期刊文献+
共找到91,842篇文章
< 1 2 250 >
每页显示 20 50 100
Fabrication of Free Standing Nanocellulose Film via Spray Coating and its Biomedical Application: A Review
1
作者 Kirubanandan Shanmugam 《Journal of Clinical and Nursing Research》 2024年第4期411-447,共37页
Spraying nanocellulose onto films provides a quick and scalable way to create free-standing films with exceptional consistency and customizable thickness. This method increases the application of nanocellulose films i... Spraying nanocellulose onto films provides a quick and scalable way to create free-standing films with exceptional consistency and customizable thickness. This method increases the application of nanocellulose films in various industries and satisfies the requirements of large-scale production. In the field of biomedicine, spray-coated free-standing nanocellulose films hold great promise for applications such as drug delivery, tissue engineering, wound healing, device coatings, and biosensing. They are excellent nanomaterials for a variety of biomedical applications due to their special qualities, including biocompatibility, high mechanical strength, porous structure, large surface area, and adaptability. This paper reviewed the detailed exposure of the spray coating process of nanocellulose suspension onto free- standing films and its biomedical applications. 展开更多
关键词 SPRAYING Nanocellulose film Free Standing film Thickness Basis weight
下载PDF
Flexible, Transparent and Conductive Metal Mesh Films with Ultra‑High FoM for Stretchable Heating and Electromagnetic Interference Shielding 被引量:1
2
作者 Zibo Chen Shaodian Yang +9 位作者 Junhua Huang Yifan Gu Weibo Huang Shaoyong Liu Zhiqiang Lin Zhiping Zeng Yougen Hu Zimin Chen Boru Yang Xuchun Gui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期201-213,共13页
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan... Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications. 展开更多
关键词 Metal mesh Transparent conductive film Stretchable heater Electromagnetic interference shielding
下载PDF
Significantly Improved High-Temperature Energy Storage Performance of BOPP Films by Coating Nanoscale Inorganic Layer 被引量:1
3
作者 Tiandong Zhang Hainan Yu +5 位作者 Young Hoon Jung Changhai Zhang Yu Feng Qingguo Chen Keon Jae Lee Qingguo Chi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期30-38,共9页
Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high tempe... Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high temperature.In this study,growing an inorganic nanoscale coating layer onto the BOPP film's surface is proposed to suppress electrical conduction loss at high temperature,as well as increase its upper operating temperature.Four kinds of inorganic coating layers that have different energy band structure and dielectric property are grown onto the both surface of BOPP films,respectively.The effect of inorganic coating layer on the high-temperature energy storage performance has been systematically investigated.The favorable coating layer materials and appropriate thickness enable the BOPP films to have a significant improvement in high-temperature energy storage performance.Specifically,when the aluminum nitride(AIN)acts as a coating layer,the AIN-BOPP-AIN sandwich-structured films possess a discharged energy density of 1.5 J cm^(-3)with an efficiency of 90%at 125℃,accompanying an outstandingly cyclic property.Both the discharged energy density and operation temperature are significantly enhanced,indicating that this efficient and facile method provides an important reference to improve the high-temperature energy storage performance of polymer-based dielectric films. 展开更多
关键词 coating layer energy storage interfacial barrier polymer films
下载PDF
Numerical and experimental study on the falling film flow characteristics with the effect of co-current gas flow in hydrogen liquefaction process 被引量:1
4
作者 Chong-Zheng Sun Yu-Xing Li +2 位作者 Hui Han Xiao-Yi Geng Xiao Lu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1369-1384,共16页
Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat ... Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow. 展开更多
关键词 Hydrogen liquefaction Spiral wound heat exchanger Flow pattern transition Falling film flow
下载PDF
Highly Flexible Graphene-Film-Based Rectenna for Wireless Energy Harvesting 被引量:1
5
作者 Jingwei Zhang Yuchao Wang +2 位作者 Rongguo Song Zongkui Kou Daping He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期320-325,共6页
