期刊文献+
共找到437篇文章
< 1 2 22 >
每页显示 20 50 100
A New Noise-Tolerant Dual-Neural-Network Scheme for Robust Kinematic Control of Robotic Arms With Unknown Models 被引量:2
1
作者 Ning Tan Peng Yu +1 位作者 Zhiyan Zhong Fenglei Ni 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第10期1778-1791,共14页
Taking advantage of their inherent dexterity,robotic arms are competent in completing many tasks efficiently.As a result of the modeling complexity and kinematic uncertainty of robotic arms,model-free control paradigm... Taking advantage of their inherent dexterity,robotic arms are competent in completing many tasks efficiently.As a result of the modeling complexity and kinematic uncertainty of robotic arms,model-free control paradigm has been proposed and investigated extensively.However,robust model-free control of robotic arms in the presence of noise interference remains a problem worth studying.In this paper,we first propose a new kind of zeroing neural network(ZNN),i.e.,integration-enhanced noise-tolerant ZNN(IENT-ZNN)with integration-enhanced noisetolerant capability.Then,a unified dual IENT-ZNN scheme based on the proposed IENT-ZNN is presented for the kinematic control problem of both rigid-link and continuum robotic arms,which improves the performance of robotic arms with the disturbance of noise,without knowing the structural parameters of the robotic arms.The finite-time convergence and robustness of the proposed control scheme are proven by theoretical analysis.Finally,simulation studies and experimental demonstrations verify that the proposed control scheme is feasible in the kinematic control of different robotic arms and can achieve better results in terms of accuracy and robustness. 展开更多
关键词 dual zeroing neural networks(ZNN) finite-time convergence MODEL-FREE robot control robustness analysis
下载PDF
Smart Lung Tumor Prediction Using Dual Graph Convolutional Neural Network 被引量:1
2
作者 Abdalla Alameen 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期369-383,共15页
A significant advantage of medical image processing is that it allows non-invasive exploration of internal anatomy in great detail.It is possible to create and study 3D models of anatomical structures to improve treatm... A significant advantage of medical image processing is that it allows non-invasive exploration of internal anatomy in great detail.It is possible to create and study 3D models of anatomical structures to improve treatment outcomes,develop