Direct conversion of methane into C2 hydrocarbons through alternating current electric field enhanced plasma was studied under room temperature, atmospheric pressure and low power conditions. The distribution of elect...Direct conversion of methane into C2 hydrocarbons through alternating current electric field enhanced plasma was studied under room temperature, atmospheric pressure and low power conditions. The distribution of electrical field intensity and distribution of energy were calculated with software that was developed by us according to the charge simulation method. The results indicated that the energy of tip of electrode was 0.36 J/mm^3 and it was higher than the methane dissociation energy (0.0553 J/mm^3). The methane located at this area can be activated easily. The higher-energy particles produced by dissociation collided with molecules around them and initiated consecutive reactions between free radicals and molecules. The method was proved to be valided and could be taken as a basis for the electrical field study concerned.展开更多
A new 2D analytical model for the surface electrical field distribution and optimization of bulk-silicon double RESURF devices is presented. Based on the solution to the 2D Poisson's equation, the model gives the inf...A new 2D analytical model for the surface electrical field distribution and optimization of bulk-silicon double RESURF devices is presented. Based on the solution to the 2D Poisson's equation, the model gives the influence on the surface electrical field of the drain bias and structure parameters such as the doping concentration,the depth and the position of the p-top region, the thickness and the doping concentration of the drift region, and the substrate doping concentration. The dependence of breakdown voltage on the length and doping concentration of the drift region is also calculated. Further more,an effective way to gain the optimum high-voltage is also proposed. All analytical results are verified by simulation results obtained by MEDICI and previous experimental data,showing the validity of the model presented here.展开更多
A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface po...A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface potential and field distributions are derived.From this analysis,the optimum design condition for the maximum breakdown voltage is obtained.The dependence of the maximum breakdown voltage on the drift region length is examined and the relationship between the critical doping concentration and the front- and back- interface oxide layer thickness is discussed.The numerical simulation performed by the advanced semiconductor simulation tool,DESSIS-ISE,has been shown to support the analytical results.展开更多
Our previous study revealed that early application of electrical field stimulation(EFS) with the anode at the lesion and the cathode distal to the lesion reduced injury potential, inhibited secondary injury and was ...Our previous study revealed that early application of electrical field stimulation(EFS) with the anode at the lesion and the cathode distal to the lesion reduced injury potential, inhibited secondary injury and was neuroprotective in the dorsal corticospinal tract after spinal cord injury(SCI). The objective of this study was to further evaluate the effect of EFS on protection of anterior horn motoneurons and their target musculature after SCI and its mechanism. Rats were randomized into three equal groups. The EFS group received EFS for 30 minutes immediately after injury at T_(10). SCI group rats were only subjected to SCI and sham group rats were only subjected to laminectomy. Luxol fast blue staining demonstrated that spinal cord tissue in the injury center was better protected; cross-sectional area and perimeter of injured tissue were significantly smaller in the EFS group than in the SCI group. Immunofluorescence and transmission electron microscopy showed that the number of spinal cord anterior horn motoneurons was greater and the number of abnormal neurons reduced in the EFS group compared with the SCI group. Wet weight and cross-sectional area of vastus lateralis muscles were smaller in the SCI group to in the sham group. However, EFS improved muscle atrophy and behavioral examination showed that EFS significantly increased the angle in the inclined plane test and Tarlov's motor grading score. The above results confirm that early EFS can effectively impede spinal cord anterior horn motoneuron loss, promote motor function recovery and reduce muscle atrophy in rats after SCI.展开更多
Electrorheological(ER) fluid is a type of smart fluid whose shear yield stress relies on the external electrical field strength. The transition of ER fluid microstructure driven by the electrical field is the reason...Electrorheological(ER) fluid is a type of smart fluid whose shear yield stress relies on the external electrical field strength. The transition of ER fluid microstructure driven by the electrical field is the reason why viscosity changes.Experimentally, the transparent electrodes are used to investigate the column size distribution where an external electric field is applied to a colloidal suspension, i.e., ER fluid is increased. The coarsening profile of ER suspensions is strongly related to electrical field strength, but it is insensitive to particle size. In addition, in a low field range the shear stress corresponding to the mean column diameter is studied and they are found to satisfy a power law. However, this dependence is invalid when the field strength surpasses a threshold value.展开更多