Herein,we report the design,fabrication,and performance of two wireless energy harvesting devices based on highly flexible graphene macroscopic films(FGMFs).We first demonstrate that benefiting from the high conductiv... Herein,we report the design,fabrication,and performance of two wireless energy harvesting devices based on highly flexible graphene macroscopic films(FGMFs).We first demonstrate that benefiting from the high conductivity of up to 1×10^(6)S m^(-1)and good resistive stability of FGMFs even under extensive bending,the FGMFs-based rectifying circuit(GRC)exhibits good flexibility and RF-to-DC efficiency of 53%at 2.1 GHz.Moreover,we further expand the application of FGMFs to a flexible wideband monopole rectenna and a 2.45 GHz wearable rectenna for harvesting wireless energy.The wideband rectenna at various bending conditions produces a maximum conversion efficiency of 52%,46%,and 44%at the 5th Generation(5G)2.1 GHz,Industrial Long-Term Evolution(LTE)2.3 GHz,and Scientific Medical(ISM)2.45 GHz,respectively.A 2.45 GHz GRC is optimized and integrated with an AMC-backed wearable antenna.The proposed 2.45 GHz wearable rectenna shows a maximum conversion efficiency of 55.7%.All the results indicate that the highly flexible graphene-film-based rectennas have great potential as a wireless power supplier for smart Internet of Things(loT)applications. 展开更多
关键词 flexible rectennas highly flexible graphene-based films wireless energy harvesting
下载PDF
Three-dimensionally oriented organization of hexagonal MIL-96 microplates toward superior film microstructure
6
作者 Sixing Chen Xinmiao Jin +3 位作者 Yuyang Wu Taotao Ji Fei Wang Yi Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期69-73,共5页
Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane a... Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane and out-of-plane orientations remains a grand challenge.In this study,we reported the preparation of three-dimensionally oriented MIL-96 layers through combining morphology control of MIL-96 seeds with addition of polyvinylpyrrolidone surfactants and arachidonic acids.The three-dimensionally oriented MIL-96 film was readily obtained through in-plane epitaxial growth.It is anticipated that the aforementioned protocol can be effective for obtaining diverse MOF films with a three-dimensionally oriented organization. 展开更多
关键词 Metaleorganic framework film Orientation Epitaxial growth Morphological control
下载PDF
Multifunctional phase change film with high recyclability, adjustable thermal responsiveness, and intrinsic self-healing ability for thermal energy storage
7
作者 Bo Yang Xuelai Zhang +2 位作者 Jun Ji Weisan Hua Miaomiao Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期216-227,I0005,共13页
Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,whic... Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,which does not meet the growing demand for multi-functional materials.In this paper,the flexible material and hydrogen-bonding function are innovatively combined to design and prepare a novel multi-functional flexible phase change film(PPL).The 0.2PPL-2 film exhibits solid-solid phase change behavior with energy storage density of 131.8 J/g at the transition temperature of42.1℃,thermal cycling stability(500 cycles),wide-temperature range flexibility(0-60℃) and selfhealing property.Notably,the PPL film can be recycled up to 98.5% by intrinsic remodeling.Moreover,the PPL film can be tailored to the desired colors and configurations and can be cleverly assembled on several thermal management systems at ambient temperature through its flexibility combined with shape-memory properties.More interestingly,the transmittance of PPL will be altered when the ambient temperature changes(60℃),conveying a clear thermal signal.Finally,the thermal energy storage performance of the PPL film is successfully tested by human thermotherapy and electronic device temperature control experiments.The proposed functional integration strategy provides innovative ideas to design PCMs for multifunctionality,and makes significant contributions in green chemistry,highefficiency thermal management,and energy sustainability. 展开更多
关键词 Phase change film Multifunctional material Energy storage SELF-HEALING RECYCLABILITY
下载PDF
Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film
8
作者 范凤国 段林彤 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期589-595,共7页
The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biom... The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biomedical devices.This article presents the elucidation of the properties of nanoparticle films.Here,a flexible film is fabricated based on polyethylene terephthalate(PET)and magnetic iron oxide at the nanoscale using layer-by-layer technology.The 2D thin flexible film material can be bent at different angles from 0°to 360°.With an increase in elastic deformation angles,the magnetocaloric effect of the film gradually increases in the alternating magnetic field.The test results from a vibrating sample magnetometer and a low-frequency impedance analyzer demonstrate that the film has a good magnetic response and anisotropy.The magnetocaloric effect and magnetic induction effect are controlled by deformation,providing a new idea for the application of elastic films.It combines the flexibility of the nanoparticle PET substrate and,in the future,it may be used for skin adhesion for administration and magnetic stimulation control. 展开更多
