three-transistor XOR gate as the variable capacitance is also pro...A digitally controlled oscillator(DCO) using a three-transistor XOR gate as the variable load has been presented.A delay cell using an inverter and a three-transistor XOR gate as the variable capacitance is also proposed. Three-,five- and seven-stage DCO circuits have been designed using the proposed delay cell.The output frequency is controlled digitally with bits applied to the delay cells.The three-bit DCO shows output frequency and power consumption variation in the range of 3.2486-4.0267 GHz and 0.6121-0.3901 mW,respectively,with a change in the control word 111-000.The five-bit DCO achieves frequency and power of 1.8553-2.3506 GHz and 1.0202-0.6501 mW,respectively,with a change in the control word 11111-00000.Moreover,the seven-bit DCO shows a frequency and power consumption variation of 1.3239-1.6817 GHz and 1.4282-0.9102 mW,respectively, with a varying control word 1111111-0000000.The power consumption and output frequency of the proposed circuits have been compared with earlier reported circuits and the present approaches show significant improvements.展开更多
Digital controlled oscillators(DCOs) are the core of all digital phase locked loop(ADPLL) circuits. Here,DCO structures with reduced hardware and power consumption having full digital control have been proposed. T...Digital controlled oscillators(DCOs) are the core of all digital phase locked loop(ADPLL) circuits. Here,DCO structures with reduced hardware and power consumption having full digital control have been proposed. Three different DCO architectures have been proposed based on ring based topology.Three,four and five bit controlled DCO with NMOS,PMOS and NMOS PMOS transistor switching networks are presented.A three-transistor XNOR gate has been used as the inverter which is used as the delay cell.Delay has been controlled digitally with a switch network of NMOS and PMOS transistors.The three bit DCO with one NMOS network shows frequency variations of 1.6141-1.8790 GHz with power consumption variations 251.9224-276.8591μW. The four bit DCO with one NMOS network shows frequency variation of 1.6229-1.8868 GHz with varying power consumption of 251.9225-278.0740μW.A six bit DCO with one NMOS switching network gave an output frequency of 1.7237-1.8962 GHz with power consumption of 251.928-278.998μW.Output frequency and power consumption results for 4 6 bit DCO circuits with one PMOS and NMOS PMOS switching network have also been presented.The phase noise parameter with an offset frequency of 1 MHz has also been reported for the proposed circuits.Comparisons with earlier reported circuits have been made and the present approach shows advantages over previous circuits.展开更多
文摘This work summarizes the structure and operating features of a high-performance 3-stage dual-delay-path (DDP) voltage-controlled ring oscillator (VCRO) with self-biased delay cells for Phase-Locked Loop (PLL) structurebased clock generation and digital system driving. For a voltage supply V<sub>DD</sub> = 1.8 V, the resulting set of performance parameters include power consumption P<sub><sub></sub>DC</sub> = 4.68 mW and phase noise PN@1MHz = -107.8 dBc/Hz. From the trade-off involving P<sub>DC</sub> and PN, a system level high performance is obtained considering a reference figure-of-merit ( FoM = -224 dBc/Hz ). Implemented at schematic level by applying CMOS-based technology (UMC L180), the proposed VCRO was designed at Cadence environment and optimized at MunEDA WiCkeD tool.
基金supported by the National Natural Science Foundation of China (NSFC) under Grants 61427801 and 61671251the Natural Science Foundation Program through Jiangsu Province of China under Grant BK20150852+3 种基金the open research fund of National Mobile Communications Research Laboratory, Southeast University under Grant 2017D05China Postdoctoral Science Foundation under Grant 2016M590481Jiangsu Planned Projects for Postdoctoral Research Funds under Grant 1501018Asupported by NSFC under Grants 61531011 and 61625106
文摘The Internet of things(IoT) as an important application of future communication networks puts a high premium on delay issues. Thus when Io T applications meet heterogeneous networks(HetNets) where macro cells are overlaid with small cells, some traditional problems need rethinking. In this paper, we investigate the delay-addressed association problem in two-tier Het Nets considering different backhaul technologies. Specifically, millimeter wave and fiber links are used to provide high-capacity backhaul for small cells. We first formulate the user association problem to minimize the total delay which depends on the probability of successful transmission, the number of user terminals(UTs), and the number of base stations(BSs). And then two algorithms for active mode and mixed mode are proposed to minimize the network delay. Simulation results show that algorithms based on mutual selection between UTs and BSs have better performance than those based on distance. And algorithms for mixed modes have less delay than those for active mode when the number of BSs is large enough, compared to the number of UTs.