more effective medical devices,or arrive at a more accurate diagnosis.This paper aims to present a fused evolutionary algorithm that takes advantage of both whale optimization and bacterial foraging optimization to optimize feature extraction.The classification process was conducted with the aid of a convolu-tional neural network(CNN)with dual graphs.Evaluation of the performance of the fused model is carried out with various methods.In the initial input Com-puter Tomography(CT)image,150 images are pre-processed and segmented to identify cancerous and non-cancerous nodules.The geometrical,statistical,struc-tural,and texture features are extracted from the preprocessed segmented image using various methods such as Gray-level co-occurrence matrix(GLCM),Histo-gram-oriented gradient features(HOG),and Gray-level dependence matrix(GLDM).To select the optimal features,a novel fusion approach known as Whale-Bacterial Foraging Optimization is proposed.For the classification of lung cancer,dual graph convolutional neural networks have been employed.A com-parison of classification algorithms and optimization algorithms has been con-ducted.According to the evaluated results,the proposed fused algorithm is successful with an accuracy of 98.72%in predicting lung tumors,and it outper-forms other conventional approaches. 展开更多
关键词 CNN dual graph convolutional neural network GLCM GLDM HOG image processing lung tumor prediction whale bacterial foraging optimization
下载PDF
Feature-Based Fusion of Dual Band Infrared Image Using Multiple Pulse Coupled Neural Network 被引量:1
3
作者 Yuqing He Shuaiying Wei +3 位作者 Tao Yang Weiqi Jin Mingqi Liu Xiangyang Zhai 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期129-136,共8页
To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)... To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges. 展开更多
关键词 infrared IMAGE IMAGE FUSION dual BAND pulse coupled neural network(PCNN) FEATURE extraction
下载PDF
Rudder Roll Damping Autopilot Using Dual Extended Kalman Filter–Trained Neural Networks for Ships in Waves
4
作者 Yuanyuan Wang Hung Duc Nguyen 《Journal of Marine Science and Application》 CSCD 2019年第4期510-521,共12页
