期刊文献+
共找到139篇文章
< 1 2 7 >
每页显示 20 50 100
ELASTIC BEHAVIOR ANALYSIS OF 3D ANGLE-INTERLOCK WOVEN CERAMIC COMPOSITES 被引量:11
1
作者 Chang Yanjun Jiao Guiqiong +1 位作者 Wang Bo Liu Wei 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第2期152-159,共8页
A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulatio... A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulation and continuity in space, the cavities between adjacent yarns and the actual cross-section geometry of the yarn. Based on the laminate theory, the elastic properties of 3D angle-interlock woven ceramic composites are predicted. Different numbers of interlaced wefts have almost the same elastic moduli. The thickness of ceramic matrix has little effect on elastic moduli. When the undulation ratio increases longitudinal modulus decreases and the other Young's moduli increase. Good agreement between theoretical predictions and experimental results demonstrates the feasibility of the proposed model in analyzing the elastic properties of 3D angle-interlock woven ceramic composites. The results of this paper verify the fact that the method of analyzing polyester matrix composites is suitable for woven ceramic composites. 展开更多
关键词 3D angle-interlock woven ceramic composites elastic properties geometric parameters
下载PDF
Polymer/Ceramic Composite Membranes and Their Application in Pervaporation Process 被引量:6
2
作者 刘公平 卫旺 +1 位作者 金万勤 徐南平 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第1期62-70,共9页
Pervaporation(PV),as an environmental friendly and energy-saving separation technology,has been received increasing attention in recent years.This article reviews the preparation and application of macroporous ceramic... Pervaporation(PV),as an environmental friendly and energy-saving separation technology,has been received increasing attention in recent years.This article reviews the preparation and application of macroporous ceramic-supported polymer composite pervaporation membranes.The separation materials of polymer/ceramic composite membranes presented here include hydrophobic polydimethylsiloxane(PDMS) and hydrophilic poly(vinyl alcohol)(PVA),chitosan(CS) and polyelectrolytes.The effects of ceramic support treatment,polymer solution properties,interfacial adhesion and incorporating or blending modification on the membrane structure and PV performance are discussed.Two in-situ characterization methods developed for polymer/ceramic composite membranes are also covered in the discussion.The applications of these composite membranes in pervaporation process are summarized as well,which contain the bio-fuels recovery,gasoline desulfuration and PV coupled proc-ess using PDMS/ceramic composite membrane,and dehydration of alcohols and esters using ceramic-supported PVA or PVA-CS composite membrane.Finally,a brief conclusion remark on polymer/ceramic composite mem-branes is given and possible future research is outlined. 展开更多
关键词 polymer/ceramic composite membrane PERVAPORATION bio-fuel recovery solvent dehydration PV cou-pled process
下载PDF
Study on Microstructure of Alumina Based Rare Earth Ceramic Composite 被引量:6
3
作者 许崇海 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期217-221,共5页
Analysis techniques such as SEM, TEM and EDAX were used to investigate the microstructure of rare earth reinforced Al2O3/(W, Ti)C ceramic composite. Chemical and physical compatibility of the composite was analyzed an... Analysis techniques such as SEM, TEM and EDAX were used to investigate the microstructure of rare earth reinforced Al2O3/(W, Ti)C ceramic composite. Chemical and physical compatibility of the composite was analyzed and in-terfacial microstructure was studied in detail. It is found that both Al2O3 and (W, Ti)C phases are interlaced with each other to form the skeleton structure in the composite. A small amount of pores and glass phases are observed inside the material which will inevitably influence the physical and mechanical property of the composite. Thermal residual stresses resulted from thermal expansion mismatch can then lead to the emergence of dislocations and microcracks. Interfaces and boundaries of different types are found to exist inside the Al2O3/(W, Ti)C rare earth ceramic composite, which is concerned with the addition of rare earth element and the extent of solid solution of ceramic phases. 展开更多
关键词 ALUMINA ceramic composite MICROSTRUCTURE rare earths
下载PDF
Microstructure and oxidation resistance of reactive plasma clad Cr_7C_3/γ-Fe ceramic composite coating 被引量:5
4
作者 刘均波 《China Welding》 EI CAS 2007年第2期51-54,共4页