关键词 nanoparticle film deformation magnetic properties flexible substrates
下载PDF
Enhanced ferroelectric and improved leakage of BFO-based thin films through increasing entropy strategy
9
作者 Dongfei Lu Guoqiang Xi +5 位作者 Hangren Li Jie Tu Xiuqiao Liu Xudong Liu Jianjun Tian Linxing Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2263-2273,共11页
BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric p... BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric properties.Herein,the sol-gel method was used to deposit a series of BFO-based thin films on fluorine-doped tin oxide substrates,and the effects of the substitution of the elements Co,Cu,Mn(B-site)and Sm,Eu,La(A-site)on the crystal structure,ferroelectricity,and leakage current of the BFO-based thin films were invest-igated.Results confirmed that lattice distortion by X-ray diffraction can be attributed to the substitution of individual elements in the BFO-based films.Sm and Eu substitutions contribute to the lattice distortion in a pseudo-cubic structure,while La is biased toward pseudo-tet-ragonal.Piezoelectric force microscopy confirmed that reversible switching of ferroelectric domains by nearly 180°can be realized through the prepared films.The ferroelectric hysteresis loops showed that the order for the polarization contribution is as follows:Cu>Co>Mn(B-site),Sm>La>Eu(A-site).The current density voltage curves indicated that the order for leakage contribution is as follows:Mn<Cu<Co(B-site),La<Eu<Sm(A-site).Scanning electron microscopy showed that the introduction of Cu elements facilitates the formation of dense grains,and the grain size distribution statistics proved that La element promotes the reduction of grain size,leading to the increase of grain boundaries and the reduction of leakage.Finally,a Bi_(0.985)Sm_(0.045)La_(0.03)Fe_(0.96)Co_(0.02)Cu_(0.02)O_(3)(SmLa-CoCu)thin film with a qualitative leap in the remnant polarization from 25.5(Bi_(0.985)Sm_(0.075)FeO_(3))to 98.8µC/cm^(2)(SmLa-CoCu)was prepared through the syner-gistic action of Sm,La,Co,and Cu elements.The leakage current is also drastically reduced from 160 to 8.4 mA/cm^(2)at a field strength of 150 kV/cm.Thus,based on the increasing entropy strategy of chemical engineering,this study focuses on enhancing ferroelectricity and decreasing leakage current,providing a promising path for the advancement of ferroelectric devices. 展开更多
关键词 increasing entropy SYNERGISTIC ferroelectric film remnant polarization leakage current
下载PDF
Preparation of a zeolite-palladium composite membrane for hydrogen separation:Influence of zeolite film on membrane stability
10
作者 Hongmei Wu Xinyu Liu Yu Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期44-52,共9页
With the development of hydrogen energy,palladium-based membranes have been widely used in hydrogen separation and purification.However,the poor chemical stability of palladium composite membranes limits their commerc... With the development of hydrogen energy,palladium-based membranes have been widely used in hydrogen separation and purification.However,the poor chemical stability of palladium composite membranes limits their commercial applications.In this study,a zeolite-palladium composite membrane with a sandwich-like structure was obtained by using a TS-1 zeolite film grown on the surface of palladium membrane.The membrane microstructure was characterized by SEM and EDX.The effects of the TS-1 film on the hydrogen permeability and stability of palladium composite membrane were investigated in details.Benefited from the protection of the TS-1 zeolite film,the stability of palladium composite membrane was enhanced.The results indicate that the TS-1-Pd composite membrane was stable after eight cycles of the temperature exchange cycles between 773 K and 623 K.Especially,the loss of hydrogen permeance for TS-1-Pd composite membrane was much smaller than that of the pure palladium membrane when the membrane was tested in the presence of C3H6atmosphere.It indicated that the TS-1-Pd composite membrane had better chemical stability in comparison with pure palladium membrane,owing to its sandwich-like structure.This work provides an efficient way for the deposition of zeolite film on palladium membrane to enhance the membrane stability. 展开更多