文摘This paper presents a low-power small-area digitally controlled oscillator (DCO) using an inverters interlaced cascaded delay cell (IICDC). It uses a coarse-fine architecture with binary-weighted delay stages for the delay range and resolution. The coarse-tuning stage of the DCO uses IICDC, which is power and area efficient with low phase noise, as compared with conventional delay cells. The ADPLL with a DCO is fabricated in the UMC 180-nm CMOS process with an active area of 0.071 mm2. The output frequency range is 140-600 MHz at the power supply of 1.8 V. The power consumption is 2.34 mW@ a 200 MHz output.
文摘In this article we consider the kth-order discrete delay survival red blood cells model. The general form of the discrete dynamical system is rewritten as Xn+l = f(Pn,δn,xn,... ,xn+1) where Pn,δn converge to the parametric values P and 6. We show that when the parameters are replaced by sequences, the stability results of the original system still hold.
基金ThisinvestigationwassupportedbygrantsfromtheNationalNaturalScienceFoundationofChina (No 392 70 716 )ChinaMedicalBoardinNewYork (No 90 5 2 9project 7)
文摘Objective To generate and characterize anti-idiotypic monoclonal antibody (Ab2) that bears the internal image of nasopharyngeal carcinoma (NPC) associated antigen. Methods Using NPC monoclonal antibody (Ab1) as immunogen, hybridoma cells were obtained by fusion of SP2/0 myeloma cells with immunized murine spleen cells. Positive clones were screened by Sandwich ELISA and a binding inhibition test. To determine whether Ab2 possess the internal image of the original antigen or not, mice were immunized with Ab2. ELISA and the competitive inhibition assay tested anti-anti-idiotypic antibodies (Ab3) in anti-sera. Cell-mediated immunity to tumors induced by Ab2 was investigated by a delayed-type hypersensitivity response and the mouse T-cell proliferation assay. Results Anti-idiotypic monoclonal antibodies against the monoclonal anti-NPC antibodies FC2 and HNL5 were generated that recognize NPC associated antigens. These Ab2, which were designated 2H4 and 5D3, could inhibit the binding of FC2 or HNL5 to NPC cell lines. Anti-sera from the immunized mice, which contained Ab3, could compete with FC2 or HNL5 for binding with NPC cell by a competitive inhibition assay. Mice immunized with 2H4 or 5D3 coupled with keyhole limpet hemocyanin (KLH), showed a positive and specific delayed-type hypersensitivity (DTH) reaction after stimulation by NPC cells. The mouse T cell proliferative assay indicated that there was a significantly higher proliferative response of the splenocytes in the experimental groups than that in control groups. Conclusions Anti-idiotypic antibodies 2H4 and 5D3 are Ab2 beta bearing the internal image of the epitope of NPC associated antigen. Either 2H4 or 5D3 expressing three-dimensional shapes that resemble the structure of natural antigens could induce humoral and cellular immune response.
文摘A digitally controlled oscillator(DCO) using a three-transistor XOR gate as the variable load has been presented.A delay cell using an inverter and a three-transistor XOR gate as the variable capacitance is also proposed. Three-,five- and seven-stage DCO circuits have been designed using the proposed delay cell.The output frequency is controlled digitally with bits applied to the delay cells.The three-bit DCO shows output frequency and power consumption variation in the range of 3.2486-4.0267 GHz and 0.6121-0.3901 mW,respectively,with a change in the control word 111-000.The five-bit DCO achieves frequency and power of 1.8553-2.3506 GHz and 1.0202-0.6501 mW,respectively,with a change in the control word 11111-00000.Moreover,the seven-bit DCO shows a frequency and power consumption variation of 1.3239-1.6817 GHz and 1.4282-0.9102 mW,respectively, with a varying control word 1111111-0000000.The power consumption and output frequency of the proposed circuits have been compared with earlier reported circuits and the present approaches show significant improvements.
文摘Digital controlled oscillators(DCOs) are the core of all digital phase locked loop(ADPLL) circuits. Here,DCO structures with reduced hardware and power consumption having full digital control have been proposed. Three different DCO architectures have been proposed based on ring based topology.Three,four and five bit controlled DCO with NMOS,PMOS and NMOS PMOS transistor switching networks are presented.A three-transistor XNOR gate has been used as the inverter which is used as the delay cell.Delay has been controlled digitally with a switch network of NMOS and PMOS transistors.The three bit DCO with one NMOS network shows frequency variations of 1.6141-1.8790 GHz with power consumption variations 251.9224-276.8591μW. The four bit DCO with one NMOS network shows frequency variation of 1.6229-1.8868 GHz with varying power consumption of 251.9225-278.0740μW.A six bit DCO with one NMOS switching network gave an output frequency of 1.7237-1.8962 GHz with power consumption of 251.928-278.998μW.Output frequency and power consumption results for 4 6 bit DCO circuits with one PMOS and NMOS PMOS switching network have also been presented.The phase noise parameter with an offset frequency of 1 MHz has also been reported for the proposed circuits.Comparisons with earlier reported circuits have been made and the present approach shows advantages over previous circuits.