A new type oxidation resistance in situ Cr7 C3/γ-Fe ceramic composite coating was fabricated on hardened and tempered grade C steel by reactive plasma clad with Fe-Cr-C alloy powders. The oxidation resistance of the... A new type oxidation resistance in situ Cr7 C3/γ-Fe ceramic composite coating was fabricated on hardened and tempered grade C steel by reactive plasma clad with Fe-Cr-C alloy powders. The oxidation resistance of the ceramic composite coating was investigated under the test condition of 900 ℃ and 50 hours. The results indicate that the coating has a rapidly solidified microstructure consisting of blocky primary Cr7 C3 and the inter-blocky Cr7 C3/γ-Fe eutectics and is metallurgically bonded to the hardened and tempered grade C steel substrate. The high temperature oxidation resistance of the coating is up to 1.9 times higher than that of grade C steel. The oxidation kinetics curve of the coating is conforming to the parabolic-rate law equation. The excellent oxidation resistance of the coating is mainly attributed to the continuous oxide films which consist of Cr203 and Fe203. The continuous oxide films can prevent the inner part of the coating from being further oxidized. 展开更多
关键词 reactive plasma clad ceramic composite coating MICROSTRUCTURE oxidation resistance
下载PDF
Mechanical Behaviors of ZrO_2-Al_2O_3 Ceramic Composites with Y_2O_3 as Stabilizer 被引量:3
5
作者 丘泰 王玉春 沈春英 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第3期280-284,共5页
The ZrO2-Al2O3 ceramic composites were prepared by appropriate techniques with commercial ZrO2 and Al2O3 powders as raw materials and Y2O3 as stabilizer. The results indicate that with the introduction of Al2O3 into t... The ZrO2-Al2O3 ceramic composites were prepared by appropriate techniques with commercial ZrO2 and Al2O3 powders as raw materials and Y2O3 as stabilizer. The results indicate that with the introduction of Al2O3 into the ZrO2 matrix where the quantity of additive Y2O3 is 3.5% (mole fraction), the growth of ZrO2 grains is efficiently inhibited, which helps the ZrO2 grains exist in a metastable tetragonal manner; thus higher strength and toughness are acquired. When the content of alumina is 20% (mass fraction), the bending strength and fracture toughness of the composites are 676.7 MPa and 10 MPa·m1/2 respectively, the mechanical behaviors are close to those prepared with ZrO2 and Al2O3 powders synthesized through wet chemical approach. The mechanical behaviors of the composites are well improved owing to the dispersion toughening of alumina grains and phase transformation toughening of zirconia grains. 展开更多
关键词 inorganic non-metallic materials zirconia-alumina ceramic composites yttria stabilizer mechanical behaviors toughening mechanism rare earths
下载PDF
FRACTURAL PROCESS AND TOUGHENING MECHANISM OF LAMINATED CERAMIC COMPOSITES 被引量:3
6
作者 Zhang Yafang Tang Chun'an +1 位作者 Zhang Yongbin Liang Zhenzao 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第2期141-148,共8页
Based on the model of multi-layer beam and the assumption of micro-inhomogeneity of material, the 3D fractural characteristics of laminated ceramic composites have been studied with numerical simulation. Under three-p... Based on the model of multi-layer beam and the assumption of micro-inhomogeneity of material, the 3D fractural characteristics of laminated ceramic composites have been studied with numerical simulation. Under three-point bending load, crack initiation, coalescence, propagation, tuning off in the weak interface and final rupture have been simulated. The spatial distribution and evolution process of acoustic emission are also presented in the paper. The simulation verifies the primary mechanism of the weak interface inducing the crack to expand along there and absorbing the fractural energy. The disciplinary significance of the effect of strength and properties of material on the toughness and strength of laminated ceramic composites is, therefore, discussed in this paper. 展开更多
关键词 laminated ceramic composite TOUGHENING numerical simulation
下载PDF
Vacuum brazing of Si/SiC ceramic composite and Invar alloy using TiSOCu-W filler metals 被引量:2
7
作者 张华 黄继华 +2 位作者 张志远 赵兴科 陈树海 《China Welding》 EI CAS 2012年第1期76-80,共5页
Si/SiC ceramic composite and lnvar alloy were successfidly joined by vacuum brazing using Ti5OCu-W filler metals into which W was added to release the thermal stress of the brazed joint. Microstructures of the brazed ... Si/SiC ceramic composite and lnvar alloy were successfidly joined by vacuum brazing using Ti5OCu-W filler metals into which W was added to release the thermal stress of the brazed joint. Microstructures of the brazed joints were irwestigated by scanning electron micrascope (SEM) and energy dispersive spectrometer (EDS). The mechanical properties of the brazed joints were measured by shearing tests. The results showed that the brazed joints were composed of Ti-Cu phase, W phase and Ti-Si phase. W had no effect on the wettability and mobility of the .filler metals. The growth of Ti2 Cu phase was restrained, and the reaction between ceramic composite and filler metals was weakened. The specimen, brazed at 970°C for 5 rain, had the maximum shear strength of 108 MPa at room temperature. 展开更多