When separated water droplets condense on the surface of a composite insulator,the electrical field on the insulator surface is distorted.In turn,such distortions change the trajectories of pollution particles.In this...When separated water droplets condense on the surface of a composite insulator,the electrical field on the insulator surface is distorted.In turn,such distortions change the trajectories of pollution particles.In this study,the COMSOL software is used to simulate such a process for the FXBW4-10/100 composite insulator with or without water droplets condensation under a 10 kV DC voltage.The influence of the wind speed and particles concentration on the contamination characteristics of the considered 110 kV insulator is analyzed.The results show that:1)in the presence of water droplets on the insulator surface,the ratio of electrical field force and gravity acting on the particles is large;2)the contamination on the insulator surface increases with the wind speed;3)when the wind speed is small,the relationship between the contamination amount and the pollution concentration is essentially linear.展开更多
Both external and endogenous electrical fields widely exist in the environment of cortical neurons. The effects of a weak alternating current (AC) field on a neural network model with synaptic plasticity are studied...Both external and endogenous electrical fields widely exist in the environment of cortical neurons. The effects of a weak alternating current (AC) field on a neural network model with synaptic plasticity are studied. It is found that self-sustained rhythmic firing patterns, which are closely correlated with the cognitive functions, are significantly modified due to the self-organizing of the network in the weak AC field. The activities of the neural networks are affected by the synaptic connection strength, the exterrtal stimuli, and so on. In the presence of learning rules, the synaptic connections can be modulated by the external stimuli, which will further enhance the sensitivity of the network to the external signal. The properties of the external AC stimuli can serve as control parameters in modulating the evolution of the neural network.展开更多
BACKGROUND: Previous studies have shown that direct current electrical fields affect development and growth of human microvascular endothelial cells, but the role of electrical fields on promoting angiogenesis in tis...BACKGROUND: Previous studies have shown that direct current electrical fields affect development and growth of human microvascular endothelial cells, but the role of electrical fields on promoting angiogenesis in tissues following spinal cord injury remains poorly understood. OBJECTIVE: To determine the effects of electrical fields on angiogenesis and spinal cord repair following traumatic spinal cord injury in rats. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Chongqing Key Laboratory of Neurology, Affiliated Hospital of Chongqing Medical University, China from September 2007 to August 2008. MATERIALS: Hydrogen blood flow detector (Soochow University Medical Instrument, China), Power Lab System (AD Instruments, Colorado Springs, CO, USA) and mouse anti-vascular endothelial growth factor (VEGF) monoclonal antibody (Sigma-Aldrich, St. Louis, MO, USA) were used in this study. METHODS: A total of 60 healthy, adult, Sprague Dawley rats were equally and randomly assigned to sham-surgery, model, and electrical field groups. The Allen's weight-drop method was used to induce complete spinal cord injury in the model and electrical field groups. Rats in the electrical field group were implanted with silver needles and electrical fields (350 V/m) were applied following traumatic injury. MAIN OUTCOME MEASURES: Latency of somatosensory-evoked potential was detected and spinal cord blood flow was measured by hydrogen blood flow detector. Microvascular density was determined by histological analysis. VEGF expression in the spinal cord was observed by immunohistochemical staining. RESULTS: Recovery of spinal cord blood flow was significantly increased in the electrical field group (at 1, 2, 4, 8, and 24 days after injury) compared with the model group (P 〈 0.05 or P 〈 0.01). Latency of P1 waves in somatosensory-evoked potential of electrical field group (at 1,2, 4, 8, and 24 days after injury) was significantly shorter than the model group (P 〈 0.05 or P 〈 0.01). Microvascular density and VEGF expression were greater in the electrical field group compared with the model group at 24 days after injury (P 〈 0.01). CONCLUSION: Electrical fields (350 V/m) promoted angiogenesis within injured rat tissue following spinal cord injury and improved spinal cord function. Electrical fields could help to ameliorate spinal cord injury. The mechanisms of action could be related to increased VEGF expression.展开更多
In this paper,we investigate the photoionization microscopy of the Rydberg hydrogen atom in a gradient electric field for the first time.The observed oscillatory patterns in the photoionization microscopy are explaine...In this paper,we investigate the photoionization microscopy of the Rydberg hydrogen atom in a gradient electric field for the first time.The observed oscillatory patterns in the photoionization microscopy are explained within the framework of the semiclassical theory,which can be considered as a manifestation of interference between various electron trajectories arriving at a given point on the detector plane.In contrast with the photoionization microscopy in the uniform electric field,the trajectories of the ionized electron in the gradient electric field will become chaotic.An infinite set of different electron trajectories can arrive at a given point on the detector plane,which makes the interference pattern of the electron probability density distribution extremely complicated.Our calculation results suggest that the oscillatory pattern in the electron probability density distribution depends sensitively on the electric field gradient,the scaled energy and the position of the detector plane.Through our research,we predict that the interference pattern in the electron probability density distribution can be observed in an actual photoionization microscopy experiment once the external electric field strength and the position of the electron detector plane are reasonable.This study provides some references for the future experimental research on the photoionization microscopy of the Rydberg atom in the non-uniform external fields.展开更多