The roll motions of ships advancing in heavy seas have severe impacts on the safety of crews,vessels,and cargoes;thus,it must be damped.This study presents the design of a rudder roll damping autopilot by utilizing th... The roll motions of ships advancing in heavy seas have severe impacts on the safety of crews,vessels,and cargoes;thus,it must be damped.This study presents the design of a rudder roll damping autopilot by utilizing the dual extended Kalman filter(DEKF)trained radial basis function neural networks(RBFNN)for the surface vessels.The autopilot system constitutes the roll reduction controller and the yaw motion controller implemented in parallel.After analyzing the advantages of the DEKF-trained RBFNN control method theoretically,the ship’s nonlinear model with environmental disturbances was employed to verify the performance of the proposed stabilization system.Different sailing scenarios were conducted to investigate the motion responses of the ship in waves.The results demonstrate that the DEKF RBFNN based control system is efficient and practical in reducing roll motions and following the path for the ship sailing in waves only through rudder actions. 展开更多
关键词 Rudder roll damping AUTOPILOT Radial basis function neural networks dual extended Kalman filter training Intelligent control Path following Advancing in waves
下载PDF
Adaptive neural network control for coordinated motion of a dual-arm space robot system with uncertain parameters
5
作者 郭益深 陈力 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第9期1131-1140,共10页
Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed. By combining the relation of system linear momentum conversati... Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed. By combining the relation of system linear momentum conversation with the Lagrangian approach, the dynamic equation of a robot is established. Based on the above results, the free-floating dual-arm space robot system is modeled with RBF neural networks, the GL matrix and its product operator. With all uncertain inertial system parameters, an adaptive RBF neural network control scheme is developed for coordinated motion between the base attitude and the arm joints. The proposed scheme does not need linear parameterization of the dynamic equation of the system and any accurate prior-knowledge of the actual inertial parameters. Also it does not need to train the neural network offline so that it would present real-time and online applications. A planar free-floating dual-arm space robot is simulated to show feasibility of the proposed scheme. 展开更多
关键词 flee-floating dual-arm space robot RBF neural network GL matrix andits product operator coordinated motion adaptive control
下载PDF