关键词 Palladium membrane Zeolite film Hydrogen separation STABILITY
下载PDF
Centimeter-Scale Above-Room-Temperature Ferromagnetic Fe_(3)GaTe_(2)Thin Films by Molecular Beam Epitaxy
11
作者 Taikun Wang Yongkang Xu +12 位作者 Yu Liu Xingze Dai Pengfei Yan Jin Wang Shuanghai Wang Yafeng Deng Kun He Caitao Li Ziang Wang Wenqin Zou Rongji Wen Yufeng Hao Liang He 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第10期119-122,共4页
Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-size... Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-sized high-quality Fe_(3)GaTe_(2)thin films need to be prepared.Here,the centimeter-scale thin film samples with high crystal quality and above-room-temperature ferromagnetism with strong perpendicular magnetic anisotropy were prepared by molecular beam epitaxy technology.Furthermore,the Tc of the samples raises as the film thickness increases,and reaches 367K when the film thickness is 60 nm.This study provides material foundations for the new generation of van der Waals spintronic devices and paves the way for the commercial application of Fe_(3)GaTe_(2). 展开更多
关键词 EPITAXY film magnetic
下载PDF
Ultrathin Limit on the Anisotropic Superconductivity of Single-Layered Cuprate Films
12
作者 冉峰 陈潘 +5 位作者 李丁艺 熊沛雨 樊子鑫 凌浩铭 梁艳 张坚地 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第2期94-101,共8页
Exploring dimensionality effects on cuprates is important for understanding the nature of high-temperature superconductivity.By atomically layer-by-layer growth with oxide molecular beam epitaxy,we demonstrate that La... Exploring dimensionality effects on cuprates is important for understanding the nature of high-temperature superconductivity.By atomically layer-by-layer growth with oxide molecular beam epitaxy,we demonstrate that La_(2−x)Sr_(x)CuO_(4)(x=0.15)thin films remain superconducting down to 2 unit cells of thickness but quickly reach the maximum superconducting transition temperature at and above 4 unit cells.By fitting the critical magnetic field(μ0H_(c2)),we show that the anisotropy of the film’s superconductivity increases with decreasing film thickness,indicating that the superconductivity of the film gradually evolves from weak three-to two-dimensional character.These results are helpful to gain more insight into the nature of high-temperature superconductivity with dimensionality. 展开更多
关键词 dimensionality film evolve
下载PDF
Effect of drying methods on perovskite films and solar cells
13
作者 Ling Liu Chuantian Zuo +3 位作者 Guang-Xing Liang Hua Dong Jingjing Chang Liming Ding 《Journal of Semiconductors》 EI CAS CSCD 2024年第1期1-5,共5页
The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that af... The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that affect the performance of perovskite films.Various deposition methods have been developed to make perovskite films,including spin-coating,slotdie coating. 展开更多
关键词 PEROVSKITE filmS CRITICAL
下载PDF
Effects of gallium surfactant on AlN thin films by microwave plasma chemical vapor deposition
14
作者 Lu Wang Xulei Qin +8 位作者 Li Zhang Kun Xu Feng Yang Shaoqian Lu Yifei Li Bosen Liu Guohao Yu Zhongming Zeng Baoshun Zhang 《Journal of Semiconductors》 EI CAS CSCD 2024年第9期53-60,共8页
In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly impro... In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly improved due to the catalytic effect of trimethyl-gallium (TMGa), but AlN crystal structure and composition are not affected. When the proportion of TMGa in gas phase was low, crystal quality of AlN can be improved and three-dimensional growth mode of AlN was enhanced with the increase of Ga source. When the proportion of TMGa in gas phase was high, two-dimensional growth mode of AlN was presented, with the increase of Ga source results in the deterioration of AlN crystal quality. Finally, employing a two-step growth approach, involving the initial growth of Ga-free AlN nucleation layer followed by Ga-assisted AlN growth, high quality of AlN film with flat surface was obtained and the full width at half maximum (FWHM) values of 415 nm AlN (002) and (102) planes were 465 and 597 arcsec. 展开更多
关键词 AlN thin film MPCVD gallium surfactant nucleation layer LASER
下载PDF
Fabrication and anti-corrosion performance of superhydrophobic silane film on sintered NdFeB
15
作者 Wen-tao JU Li JIANG +6 位作者 Yan-xia LIANG Shu-ting XU Ke WANG Yu-meng YANG Ben-feng ZHU Guo-ying WEI Zhao ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2928-2942,共15页