In our previous work, it was found that large electrospun from chlorinated polypropylene solution doped Bird's Nest patterned nanofibrous membranes can be simply with an ionic liquid, and a plausible formation mechan...In our previous work, it was found that large electrospun from chlorinated polypropylene solution doped Bird's Nest patterned nanofibrous membranes can be simply with an ionic liquid, and a plausible formation mechanism of Bird's Nest patterned architectures was proposed. Here, we use Ansoft Maxwell version 12 software (3D, electrostatic solver) to simulate the electrical field distribution of the electrospinning setup, and to clarify the rationality of proposed formation mechanism. Calculation results clearly show that the introduction of charged nanofibrous bundles would produce a similar patterned electrical field distribution, which definitely confirms the important role of surface residual charges. The proposed mechanism can be well extended to other polymer systems including polystyrene, poly(acrylonitrile-co-acrylic acid) and chitosan/poly(ethylene oxide).展开更多
In this work, we report the electrical field tuning of magneto-phonon resonance in monolayer graphene under magnetic fields up to 9 T. It is found that the carrier concentration can drastically affect the G (E2g) ph...In this work, we report the electrical field tuning of magneto-phonon resonance in monolayer graphene under magnetic fields up to 9 T. It is found that the carrier concentration can drastically affect the G (E2g) phonon response to a varying magnetic field through a pronounced magneto-phonon resonance (MPR). In charge neutral or slightly doped monolayer graphene, both the energy and the line width of the E2g phonon show clear variation with magnetic fields. This is attributed to magneto-phonon resonance between magnetoexcitations and the E2g phonons. In contrast, when the Fermi level of the monolayer graphene is far away from the Dirac point, the G band shows weak magnetic dependence and exhibits a symmetric line-shape. This suggests that the magneto-phonon coupling around 4 T has been switched off due to the Pauli blocking of the inter-Landau level excitations. Moreover, the G band asymmetry caused by Fano resonance between excitonic many-body states and the E2g phonons is observed. This work offers a way to study the magnetoexcitation phonon interaction of materials through magneto-Raman spectroscopy with an external electrical field.展开更多
An analytical model of an LDMOSFET with a shield ring is established according to the 2D Poisson equation. Surface electrical field distribution along the drift region is obtained from this model and the influence of ...An analytical model of an LDMOSFET with a shield ring is established according to the 2D Poisson equation. Surface electrical field distribution along the drift region is obtained from this model and the influence of shield length and oxide thickness on the electrical field distribution is studied. The robustness of this model is verified using ISE TCAD simulation tools. The breakdown voltage of a specific device is also calculated and the result is in good agreement with experimental data.展开更多
Changes of sodium ionic concentration of human erythrocytes applied to pulsed electrical field (PEF) were studied by using shift reagent and NMR spectroscopy. The results show that the concentration of intracellular N...Changes of sodium ionic concentration of human erythrocytes applied to pulsed electrical field (PEF) were studied by using shift reagent and NMR spectroscopy. The results show that the concentration of intracellular Na+ increases with the increasing intensity of PEF when the erythrocytes are applied to PEF with higher intensities. The relationship between intracellular Na concentrations and the intensities of PEF does not follow linear or exponen-tial behavior. As the intensities increase, the intracellular Na+ concentrations increase even faster by an exponential curve. However under effects of PEF at lower intensities, intracellular Na+ concentration decreases. Ouabain can in-hibit the decrease of intracellular Na concentration, and the inhibition increases with the increasing concentration of ouabain, suggesting that Na , K -ATPase on cell membrane can be activated by PEF at lower intensities. Direct measurement of activities of the enzyme by using Malachite green method has confirmed this observation. Cell perme-abilities to ions, activation of enzymes by electrical fields and transmission of physical signals like PEF across cell mem-branes are discussed.展开更多