IDSSCNN-XgBoost:Improved Dual-Stream Shallow Convolutional Neural Network Based on Extreme Gradient Boosting Algorithm for Micro Expression Recognition
6
作者 Adnan Ahmad Zhao Li +1 位作者 Irfan Tariq Zhengran He 《Computers, Materials & Continua》 SCIE EI 2025年第1期729-749,共21页
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr... Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time. 展开更多
关键词 ME recognition dual stream shallow convolutional neural network euler video magnification TV-L1 XgBoost
下载PDF
基于双通道Residual-LSTM的SINS/GNSS组合导航算法
7
作者 奔粤阳 王奕霏 +2 位作者 李倩 魏廷枭 周一帆 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第4期325-333,共9页
针对全球导航卫星系统信号中断情况下SINS/GNSS组合导航系统无法持续进行误差校正的问题,提出一种基于双通道Residual-LSTM的SINS/GNSS组合导航算法。首先,考虑到SINS经度、纬度误差传播特性不同所导致的模型输入、输出信息之间的非线... 针对全球导航卫星系统信号中断情况下SINS/GNSS组合导航系统无法持续进行误差校正的问题,提出一种基于双通道Residual-LSTM的SINS/GNSS组合导航算法。首先,考虑到SINS经度、纬度误差传播特性不同所导致的模型输入、输出信息之间的非线性相关性差异化,构建具有不同权重系数的双通道长短期记忆神经网络模型结构,并引入遗忘信息共享机制自适应地利用历史导航数据对经度、纬度信息进行拟合预测。其次,针对深层神经网络存在的模型退化和梯度消失问题,在多层双通道LSTM网络之间建立残差高速通道形成Residual-LSTM模型结构,以增加不同网络层次之间的信息传播路径。最后,通过实船数据验证本文所提算法的有效性。实验结果表明,与基于常规智能方法的SINS/GNSS组合导航算法相比,所提组合导航算法在GNSS信号中断期间经度误差降低了51.97%,纬度误差降低了31.45%。 展开更多
关键词 SINS/GNSS组合导航 GNSS中断 双通道结构 残差长短期记忆神经网络 深度神经网络
下载PDF
采用DCT稀疏表示与Dual-PCNN的图像融合算法 被引量:3
8
作者 宋斌 吴乐华 +2 位作者 唐晓杰 文玉强 牟宇飞 《红外技术》 CSCD 北大核心 2015年第4期283-288,共6页
针对已有图像融合方法会导致融合图像亮度不均匀,与原图像对比度不一致,不适合人眼视觉效果的缺点,提出将DCT稀疏表示与双通脉冲耦合神经网络相结合的压缩感知域图像融合算法。首先结合图像DCT稀疏表示的特点,设计射线采样矩阵;再对测... 针对已有图像融合方法会导致融合图像亮度不均匀,与原图像对比度不一致,不适合人眼视觉效果的缺点,提出将DCT稀疏表示与双通脉冲耦合神经网络相结合的压缩感知域图像融合算法。首先结合图像DCT稀疏表示的特点,设计射线采样矩阵;再对测量值采用基于测量值的信息熵加权平均融合;最后经过全变分优化算法对融合测量值重构得到融合图像。通过对多组不同类型传感器所获图像融合实验的主观视觉分析和客观评价表明,该算法所得的融合图像能从原始图像中获取更多有用信息,更好地保持原图像的边缘信息,从而获得更好的视觉效果。 展开更多
关键词 压缩感知 双通道脉冲耦合神经网络 信息熵 全变分优化算法
下载PDF
结合视觉显著性与Dual-PCNN的红外与可见光图像融合 被引量:8
9
作者 侯瑞超 周冬明 +2 位作者 聂仁灿 刘栋 郭晓鹏 《计算机科学》 CSCD 北大核心 2018年第B06期162-166,共5页
针对现存的红外与可见光图像融合算法亮度不均、目标不突出、对比度不高、细节丢失等问题,结合非下采样剪切波变换(NSST)具有多尺度、最具稀疏表达的特性,显著性检测具有突出红外目标的优势,双通道脉冲耦合神经网络(Dual-PCNN)具有耦合... 针对现存的红外与可见光图像融合算法亮度不均、目标不突出、对比度不高、细节丢失等问题,结合非下采样剪切波变换(NSST)具有多尺度、最具稀疏表达的特性,显著性检测具有突出红外目标的优势,双通道脉冲耦合神经网络(Dual-PCNN)具有耦合、脉冲同步激发等优点,提出一种基于NSST结合视觉显著性引导Dual-PCNN的图像融合方法。首先,通过NSST分解红外与可见光图像各方向的高频与低频子带系数;然后,低频子带系数采用基于显著性决策图引导Dual-PCNN融合策略,高频子带系数采用改进的空间频率作为优化Dual-PCNN的激励进行融合;最后,经过NSST逆变换得到融合图像。实验结果表明,融合图像红外目标突出且可见光背景细节丰富。该方法相比于其他融合算法在主观评价与客观评价上都有一定程度的改善。 展开更多
关键词 非下采样剪切波变换 视觉显著性 双通道脉冲耦合神经网络 图像融合
下载PDF
基于双节点-双边图神经网络的茶叶病害分类方法 被引量:1
10
作者 张艳 车迅 +2 位作者 汪芃 汪玉凤 胡根生 《农业机械学报》 EI CAS CSCD 北大核心 2024年第3期252-262,共11页