关键词 Si/SiC ceramic composite lnvar alloy BRAZING Ti50Cu-W filler metals
下载PDF
Bonding of Silicon Nitride Ceramic Composite with RE_2O_3Al_2O_3SiO_2 Glass Solders
8
作者 周飞 李志章 罗启富 《Journal of Rare Earths》 SCIE EI CAS CSCD 1999年第3期194-199,共6页
Liquid bonding of Si 3N 4 ceramic composite was carried out with RE 2O 3 Al 2O 3 SiO 2 glass solders. The effect of bonding conditions and interfacial reaction on the joint strength was studied. The joint st... Liquid bonding of Si 3N 4 ceramic composite was carried out with RE 2O 3 Al 2O 3 SiO 2 glass solders. The effect of bonding conditions and interfacial reaction on the joint strength was studied. The joint strength under different bonding conditions was measured by four point bending tests. The interfacial microstructures were observed and analyzed by SEM, EPMA and XRD. It is shown that the liquid glass solders react with Si 3N 4 at interface, forming the Si 3N 4/Si 2N 2O/Y(La) sialon glass/Y(La) sialon glass gradient interface. With the increase of bonding temperature and holding time, the joint strength first increased reaching a peak, and then decreased. According to microanalyses, LaYO 3 precipitated from joint glass improves joint strength at room and high temperature. 展开更多
关键词 Rare earths Si 3N 4 ceramic composite LANTHANA YTTRIA BONDING
下载PDF
Comparison of K_(IC) Values for SiC Whisker Reinforced Ceramic Composites Obtained by Using Various Methods
9
作者 Tingquan LEI Guangyong LIN +1 位作者 Shuangxi WANG and Yu ZHOU (Dept. of Metals and Technology, Harbin Institute of Technology, Harbin, 150001, China)(To whom correspondence should be addressed) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第5期331-340,共10页
The fracture toughness (KIC) values determined by indentation microfracture method (IM ) for SiC whisker reinforced Al2O3 and ZrO2 based composites were calculated with different IM equations and compared with those o... The fracture toughness (KIC) values determined by indentation microfracture method (IM ) for SiC whisker reinforced Al2O3 and ZrO2 based composites were calculated with different IM equations and compared with those obtained by singte edge notched beam (SENB) technique. Experimental results show that the KIC (IM) values calculated with different equations are quite different one from another. For composites without phase transformable components the KIC (IM) and KIC (SENB) values are practically on the same level, but for composites with phase transformable components (partially stabilized zirconia) the KIC (SENB) values are always higher than KIC (IM). This is because that the IM method can not reveal sensitively the toughening effect due to dynamic t-m transformation of ZrO2 as the SENB method does. The accuracy of the IM method depends on the Suitability of the IM equations and was evaluated for the materials used in this investigation. Two new IM equations are suggested with which the KIC (IM ) values can be obtained very close to KIC (SENB) values for composites having phase transformable components. 展开更多
关键词 SiC Values for SiC Whisker Reinforced ceramic composites Obtained by Using Various Methods Comparison of K IC
下载PDF
Preparation of Fe-M Intermetallic/TiC-M_2O_3 Ceramic Composites from Ilmenite by SHS
10
作者 邹正光 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第4期706-709,共4页
Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by selfpropagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon... Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by selfpropagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed. It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis; Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave are improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃. 展开更多
关键词 ILMENITE Fe-AI intermetallic/TiC-Al2O3 ceramic composites SHS I/CMC
下载PDF
Fracture Behavior of Alumina-based Prismatic Ceramic Composites
11
作者 Guanghui MIN and Shuqi ZHENG Shandong University of Technology, Jinan 250061, China T.Inoue and K. Ueno Osaka National Research institute, Ikeda City, Osaka 563, Japan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第1期81-82,共2页