Evidences show that electric fields(EFs)induced by the magnetic stimulation could modulates brain activities by regulating the excitability of GABAergic interneuron.However,it is still unclear how and why the EF-induc...Evidences show that electric fields(EFs)induced by the magnetic stimulation could modulates brain activities by regulating the excitability of GABAergic interneuron.However,it is still unclear how and why the EF-induced polarization affects the interneuron response as the interneuron receives NMDA synaptic inputs.Considering the key role of NMDA receptor-mediated supralinear dendritic integration in neuronal computations,we suppose that the applied EFs could functionally modulate interneurons’response via regulating dendritic integration.At first,we build a simplified multi-dendritic circuit model with inhomogeneous extracellular potentials,which characterizes the relationship among EF-induced spatial polarizations,dendritic integration,and somatic output.By performing model-based singular perturbation analysis,it is found that the equilibrium point of fast subsystem can be used to asymptotically depict the subthreshold input–output(sI/O)relationship of dendritic integration.It predicted that EF-induced strong depolarizations on the distal dendrites reduce the dendritic saturation output by reducing driving force of synaptic input,and it shifts the steep change of sI/O curve left by reducing stimulation threshold of triggering NMDA spike.Also,the EF modulation prefers the global dendritic integration with asymmetric scatter distribution of NMDA synapses.Furthermore,we identify the respective contribution of EF-regulated dendritic integration and EF-induced somatic polarization to an action potential generation and find that they have an antagonistic effect on AP generation due to the varied NMDA spike threshold under EF stimulation.展开更多
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterost...The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.展开更多
The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is o...The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging.展开更多
Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the ele...Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the electronic properties of the MSN/graphene(Gr)heterostructure using first-principles calculation.We find that four types of defective structures,N-in,N-out,Si and Mo vacancy defects of monolayer MSN and MSN/Gr heterostructure are stable in air.Moreover,vacancy defects can effectively modulate the charge transfer at the interface of the MSN/Gr heterostructure as well as the work function of the pristine monolayer MSN and MSN/Gr heterostructure.Finally,the application of an external electric field enables the dynamic switching between n-type and p-type Schottky contacts.Our work may offer the possibility of exceeding the capabilities of conventional Schottky diodes based on MSN/Gr heterostructures.展开更多
Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen ...Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen evolution reaction(HER).In this study,the intrinsically tunable internal bond electric field(IBEF)at the imine bonds of COFs was manipulated to cooperate with the internal molecular electric field(IMEF)induced by the donor-acceptor(D-A)structure for an efficient HER.The aligned orientation of IBEF and IMEF resulted in a remarkable H_(2) evolution rate of 57.3 mmol·g^(-1)·h^(-1)on TNCA,which was approximately 520 times higher than that of TCNA(0.11 mmol·g^(-1)·h^(-1))with the opposing electric field orientation.The superposition of the dual electric fields enables the IBEF to function as an accelerating field for electron transfer,kinetically facilitat-ing the migration of photogenerated electrons from D to A.Furthermore,theoretical calculations indicate that the inhomogeneous charge distribution at the C and N atoms in TNCA not only pro-vides a strong driving force for carrier transfer but also effectively hinders the return of free elec-trons to the valence band,improving the utilization of photoelectrons.This strategy of fabricating dual electric fields in COFs offers a novel approach to designing photocatalysts for clean energy synthesis.展开更多
The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of...The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of packed spheres under an alternating electric field is simulated,and the movement mechanism of catalyst particles is analysed.An"effective contact point"model is derived to predict the adsorption of filler contact points on catalyst particles under the alternating electric field,and the model is validated by simulations and experiments.The numerical calculation and experimental results indicate that the electrical properties of the filler spheres,the filler angleθ,and the frequency f of the alternating electric field affect the adsorption of catalyst particles.As the frequency of the electric field increases,the particle removal efficiency of the high-conductivity filler(silicon carbide)increases and then settles,and the separation efficiency of the low-conductivity filler(glass,zirconia)is not sensitive to the change in electric field frequency.展开更多
Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic ...Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate(NMDA)-dependent wave with a speed of about 0.1 m/s and the Ca-dependent wave with a speed of about 0.009 m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues.展开更多
文摘Direct conversion of methane into C2 hydrocarbons through alternating current electric field enhanced plasma was studied under room temperature, atmospheric pressure and low power conditions. The distribution of electrical field intensity and distribution of energy were calculated with software that was developed by us according to the charge simulation method. The results indicated that the energy of tip of electrode was 0.36 J/mm^3 and it was higher than the methane dissociation energy (0.0553 J/mm^3). The methane located at this area can be activated easily. The higher-energy particles produced by dissociation collided with molecules around them and initiated consecutive reactions between free radicals and molecules. The method was proved to be valided and could be taken as a basis for the electrical field study concerned.