传统茶叶病害分类主要依赖人工方法,此类方法费工费时,同时茶叶病害样本较少使得现有的机器学习方法的模型训练不充分,病害分类准确率不够高。针对茶炭疽病、茶黑煤病、茶饼病和茶白星病4类病害,提出一种基于双节点-双边图神经网络的茶... 传统茶叶病害分类主要依赖人工方法,此类方法费工费时,同时茶叶病害样本较少使得现有的机器学习方法的模型训练不充分,病害分类准确率不够高。针对茶炭疽病、茶黑煤病、茶饼病和茶白星病4类病害,提出一种基于双节点-双边图神经网络的茶叶病害分类方法。首先通过两分支卷积神经网络提取RGB茶叶病害特征和灰度茶叶病害特征,两分支均采用ResNet12作为骨干网络,参数独立不共享,两类特征作为图神经网络的两个子节点,以获得不同域样本所包含的病害信息;其次构建相对度量边和相似性边两类边,从而强化节点对相邻节点所含病害特征的聚合能力。最后,经过双节点特征和双边特征更新模块,实现双节点和双边交替更新,提高边特征对节点距离度量的准确性,从而实现训练样本较少条件下对茶叶病害的准确分类。本文方法和小样本学习方法进行了对比实验,结果表明,本文方法获得更高的准确率,在miniImageNet和PlantVillage数据集上5way-1shot的准确率分别达到69.30%和88.42%,5way-5shot准确率分别为82.48%和93.04%。同时在茶叶数据集TeaD-5上5way-1shot和5way-5shot准确率分别达到84.74%和86.34%。 展开更多
关键词 茶叶 病害分类 图神经网络 双节点 相对度量边 相似性边
下载PDF
基于GRU-CNN双网络输出构建BP模型的径流预测方法 被引量:1
11
作者 张玥 姜中清 +2 位作者 周伊 周静姝 王宇露 《水力发电》 CAS 2024年第6期17-22,共6页
提高径流预测精度是避免洪水灾害发生的重要手段,由于预测阶段并无已知有效样本,给预测工作带来难度,因此,提出以双网络输出为预测阶段提供数据参考,结合训练阶段双网络输出与真实值之间的关系,对预测阶段采用二次多变量建模实现径流预... 提高径流预测精度是避免洪水灾害发生的重要手段,由于预测阶段并无已知有效样本,给预测工作带来难度,因此,提出以双网络输出为预测阶段提供数据参考,结合训练阶段双网络输出与真实值之间的关系,对预测阶段采用二次多变量建模实现径流预测。首先,构建GRU和CNN深度学习网络,同步输出2条径流预测序列;其次,在已知时段内,构建2条预测结果与实测值之间的多变量BP模型;最后,基于双网络输出预测值,通过确定的BP模型输出径流预测结果。经测试,该方法给预测时段提供了可靠的先验样本,高效学习了网络输出与真实值之间关系,预测精度显著提升。 展开更多
关键词 洪水预报 径流预测 双网络输出 GRU CNN BP神经网络
下载PDF
基于DCGCN模型的海上风电场超短期功率预测
12
作者 黄玲玲 石孝华 +2 位作者 符杨 刘阳 应飞祥 《电力系统自动化》 EI CSCD 北大核心 2024年第15期64-72,共9页
图卷积网络(GCN)具有很强的数据关联挖掘能力,近年来在风电功率预测领域获得了广泛关注。然而,传统的基于GCN模型的超短期风电功率预测难以同时处理影响风电功率的两大核心因素(风速与机组状态信息)的双模态问题,基于此,提出了一种基于... 图卷积网络(GCN)具有很强的数据关联挖掘能力,近年来在风电功率预测领域获得了广泛关注。然而,传统的基于GCN模型的超短期风电功率预测难以同时处理影响风电功率的两大核心因素(风速与机组状态信息)的双模态问题,基于此,提出了一种基于双通道图卷积网络(DCGCN)的海上风电场超短期功率预测模型。首先,建立以理论功率曲线为基准的机组状态指标模型,定量表征机组状态变化对其发电能力的影响;其次,构建海上风电场图拓扑,建立基于风速和状态邻接矩阵的风电场各机组捕获的风速与机组状态信息的关联关系模型;最后,建立基于DCGCN的风电场超短期功率预测方法。算例结果表明,所提模型有助于提高风电场功率预测模型的训练效率和预测精度。 展开更多
关键词 超短期功率预测 图卷积网络 海上风电场 功率曲线 双通道神经网络
下载PDF
基于双层注意力和深度自编码器的时间序列异常检测模型 被引量:1
13
作者 尹春勇 赵峰 《计算机工程与科学》 CSCD 北大核心 2024年第5期826-835,共10页
目前时间序列通常具有弱周期性以及高度复杂的相关性特征,传统的时间序列异常检测方法难以检测此类异常。针对这一问题,提出了一种新的无监督时间序列异常检测模型(DA-CBG-AE)。首先,使用新型滑动窗口方法,针对时间序列周期性设置滑动... 目前时间序列通常具有弱周期性以及高度复杂的相关性特征,传统的时间序列异常检测方法难以检测此类异常。针对这一问题,提出了一种新的无监督时间序列异常检测模型(DA-CBG-AE)。首先,使用新型滑动窗口方法,针对时间序列周期性设置滑动窗口大小;其次,采用卷积神经网络提取时间序列高维度空间特征;然后,提出具有堆叠式Dropout双向门循环单元网络作为自编码器的基本结构,从而捕捉时间序列的相关性特征;最后,引入双层注意力机制,进一步提取特征,选择更加关键的时间序列,从而提高异常检测准确率。为了验证该模型的有效性,将DA-CBG-AE与6种基准模型在8个数据集上进行比较。最终的实验结果表明,DA-CBG-AE获得了最优的F1值(0.863),并且其检测性能相比最新的基准模型Tad-GAN高出25.25%。 展开更多
关键词 异常检测 双层注意力机制 自编码器 卷积神经网络 双向门循环单元
下载PDF
Dual Channel with Involution for Long-Tailed Visual Recognition
14