The fracture toughness and fracture work of A12O3/SiC prismatic ceramic composites was evaluated in this paper, which showed the fracture energy was improved greatly. Based on the observation 'for crack propagat... The fracture toughness and fracture work of A12O3/SiC prismatic ceramic composites was evaluated in this paper, which showed the fracture energy was improved greatly. Based on the observation 'for crack propagation and fracture morphology, the fracture behavior of the prismatic composites was analyzed. In the bending test, the composites displayed a non-catastrophic behavior and a graceful failure with reasonable load-carrying capability. 展开更多
关键词 Fracture Behavior of Alumina-based Prismatic ceramic composites
下载PDF
Processing,microstructure,and properties of porous ceramic composites with directional channels 被引量:1
12
作者 Bo Zhang Yang Yang Xueling Fan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第1期1-15,共15页
Porous ceramic composites with directional microchannels from micrometer to dozens of micrometer levels have attracted more and more attention in various fields including aerospace,biomedicines,and thermal insulation ... Porous ceramic composites with directional microchannels from micrometer to dozens of micrometer levels have attracted more and more attention in various fields including aerospace,biomedicines,and thermal insulation due to their excellent fluid permeability,mechanical properties,etc.In this article,we summarize the recent directional porous ceramics developments including their main processing routes and respective properties.Meanwhile,the properties get from different processing routes have been com-pared and analyzed in terms of microstructures,mechanical properties,and permeability.Emphasis has been given to the deeper understanding which can allow one to control the microstructural features of these porous ceramic composites to obtain the desired characteristics.This work can provide a useful reference for the development and application of porous ceramic composites with directional microchan-nels. 展开更多
关键词 Porous ceramic composites Directional microchannels Processing routes PERMEABILITY
原文传递
High-performance grinding of ceramic matrix composites
13
作者 Jingfei Yin Jiuhua Xu Honghua Su 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期45-55,共11页
Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wide... Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wider application.To overcome these problems,this study investigates high-efficiency deep grinding of CMCs,focusing on the effects of grinding depth.The results show that both the sur-face roughness and the depth of subsurface damage(SSD)are insensitive to grinding depth.The material removal rate can be increased sixfold by increasing the grinding depth,while the surface roughness and SSD depth increase by only about 10%.Moreover,it is found that the behavior of material removal is strongly dependent on grinding depth.As the grinding depth is increased,fibers are removed in smaller sizes,with thefiber length in chips being reduced by about 34%.However,too large a grinding depth will result in blockage by chip powder,which leads to a dramatic increase in the ratio of tangential to normal grinding forces.This study demonstrates that increasing the depth of cut is an effective approach to improve the machining efficiency of CMCs,while maintaining a good surfacefin-ish.It provides the basis for the further development of high-performance grinding methods for CMCs,which should facilitate their wider application. 展开更多
关键词 ceramic matrix composite GRINDING Surfacefinish Subsurface damage Fiber breakage
下载PDF
Cold sintering process for fabrication of a superhydrophobic ZnO-polytetrafluoroethylene(PTFE)ceramic composite 被引量:1
14
作者 Xuetong Zhao Yang Yang +6 位作者 Li Cheng Jing Guo Shenglin Kang Yuchen Li Xilin Wang Lijun Yang Ruijin Liao 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第9期1758-1766,共9页
Composite coatings or films with polytetrafluoroethylene(PTFE)are typically utilized to offer superhydrophobic surfaces.However,the superhydrophobic surfaces usually have limited durability and require complicated fab... Composite coatings or films with polytetrafluoroethylene(PTFE)are typically utilized to offer superhydrophobic surfaces.However,the superhydrophobic surfaces usually have limited durability and require complicated fabrication methods.Herein,we report the successful integration of PTFE with ZnO ceramics to achieve superhydrophobicity via a one-step sintering method,cold sintering process(CSP),at 300℃.(1–x)ZnO–x PTFE ceramic composites with x ranging from 0 to 70 vol%are densified with relative density of over 97%.Micro/nano-scale PTFE polymer is dispersed among ZnO grains forming polymer grain boundary phases,which modulate surface morphology and surface energy of the ZnO–PTFE ceramic composites.For the 60 vol%ZnO–40 vol%PTFE ceramic composite,superhydrophobic properties are optimized with static water contact angles(WCAs)and sliding angles(SAs)of 162°and 7°,respectively.After abrading into various thicknesses(2.52,2.26,and 1.99 mm)and contaminating with graphite powders on the surface,WCA and SA are still maintained with a high level of 157°–160°and 7°–9.3°,respectively.This work indicates that CSP provides a promising pathway to integrate polymers with ceramics to realize stable superhydrophobicity. 展开更多