文摘A new 2D analytical model for the surface electrical field distribution and optimization of bulk-silicon double RESURF devices is presented. Based on the solution to the 2D Poisson's equation, the model gives the influence on the surface electrical field of the drain bias and structure parameters such as the doping concentration,the depth and the position of the p-top region, the thickness and the doping concentration of the drift region, and the substrate doping concentration. The dependence of breakdown voltage on the length and doping concentration of the drift region is also calculated. Further more,an effective way to gain the optimum high-voltage is also proposed. All analytical results are verified by simulation results obtained by MEDICI and previous experimental data,showing the validity of the model presented here.
文摘A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface potential and field distributions are derived.From this analysis,the optimum design condition for the maximum breakdown voltage is obtained.The dependence of the maximum breakdown voltage on the drift region length is examined and the relationship between the critical doping concentration and the front- and back- interface oxide layer thickness is discussed.The numerical simulation performed by the advanced semiconductor simulation tool,DESSIS-ISE,has been shown to support the analytical results.
基金supported by the National Natural Science Foundation of China,No.31400717,51577183the Natural Science Foundation of Beijing of China,No.7164317the Youth Innovation Promotion Association CAS,No.2018172
文摘Our previous study revealed that early application of electrical field stimulation(EFS) with the anode at the lesion and the cathode distal to the lesion reduced injury potential, inhibited secondary injury and was neuroprotective in the dorsal corticospinal tract after spinal cord injury(SCI). The objective of this study was to further evaluate the effect of EFS on protection of anterior horn motoneurons and their target musculature after SCI and its mechanism. Rats were randomized into three equal groups. The EFS group received EFS for 30 minutes immediately after injury at T_(10). SCI group rats were only subjected to SCI and sham group rats were only subjected to laminectomy. Luxol fast blue staining demonstrated that spinal cord tissue in the injury center was better protected; cross-sectional area and perimeter of injured tissue were significantly smaller in the EFS group than in the SCI group. Immunofluorescence and transmission electron microscopy showed that the number of spinal cord anterior horn motoneurons was greater and the number of abnormal neurons reduced in the EFS group compared with the SCI group. Wet weight and cross-sectional area of vastus lateralis muscles were smaller in the SCI group to in the sham group. However, EFS improved muscle atrophy and behavioral examination showed that EFS significantly increased the angle in the inclined plane test and Tarlov's motor grading score. The above results confirm that early EFS can effectively impede spinal cord anterior horn motoneuron loss, promote motor function recovery and reduce muscle atrophy in rats after SCI.
基金supported by the National Natural Science Foundation of China(Grant Nos.11474345 and 11674043)
文摘Electrorheological(ER) fluid is a type of smart fluid whose shear yield stress relies on the external electrical field strength. The transition of ER fluid microstructure driven by the electrical field is the reason why viscosity changes.Experimentally, the transparent electrodes are used to investigate the column size distribution where an external electric field is applied to a colloidal suspension, i.e., ER fluid is increased. The coarsening profile of ER suspensions is strongly related to electrical field strength, but it is insensitive to particle size. In addition, in a low field range the shear stress corresponding to the mean column diameter is studied and they are found to satisfy a power law. However, this dependence is invalid when the field strength surpasses a threshold value.