An eco-friendly superhydrophobic protective film(DTMS/TEOS silane film)was fabricated on sintered NdFeB substrate through the utilization of electrochemically assisted deposition technology.The structure,properties,an... An eco-friendly superhydrophobic protective film(DTMS/TEOS silane film)was fabricated on sintered NdFeB substrate through the utilization of electrochemically assisted deposition technology.The structure,properties,and film-forming mechanism of dodecyltrime-thoxysilane(DTMS)/tetraethoxysilane(TEOS)silane films were comprehensively analyzed using Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS).Based on the test results,it can be determined that this film has a superhydrophobic property with a hydrophobicity angle of 152°.This special property can be attributed to the long alkyl chains in the DTMS molecule,the rough morphology,and the low surface energy of the DTMS/TEOS silane film.The surface of sintered NdFeB is coated with a layered three-dimensional network silane film that forms through the condensation of silanol substances.This film provides excellent corrosion resistance to the sintered NdFeB substrate,reducing its corrosion current density to 2.02×10~(-6)A/cm~2.Moreover,the impact of film on the magnetic characteristics of sintered NdFeB was assessed and found to be minimal. 展开更多
关键词 NdFeB magnet silane film corrosion resistance SUPERHYDROPHOBICITY electrochemically assisted deposition
下载PDF
Structural and magnetic properties of micropolycrystalline cobalt thin films fabricated by direct current magnetron sputtering
16
作者 Kerui Song Zhou Li +2 位作者 Mei Fang Zhu Xiao Qian Lei 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期384-394,共11页
Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As... Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As the sputtering power increases from 15 to 60 W,the Co thin films transition from an amorphous to a polycrystalline state,accompanied by an increase in the intercrystal pore width.Simultaneously,the resistivity decreases from 276 to 99μΩ·cm,coercivity increases from 162 to 293 Oe,and in-plane magnetic aniso-tropy disappears.As the sputtering pressure decreases from 1.6 to 0.2 Pa,grain size significantly increases,resistivity significantly de-creases,and the coercivity significantly increases(from 67 to 280 Oe),which can be attributed to the increase in defect width.Corres-pondingly,a quantitative model for the coercivity of Co thin films was formulated.The polycrystalline films sputtered under pressures of 0.2 and 0.4 Pa exhibit significant in-plane magnetic anisotropy,which is primarily attributable to increased microstress. 展开更多
关键词 cobalt thin film magnetron sputtering microstructure electromagnetic properties
下载PDF
Simulation of magnetization process and Faraday effect of magnetic bilayer films
17
作者 Sheng Gao An Du +2 位作者 Lei Zhang Tian-Guang Li Da-Cheng Ma 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期590-597,共8页
We described ferromagnetic film and bilayer films composed of two ferromagnetic layers coupled through antiferromagnetic interfacial interaction by classical Heisenberg model and simulated their magnetization state,ma... We described ferromagnetic film and bilayer films composed of two ferromagnetic layers coupled through antiferromagnetic interfacial interaction by classical Heisenberg model and simulated their magnetization state,magnetic permeability,and Faraday effect at zero and finite temperature by using the Landau–Lifshitz–Gilbert(LLG)equation.The results indicate that in a microwave field with positive circular polarization,the ferromagnetic film has one resonance peak while the bilayer film has two resonance peaks.However,the resonance peak disappears in ferromagnetic film,and only one resonance peak emerges in bilayer film in the negative circularly polarized microwave field.When the microwave field’s frequency exceeds the film’s resonance frequency,the Faraday rotation angle of the ferromagnetic film is the greatest,and it decreases when the thickness of the two halves of the bilayer is reduced.When the microwave field’s frequency remains constant,the Faraday rotation angle fluctuates with temperature in the same manner as spontaneous magnetization does.When a DC magnetic field is applied in the direction of the anisotropic axis of the film,the Faraday rotation angle varies with the DC magnetic field and shows a similar shape of the hysteresis loop. 展开更多
关键词 MAGNETIC BILAYER filmS MAGNETIC permeability hysteresis loop FARADAY effect Landau–Lifshitz– Gilbert (LLG) equation
下载PDF
Effects of Mg-doping temperature on the structural and electrical properties of nonpolar a-plane p-type GaN films
18
作者 陈凯 赵见国 +9 位作者 丁宇 胡文晓 刘斌 陶涛 庄喆 严羽 谢自力 常建华 张荣 郑有炓 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期631-636,共6页