作者 Mengxue Li 《Open Journal of Applied Sciences》 2022年第4期421-433,共13页
With the rapid increase of large-scale problems, the distribution of real-world datasets tends to be long-tailed. Existing solutions typically involve re-balancing strategies (i.e., re-sampling and re-weighting). Alth... With the rapid increase of large-scale problems, the distribution of real-world datasets tends to be long-tailed. Existing solutions typically involve re-balancing strategies (i.e., re-sampling and re-weighting). Although they can significantly promote the classifier learning of deep networks, they will unexpectedly impair the representative ability of the learned deep features to a certain extent. Therefore, this paper proposes a dual-channel learning algorithm with involution neural networks (DC-Invo) to take care of representation learning and classifier learning concurrently. In this work, the most important thing is to combine ResNet and involution to obtain higher classification accuracy because of involution’s wider coverage in the spatial dimension. The paper conducted extensive experiments on several benchmark vision tasks including Cifar-LT, Imagenet-LT, and Places-LT, showing that DC-Invo is able to achieve significant performance gained on long-tailed datasets. 展开更多
关键词 Long-Tailed Recognition Deep neural network dual-Channel Structure INVOLUTION
下载PDF
特征图组合的双流CNN手指关节角度连续运动预测方法研究
15
作者 武岩 曹崇莉 +2 位作者 李奇 姬鹏辉 张航 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第11期119-128,共10页
针对基于表面肌电(surface electromyography,sEMG)信号手指关节角度连续运动预测时序信息提取不足、预测准确率较低的问题,提出了一种基于特征图组合(feature map combinations,FMC)的双流卷积神经网络(dual-stream convolutional neur... 针对基于表面肌电(surface electromyography,sEMG)信号手指关节角度连续运动预测时序信息提取不足、预测准确率较低的问题,提出了一种基于特征图组合(feature map combinations,FMC)的双流卷积神经网络(dual-stream convolutional neural network,DCNN)预测方法。提取sEMG信号的特征信息,采用滑动窗方式将特征信息进行特征图组合,表达特征的时间连贯性以提取sEMG信号的时序信息,通过DCNN网络在时间、空间维度对组合后的特征图提取深层特征,提高手指关节角度连续运动预测效果。在NinaPro-DB8数据集上进行实验,结果表明:在3类不同自由度(18个、5个、3个)的相关方法比较中,健康受试者的R2值分别提高了7.9%、16.8%和17.8%;截肢受试者的R2值分别提高了9.6%、14.3%和10.3%。 展开更多
关键词 SEMG 连续运动预测 特征图组合 双流卷积神经网络
下载PDF
改进YOLOv5的织物缺陷检测方法
16
作者 朱磊 王倩倩 +2 位作者 姚丽娜 潘杨 张博 《计算机工程与应用》 CSCD 北大核心 2024年第20期302-311,共10页
为了在不增加网络参数量的条件下提升深度学习方法对织物缺陷检测的精度,提出了一种基于改进YOLOv5的织物缺陷检测方法。通过深度卷积改造通道注意力,剪裁最大池化优化空间注意力,并通过二者构建的双级联注意力机制来搭建特征提取子网络... 为了在不增加网络参数量的条件下提升深度学习方法对织物缺陷检测的精度,提出了一种基于改进YOLOv5的织物缺陷检测方法。通过深度卷积改造通道注意力,剪裁最大池化优化空间注意力,并通过二者构建的双级联注意力机制来搭建特征提取子网络,从而提高网络对缺陷区域纹理和语义特征的提取能力;采用鬼影混洗卷积改进特征融合子网络,强化对提取特征的筛选,在降低模型参数量的同时,改善缺陷信息丢失和无效信息冗余问题;在检测端引入具有角度损失的新型损失函数SIOU,来促进真实框和预测框的拟合并提升对缺陷预测的准确性。实验结果表明:改进的YOLOv5方法在降低YOLOv5基准模型复杂度和计算量的同时,与YOLOv7等六种先进方法相比,可获得更高的检测精度,相较原模型mAP@0.5值提高了2.6个百分点,mAP@0.5:0.9值提高了1.3个百分点。 展开更多