基金Science and Technology Project of State Grid Corporation(GY7111053)[www.sgcc.com.cn]。
文摘When separated water droplets condense on the surface of a composite insulator,the electrical field on the insulator surface is distorted.In turn,such distortions change the trajectories of pollution particles.In this study,the COMSOL software is used to simulate such a process for the FXBW4-10/100 composite insulator with or without water droplets condensation under a 10 kV DC voltage.The influence of the wind speed and particles concentration on the contamination characteristics of the considered 110 kV insulator is analyzed.The results show that:1)in the presence of water droplets on the insulator surface,the ratio of electrical field force and gravity acting on the particles is large;2)the contamination on the insulator surface increases with the wind speed;3)when the wind speed is small,the relationship between the contamination amount and the pollution concentration is essentially linear.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61072012, 60901035, 50907044, and 61172009)
文摘Both external and endogenous electrical fields widely exist in the environment of cortical neurons. The effects of a weak alternating current (AC) field on a neural network model with synaptic plasticity are studied. It is found that self-sustained rhythmic firing patterns, which are closely correlated with the cognitive functions, are significantly modified due to the self-organizing of the network in the weak AC field. The activities of the neural networks are affected by the synaptic connection strength, the exterrtal stimuli, and so on. In the presence of learning rules, the synaptic connections can be modulated by the external stimuli, which will further enhance the sensitivity of the network to the external signal. The properties of the external AC stimuli can serve as control parameters in modulating the evolution of the neural network.
基金the National Natural Science Foundation of China,No.30300075the Sichuan Science Fund for Outstanding Youths,No.05ZQ026-020the China Postdoctoral Science Foundation Project,No.20080440996
文摘BACKGROUND: Previous studies have shown that direct current electrical fields affect development and growth of human microvascular endothelial cells, but the role of electrical fields on promoting angiogenesis in tissues following spinal cord injury remains poorly understood. OBJECTIVE: To determine the effects of electrical fields on angiogenesis and spinal cord repair following traumatic spinal cord injury in rats. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Chongqing Key Laboratory of Neurology, Affiliated Hospital of Chongqing Medical University, China from September 2007 to August 2008. MATERIALS: Hydrogen blood flow detector (Soochow University Medical Instrument, China), Power Lab System (AD Instruments, Colorado Springs, CO, USA) and mouse anti-vascular endothelial growth factor (VEGF) monoclonal antibody (Sigma-Aldrich, St. Louis, MO, USA) were used in this study. METHODS: A total of 60 healthy, adult, Sprague Dawley rats were equally and randomly assigned to sham-surgery, model, and electrical field groups. The Allen's weight-drop method was used to induce complete spinal cord injury in the model and electrical field groups. Rats in the electrical field group were implanted with silver needles and electrical fields (350 V/m) were applied following traumatic injury. MAIN OUTCOME MEASURES: Latency of somatosensory-evoked potential was detected and spinal cord blood flow was measured by hydrogen blood flow detector. Microvascular density was determined by histological analysis. VEGF expression in the spinal cord was observed by immunohistochemical staining. RESULTS: Recovery of spinal cord blood flow was significantly increased in the electrical field group (at 1, 2, 4, 8, and 24 days after injury) compared with the model group (P 〈 0.05 or P 〈 0.01). Latency of P1 waves in somatosensory-evoked potential of electrical field group (at 1,2, 4, 8, and 24 days after injury) was significantly shorter than the model group (P 〈 0.05 or P 〈 0.01). Microvascular density and VEGF expression were greater in the electrical field group compared with the model group at 24 days after injury (P 〈 0.01). CONCLUSION: Electrical fields (350 V/m) promoted angiogenesis within injured rat tissue following spinal cord injury and improved spinal cord function. Electrical fields could help to ameliorate spinal cord injury. The mechanisms of action could be related to increased VEGF expression.
基金Project supported by the National Natural Science Foundation of China(Grant No.11374133)the Project of Shandong Provincial Higher Educational Science and Technology Program,China(Grant No.J13LJ04)
文摘In this paper,we investigate the photoionization microscopy of the Rydberg hydrogen atom in a gradient electric field for the first time.The observed oscillatory patterns in the photoionization microscopy are explained within the framework of the semiclassical theory,which can be considered as a manifestation of interference between various electron trajectories arriving at a given point on the detector plane.In contrast with the photoionization microscopy in the uniform electric field,the trajectories of the ionized electron in the gradient electric field will become chaotic.An infinite set of different electron trajectories can arrive at a given point on the detector plane,which makes the interference pattern of the electron probability density distribution extremely complicated.Our calculation results suggest that the oscillatory pattern in the electron probability density distribution depends sensitively on the electric field gradient,the scaled energy and the position of the detector plane.Through our research,we predict that the interference pattern in the electron probability density distribution can be observed in an actual photoionization microscopy experiment once the external electric field strength and the position of the electron detector plane are reasonable.This study provides some references for the future experimental research on the photoionization microscopy of the Rydberg atom in the non-uniform external fields.