关键词 cold sintering process(CSP) ZnO-polytetrafluoroethylene(PTFE)ceramic composites contact angles sliding angles(SAs) SUPERHYDROPHOBICITY
原文传递
Ceramic composites toughened by vat photopolymerization 3D printing technology
15
作者 Qiaolei Li Zhenxue Pan +4 位作者 Jingjing Liang Zongbo Zhang Jinguo Li Yizhou Zhou Xiaofeng Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第15期42-48,共7页
High strength and high toughness are mutually exclusive in structural materials.In ceramic materials,increasing toughness usually depends on the introduction of a ductile phase that reduces the strength and high-tempe... High strength and high toughness are mutually exclusive in structural materials.In ceramic materials,increasing toughness usually depends on the introduction of a ductile phase that reduces the strength and high-temperature stability of the material.In this work,vat photopolymerization 3D printing technology was used to achieve toughening of ceramic composite material.The friction sliding of the 3D-printed ceramic macrolayer structure results in effective energy dissipation and redistribution of strain in the whole structure,and macroscale toughening of the ceramic material is realized.In addition,the bridging and elongation of the crack in situ amorphous ceramic whiskers were significant microscopic toughening results,coupled with the toughening of the crack tip of nano-ZrO_(2).Multiscale collaborative toughening methods based on 3D-printed ceramics should find wide applications for materials in service at extreme high temperatures. 展开更多
关键词 ceramic composites 3D printing Flexure strength Fracture toughness POLYSILAZANE
原文传递
Oxidation behavior of Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(x)C(M=Ti,Zr,Hf,Nb,Ta) composite ceramic at high temperature
16
作者 徐帅 王韬 +7 位作者 王新刚 吴璐 方忠强 葛芳芳 蒙萱 廖庆 魏金春 李炳生 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期629-637,共9页
Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(t)C composite ceramic was prepared by hot press sintering,with the Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C high-entropy carbide as the main phase.Secondary phase M_(x)C(M... Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(t)C composite ceramic was prepared by hot press sintering,with the Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C high-entropy carbide as the main phase.Secondary phase M_(x)C(M=Ti,Zr,Hf,Nb,Ta) was found to be distributed relatively uniform in the composite ceramic.The oxidation behavior of the ceramic was examined after exposure to 923 K and 1173 K.Morphology of the surface and cross sections of all oxidation samples were observed.The characteristics of the oxidation behavior of the high-entropy carbide and the secondary phase M_(x)C were compared and analyzed.The secondary phases(such as Ti-rich carbide or Hf-rich carbide) in the material were seriously oxidized at 923 K and 1173 K,which reflects the superior oxidation performance of the high-entropy carbide.The nano high-entropy oxides with Ti,Zr,Hf,Nb,Ta,and O elements were discovered by oxidation of the composite ceramic.This research will help deepen the understanding of the oxidation mechanism of high-entropy carbide and composite ceramic. 展开更多
关键词 ceramic composites oxidation oxide surface microstructure
下载PDF
Low-temperature and flexible strategy to in-situ fabricate ZrSiO_(4)-based ceramic composites via doping and tuning solid-state reaction
17
作者 Bohan Wang Le Fu +5 位作者 Junjie Song Wenjun Yu Ying Deng Guofu Xu Jiwu Huang Wei Xia 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第6期1238-1257,共20页
Synthetic zircon(ZrSiO_(4))ceramics are typically fabricated at elevated temperatures(over 1500℃),which would lead to high manufacturing cost.Meanwhile,reports about preparing ZrSiO_(4)-based ceramic composites via c... Synthetic zircon(ZrSiO_(4))ceramics are typically fabricated at elevated temperatures(over 1500℃),which would lead to high manufacturing cost.Meanwhile,reports about preparing ZrSiO_(4)-based ceramic composites via controlling the solid-state reaction between zirconia(ZrO_(2))and silica(SiO_(2))are limited.In this work,we proposed a low-temperature strategy to flexibly design and fabricate ZrSiO_(4)-based ceramic composites via doping and tuning the solid-state reaction.Two ceramic composites and ZrSiO_(4) ceramics were in-situ prepared by reactive fast hot pressing(FHP)at approximately 