关键词 织物缺陷检测 卷积神经网络 YOLOv5 双级联注意力机制 损失函数
下载PDF
综掘面风流调控下的瓦斯与粉尘浓度双目标预测模型研究 被引量:3
17
作者 龚晓燕 程傲 +5 位作者 邹浩 孙育恒 杨富强 张红兵 李昊 孙康 《煤炭技术》 CAS 2024年第1期153-157,共5页
针对综掘面瓦斯和粉尘浓度预测能力不足,导致瓦斯粉尘积聚难以提前解决,造成风筒出风口风流调控降尘排瓦效果不佳的问题,采用层次分析法确定了瓦斯和粉尘浓度分布的关键影响因素,建立了7-11-3结构的双目标预测神经网络模型,并进行出风... 针对综掘面瓦斯和粉尘浓度预测能力不足,导致瓦斯粉尘积聚难以提前解决,造成风筒出风口风流调控降尘排瓦效果不佳的问题,采用层次分析法确定了瓦斯和粉尘浓度分布的关键影响因素,建立了7-11-3结构的双目标预测神经网络模型,并进行出风口距端头5 m和10 m工况下的应用测试,结果表明:模型误差率最大9.85%,最小0.27%。瓦斯浓度最高降低了45%,粉尘浓度最高降低了40%,有效预防了瓦斯和粉尘浓度的积聚问题。 展开更多
关键词 综掘面 风流调控 BP神经网络 瓦斯及粉尘浓度 双目标预测模型
下载PDF
基于通道注意特征融合的轴承故障诊断方法
18
作者 齐爱玲 马森哲 《航天器环境工程》 CSCD 2024年第1期115-122,共8页
针对传统故障诊断方法通常依赖单域信息输入,导致信号中的部分信息丢失或信息不完整使用的问题,提出了一种基于通道注意特征融合的轴承故障诊断方法。首先,将原始信号通过快速傅里叶变换(FFT)和连续小波变换(CWT)处理得到频域和时频图... 针对传统故障诊断方法通常依赖单域信息输入,导致信号中的部分信息丢失或信息不完整使用的问题,提出了一种基于通道注意特征融合的轴承故障诊断方法。首先,将原始信号通过快速傅里叶变换(FFT)和连续小波变换(CWT)处理得到频域和时频图。然后,将来自不同域的2个样本输入双流Ghost Module(GM)神经网络故障诊断模型中提取频域和时频域特征,并结合通道注意力机制有效融合频域和时频域的重要特征,从而获得更丰富的故障诊断信息,实现对故障信号的准确分类。最后,利用美国凯斯西储大学、中国江南大学和加拿大渥太华大学的轴承故障数据集进行实验验证。结果表明,与现行主流模型相比,基于通道注意特征融合的轴承故障诊断方法在3个数据集上的分类故障诊断准确率分别达到99.78%、98.50%和97.65%,证明该方法具有良好的诊断效果。 展开更多
关键词 轴承故障诊断 特征融合 双流GM神经网络 通道注意力
下载PDF
基于PSA引导双分支神经网络特征融合的同步电机故障诊断
19
作者 李俊卿 苑浩 +3 位作者 黄涛 张承志 何玉灵 张波 《智慧电力》 北大核心 2024年第12期51-58,共8页
针对单一传感器信号在同步电机故障诊断中精度不高的问题,提出了1种基于金字塔切分注意力机制(PSA)的神经网络模型。首先,将三相电流信号和振动信号作为双分支输入到卷积神经网络进行特征提取,之后通过特征融合层将提取的信号特征进行... 针对单一传感器信号在同步电机故障诊断中精度不高的问题,提出了1种基于金字塔切分注意力机制(PSA)的神经网络模型。首先,将三相电流信号和振动信号作为双分支输入到卷积神经网络进行特征提取,之后通过特征融合层将提取的信号特征进行融合。其次,添加PSA注意力机制捕获不同尺度的空间信息来丰富特征空间。最后,通过输出层输出诊断结果。实验表明所提模型能够显著提升同步电机故障诊断的准确率。 展开更多
关键词 同步电机 PSA注意力机制 双分支特征融合 故障诊断 神经网络
下载PDF
基于双分支特征聚合网络的车辆检测算法
20
作者 吕蒙 毛盛辉 +2 位作者 柴亮 高鹏飞 时蕾 《计算机工程与应用》 CSCD 北大核心 2024年第22期240-250,共11页
车辆目标检测是自动驾驶的重要环节,现有的车辆目标检测算法在特征提取方面没有充分考虑卷积神经网络(convolutional neural network,CNN)和Transformer各自的优缺点,一定程度上限制了网络的整体性能。提出了一种由CNN和Transformer组... 车辆目标检测是自动驾驶的重要环节,现有的车辆目标检测算法在特征提取方面没有充分考虑卷积神经网络(convolutional neural network,CNN)和Transformer各自的优缺点,一定程度上限制了网络的整体性能。提出了一种由CNN和Transformer组成的双分支特征聚合网络。在编码阶段,基于CNN和Transformer各自的优势,构建了双分支主干网络来提取原始图像的特征信息;通过设计的多级别空间注意力模块和双支路特征聚合模块,使两个分支间的特征信息相互引导学习;通过构建的双分支注意力模块来进一步减少深层神经网络中特征信息的丢失。在实验部分通过消融实验和对比实验进一步验证了所提算法的有效性,其相比主流的目标检测算法,在mAP(mean average precision)指标上提升了约3.5%。 展开更多
关键词 车辆目标检测 卷积神经网络(CNN) TRANSFORMER 双分支 引导学习
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部