基金financially supported by the National Natural Science Foundation of China (No.50933006)Zhejiang Provincial Innovative Research Team (No.2009R50004)
文摘In our previous work, it was found that large electrospun from chlorinated polypropylene solution doped Bird's Nest patterned nanofibrous membranes can be simply with an ionic liquid, and a plausible formation mechanism of Bird's Nest patterned architectures was proposed. Here, we use Ansoft Maxwell version 12 software (3D, electrostatic solver) to simulate the electrical field distribution of the electrospinning setup, and to clarify the rationality of proposed formation mechanism. Calculation results clearly show that the introduction of charged nanofibrous bundles would produce a similar patterned electrical field distribution, which definitely confirms the important role of surface residual charges. The proposed mechanism can be well extended to other polymer systems including polystyrene, poly(acrylonitrile-co-acrylic acid) and chitosan/poly(ethylene oxide).
文摘In this work, we report the electrical field tuning of magneto-phonon resonance in monolayer graphene under magnetic fields up to 9 T. It is found that the carrier concentration can drastically affect the G (E2g) phonon response to a varying magnetic field through a pronounced magneto-phonon resonance (MPR). In charge neutral or slightly doped monolayer graphene, both the energy and the line width of the E2g phonon show clear variation with magnetic fields. This is attributed to magneto-phonon resonance between magnetoexcitations and the E2g phonons. In contrast, when the Fermi level of the monolayer graphene is far away from the Dirac point, the G band shows weak magnetic dependence and exhibits a symmetric line-shape. This suggests that the magneto-phonon coupling around 4 T has been switched off due to the Pauli blocking of the inter-Landau level excitations. Moreover, the G band asymmetry caused by Fano resonance between excitonic many-body states and the E2g phonons is observed. This work offers a way to study the magnetoexcitation phonon interaction of materials through magneto-Raman spectroscopy with an external electrical field.
文摘An analytical model of an LDMOSFET with a shield ring is established according to the 2D Poisson equation. Surface electrical field distribution along the drift region is obtained from this model and the influence of shield length and oxide thickness on the electrical field distribution is studied. The robustness of this model is verified using ISE TCAD simulation tools. The breakdown voltage of a specific device is also calculated and the result is in good agreement with experimental data.
基金Project supported by the National Natural Science Foundation of China and the Analytical and Test Center, Beijing.
文摘Changes of sodium ionic concentration of human erythrocytes applied to pulsed electrical field (PEF) were studied by using shift reagent and NMR spectroscopy. The results show that the concentration of intracellular Na+ increases with the increasing intensity of PEF when the erythrocytes are applied to PEF with higher intensities. The relationship between intracellular Na concentrations and the intensities of PEF does not follow linear or exponen-tial behavior. As the intensities increase, the intracellular Na+ concentrations increase even faster by an exponential curve. However under effects of PEF at lower intensities, intracellular Na+ concentration decreases. Ouabain can in-hibit the decrease of intracellular Na concentration, and the inhibition increases with the increasing concentration of ouabain, suggesting that Na , K -ATPase on cell membrane can be activated by PEF at lower intensities. Direct measurement of activities of the enzyme by using Malachite green method has confirmed this observation. Cell perme-abilities to ions, activation of enzymes by electrical fields and transmission of physical signals like PEF across cell mem-branes are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.62171312)the Tianjin Municipal Education Commission Scientific Research Project,China(Grant No.2020KJ114).
文摘Evidences show that electric fields(EFs)induced by the magnetic stimulation could modulates brain activities by regulating the excitability of GABAergic interneuron.However,it is still unclear how and why the EF-induced polarization affects the interneuron response as the interneuron receives NMDA synaptic inputs.Considering the key role of NMDA receptor-mediated supralinear dendritic integration in neuronal computations,we suppose that the applied EFs could functionally modulate interneurons’response via regulating dendritic integration.At first,we build a simplified multi-dendritic circuit model with inhomogeneous extracellular potentials,which characterizes the relationship among EF-induced spatial polarizations,dendritic integration,and somatic output.By performing model-based singular perturbation analysis,it is found that the equilibrium point of fast subsystem can be used to asymptotically depict the subthreshold input–output(sI/O)relationship of dendritic integration.It predicted that EF-induced strong depolarizations on the distal dendrites reduce the dendritic saturation output by reducing driving force of synaptic input,and it shifts the steep change of sI/O curve left by reducing stimulation threshold of triggering NMDA spike.Also,the EF modulation prefers the global dendritic integration with asymmetric scatter distribution of NMDA synapses.Furthermore,we identify the respective contribution of EF-regulated dendritic integration and EF-induced somatic polarization to an action potential generation and find that they have an antagonistic effect on AP generation due to the varied NMDA spike threshold under EF stimulation.