1250℃ based on the proposed strategy,i.e.,a ZrSiO_(4)-SiO_(2) dual-phase composite with bicontinuous interpenetrating and hierarchical microstructures,a ZrSiO_(4)-ZrO_(2) dual-phase composite with a microstructure of ZrO_(2) submicron-and nano-particles embedded in a micron ZrSiO_(4) matrix,and ZrSiO_(4) ceramics with a small amount of residual ZrO_(2) nanoparticles.The results showed that the phase compositions,microstructure configurations,mechanical properties,and wear resistance of the materials can be flexibly regulated by the proposed strategy.Hence,ZrSiO_(4)-based ceramic composites with different properties can be easily fabricated based on different application scenarios.These findings would offer useful guidance for researchers to flexibly fabricate ZrSiO_(4)-based ceramic composites at low temperatures and tailor their microstructures and properties through doping and tuning the solid-state reaction. 展开更多
关键词 zirconia(ZrO_(2))-silica(SiO_(2)) zircon(ZrSiO_(4)) solid-state reaction ceramic composite mechanical properties wear resistance
原文传递
Effects of Co_(2)O_(3)Addition on Microstructure and Properties of SiC Composite Ceramics for Solar Absorber and Storage
18
作者 ZHOU Yang WU Jianfeng +3 位作者 TIAN Kezhong XU Xiaohong MA Sitong LIU Shaoheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1269-1277,共9页
SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum ... SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum and kaolin as the raw materials,Co_(2)O_(3)as the additive via pressureless graphite-buried sintering method in this study.Influences of Co_(2)O_(3)on the microstructure and properties of SiC composite ceramics for solar absorber and storage integration were studied.The results indicate that sample D2(5wt%Co_(2)O_(3))sintered at 1480℃exhibits optimal performances for 119.91 MPa bending strength,93%solar absorption,981.5 kJ/kg(25-800℃)thermal storage density.The weight gain ratio is 12.58 mg/cm2after 100 h oxidation at 1000℃.The Co_(2)O_(3)can decrease the liquid phase formation temperature and reduce the viscosity of liquid phase during sintering.The liquid with low viscosity not only promotes the elimination of pores to achieve densification,but also increases bending strength,solar absorption,thermal storage density and oxidation resistance.A dense SiO_(2) layer was formed on the surface of SiC after 100 h oxidation at 1000℃,which protects the sample from further oxidation.However,excessive Co_(2)O_(3)will make the microstructure loose,which is disadvantageous to the performances of samples. 展开更多
关键词 SiC composite ceramics Co_(2)O_(3) microstructure solar absorption thermal storage density
下载PDF
Controllable fabrication and multifunctional applications of graphene/ceramic composites 被引量:7
19
作者 Yujia HUANG Chunlei WAN 《Journal of Advanced Ceramics》 SCIE CSCD 2020年第3期271-291,共21页
Graphene with excellent comprehensive properties has been considered as a promising filler to reinforce ceramics.While numerous studies have been devoted to the improvement of mechanical and electrical properties,inco... Graphene with excellent comprehensive properties has been considered as a promising filler to reinforce ceramics.While numerous studies have been devoted to the improvement of mechanical and electrical properties,incorporating graphene to ceramics also offers new opportunities for endowing ceramics with versatility.In this review,the recent development of graphene/ceramic bulk composites is summarized with the focus on the construction of well-designed architecture and the realization of multifunctional applications.The processing technologies of the composites are systematically summarized towards homogeneous dispersion and even ordered orientation of graphene sheets in the ceramic matrix.The improvement of composites in mechanical,electrical,electromagnetic,and thermal performances is discussed.The novel multifunctional applications brought by smart integration of graphene in ceramics are also addressed,including microwave absorption,electromagnetic interference shielding,ballistic armors,self-monitor damage sensors,and energy storage and conversion. 展开更多
关键词 graphene/ceramic composites SYNTHESIS mechanical property electromagnetic properties thermal properties MULTIFUNCTION
原文传递
EFFECT OF FIBER FAILURE ON QUASI-STATIC UNLOADING/RELOADING HYSTERESIS LOOPS OF CERAMIC MATRIX COMPOSITES 被引量:1
20
作者 李龙彪 宋迎东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期94-102,共9页
The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the ... The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data. 展开更多
关键词 ceramic matrix composites hysteresis loops matrix cracking interface debonding fiber failure
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部