Nonpolar(11–20) a-plane p-type GaN films were successfully grown on r-plane sapphire substrate with the metal–organic chemical vapor deposition(MOCVD) system. The effects of Mg-doping temperature on the structural a... Nonpolar(11–20) a-plane p-type GaN films were successfully grown on r-plane sapphire substrate with the metal–organic chemical vapor deposition(MOCVD) system. The effects of Mg-doping temperature on the structural and electrical properties of nonpolar p-type GaN films were investigated in detail. It is found that all the surface morphology, crystalline quality, strains, and electrical properties of nonpolar a-plane p-type GaN films are interconnected, and are closely related to the Mg-doping temperature. This means that a proper performance of nonpolar p-type GaN can be expected by optimizing the Mg-doping temperature. In fact, a hole concentration of 1.3×10^(18)cm^(-3), a high Mg activation efficiency of 6.5%,an activation energy of 114 me V for Mg acceptor, and a low anisotropy of 8.3% in crystalline quality were achieved with a growth temperature of 990℃. This approach to optimizing the Mg-doping temperature of the nonpolar a-plane p-type GaN film provides an effective way to fabricate high-efficiency optoelectronic devices in the future. 展开更多
关键词 nonpolar a-plane GaN film Mg-doping temperature strains activation efficiency
下载PDF
Regulating solid electrolyte interphase film on fluorinedoped hard carbon anode for sodium-ion battery
19
作者 Cuiyun Yang Wentao Zhong +4 位作者 Yuqiao Liu Qiang Deng Qian Cheng Xiaozhao Liu Chenghao Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期200-215,共16页
For the performance optimization strategies of hard carbon,heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics.However... For the performance optimization strategies of hard carbon,heteroatom doping is an effective way to enhance the intrinsic transfer properties of sodium ions and electrons for accelerating the reaction kinetics.However,the previous work focuses mainly on the intrinsic physicochemical property changes of the material,but little attention has been paid to the resulting interfacial regulation of the electrode surface,namely the formation of solid electrolyte interphase(SEI)film.In this work,element F,which has the highest electronegativity,was chosen as the doping source to,more effectively,tune the electronic structure of the hard carbon.The effect of F-doping on the physicochemical properties of hard carbon was not only systematically analyzed but also investigated with spectroscopy,optics,and in situ characterization techniques to further verify that appropriate F-doping plays a positive role in constructing a homogenous and inorganic-rich SEI film.The experimentally demonstrated link between the electronic structure of the electrode and the SEI film properties can reframe the doping optimization strategy as well as provide a new idea for the design of electrode materials with low reduction kinetics to the electrolyte.As a result,the optimized sample with the appropriate F-doping content exhibits the best electrochemical performance with high capacity(434.53 mA h g^(-1)at 20mA g^(-1))and excellent rate capability(141 mAh g^(-1)at 400 mA g^(-1)). 展开更多
关键词 F-doping hard carbon reduction kinetics sodium-ion batteries solid electrolyte interphase film
下载PDF
Design and fabrication of compound varifocal lens driven by polydimethylsiloxane film elastic deformation
20
作者 缪文浩 韩泽峰 +3 位作者 赵瑞 梁忠诚 寇松峰 徐荣青 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期342-346,共5页
A compound varifocal lens based on electromagnetic drive technology is designed and fabricated, where the polydimethylsiloxane(PDMS) film acts as a driving component, while the PDMS biconvex lens and the plane-concave... A compound varifocal lens based on electromagnetic drive technology is designed and fabricated, where the polydimethylsiloxane(PDMS) film acts as a driving component, while the PDMS biconvex lens and the plane-concave lens form a coaxial compound lens system. The plane-concave lens equipped with driving coils is installed directly above the PDMS lens surrounded by the annular magnet. When different currents are applied, the annular magnet moves up and down, driving the PDMS film to undergo elastic deformation, and then resulting in longitudinal movement of the PDMS lens. The position change of the PDMS lens changes the focal length of the compound lens system. To verify the feasibility and practicability of this design, a prototype of our compound lens system is fabricated in experiment. Our proposed compound lens shows that its zoom ability reaches 9.28 mm when the current ranges from -0.20 A to 0.21 A. 展开更多
关键词 compound varifocal lens PDMS film elastic deformation focal length electromagnetic force zoom ability
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部