基金supported by the National Natural Science Foundation of China(No.22269010,52231007,12327804,T2321003,22088101)the Jiangxi Provincial Natural Science Foundation(No.20224BAB214021)+1 种基金the Major Research Program of Jingdezhen Ceramic Industry(No.2023ZDGG002)the Ministry of Science and Technology of China(973 Project No.2021YFA1200600).
文摘The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB921900 and 2014CB920900the National Natural Science Foundation of China under Grant No 11374021)(S.Yan,Z.Xie,J.-H,Chen)+1 种基金support from the Elemental Strategy Initiative conducted by the MEXT,Japana Grant-in-Aid for Scientific Research on Innovative Areas"Science of Atomic Layers"from JSPS
文摘The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging.
基金Project supported by the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University(Grant No.2020-520000-83-01-324061)the National Natural Science Foundation of China(Grant No.61264004)the High-level Creative Talent Training Program in Guizhou Province of China(Grant No.[2015]4015).
文摘Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the electronic properties of the MSN/graphene(Gr)heterostructure using first-principles calculation.We find that four types of defective structures,N-in,N-out,Si and Mo vacancy defects of monolayer MSN and MSN/Gr heterostructure are stable in air.Moreover,vacancy defects can effectively modulate the charge transfer at the interface of the MSN/Gr heterostructure as well as the work function of the pristine monolayer MSN and MSN/Gr heterostructure.Finally,the application of an external electric field enables the dynamic switching between n-type and p-type Schottky contacts.Our work may offer the possibility of exceeding the capabilities of conventional Schottky diodes based on MSN/Gr heterostructures.
文摘Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen evolution reaction(HER).In this study,the intrinsically tunable internal bond electric field(IBEF)at the imine bonds of COFs was manipulated to cooperate with the internal molecular electric field(IMEF)induced by the donor-acceptor(D-A)structure for an efficient HER.The aligned orientation of IBEF and IMEF resulted in a remarkable H_(2) evolution rate of 57.3 mmol·g^(-1)·h^(-1)on TNCA,which was approximately 520 times higher than that of TCNA(0.11 mmol·g^(-1)·h^(-1))with the opposing electric field orientation.The superposition of the dual electric fields enables the IBEF to function as an accelerating field for electron transfer,kinetically facilitat-ing the migration of photogenerated electrons from D to A.Furthermore,theoretical calculations indicate that the inhomogeneous charge distribution at the C and N atoms in TNCA not only pro-vides a strong driving force for carrier transfer but also effectively hinders the return of free elec-trons to the valence band,improving the utilization of photoelectrons.This strategy of fabricating dual electric fields in COFs offers a novel approach to designing photocatalysts for clean energy synthesis.
基金supported by the Natural Scienceof Shandong Province,China(ZR2019MEE033)。
文摘The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of packed spheres under an alternating electric field is simulated,and the movement mechanism of catalyst particles is analysed.An"effective contact point"model is derived to predict the adsorption of filler contact points on catalyst particles under the alternating electric field,and the model is validated by simulations and experiments.The numerical calculation and experimental results indicate that the electrical properties of the filler spheres,the filler angleθ,and the frequency f of the alternating electric field affect the adsorption of catalyst particles.As the frequency of the electric field increases,the particle removal efficiency of the high-conductivity filler(silicon carbide)increases and then settles,and the separation efficiency of the low-conductivity filler(glass,zirconia)is not sensitive to the change in electric field frequency.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 62171312 and 61771330)the Tianjin Municipal Education Commission Scientific Research Project (Grant No. 2020KJ114)。
文摘Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate(NMDA)-dependent wave with a speed of about 0.1 m/s and the Ca-dependent wave with a speed of about 0.009 m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues.