与均匀阵列相比,稀疏阵列可以使天线阵列成本降低,减少数据处理,同时带来更大的阵列孔径提高信号解析能力,在信号处理中有着广泛的应用。但是由于其排布的不规则性,计算量较大,二维面阵合成协方差矩阵存在空洞,对角度估计的准确性造成...与均匀阵列相比,稀疏阵列可以使天线阵列成本降低,减少数据处理,同时带来更大的阵列孔径提高信号解析能力,在信号处理中有着广泛的应用。但是由于其排布的不规则性,计算量较大,二维面阵合成协方差矩阵存在空洞,对角度估计的准确性造成负面影响,增强了系统对噪声的敏感度。为了克服这些问题,本文提出了一种新的角度估计方法,采用截断核范数以降低噪声的影响,并通过ℓ_(p)范数优化提升信号的稀疏表示,利用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)算法构造子问题恢复出完整的阵列信号。随后采用子阵划分技术和基于最小二乘的传播算子模型(Propagator Method,PM)对恢复的信号处理,精确估计信号源的方位和俯仰角。仿真结果表明,所提出的角度估计算法在角度精度和时间复杂度方面具有优越性。展开更多
A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with...A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.展开更多
在信号处理领域,传统的自适应滤波算法采用的固定步长会导致稳态误差和收敛速度无法同时兼顾。针对这个问题,对最小平均p范数(Least Mean p-norm,LMP)算法进行改进,提出了一种基于改进双曲正切(tanh)函数的变步长最小平均p范数算法。该...在信号处理领域,传统的自适应滤波算法采用的固定步长会导致稳态误差和收敛速度无法同时兼顾。针对这个问题,对最小平均p范数(Least Mean p-norm,LMP)算法进行改进,提出了一种基于改进双曲正切(tanh)函数的变步长最小平均p范数算法。该算法利用改进的tanh函数来调节步长,采用移动加权平均法构造变步长函数;同时引入了一个调节函数以进一步提升算法的性能。通过在海洋脉冲噪声干扰下进行仿真,实验表明,与已有的固定步长和变步长算法相比,改进的变步长LMP算法较好地兼顾系统的收敛速度和稳态误差;引入调节函数后的新算法在保证原有算法收敛速度的同时进一步降低了算法的稳态误差,从而兼顾了算法的收敛性和稳定性,具有较好的可行性。展开更多
For a class of fractional-order linear continuous-time switched systems specified by an arbitrary switching sequence,the performance of PDα-type fractional-order iterative learning control(FOILC)is discussed in the s...For a class of fractional-order linear continuous-time switched systems specified by an arbitrary switching sequence,the performance of PDα-type fractional-order iterative learning control(FOILC)is discussed in the sense of L^p norm.When the systems are disturbed by bounded external noises,robustness of the PDα-type algorithm is firstly analyzed in the iteration domain by taking advantage of the generalized Young inequality of convolution integral.Then,convergence of the algorithm is discussed for the systems without any external noise.The results demonstrate that,under some given conditions,both convergence and robustness can be guaranteed during the entire time interval.Simulations support the correctness of the theory.展开更多
The precise L^(p) norm of a class of Forelli-Rudin type operators on the Siegel upper half space is given in this paper.The main result not only implies the upper L^(p) norm estimate of the Bergman projection,but also...The precise L^(p) norm of a class of Forelli-Rudin type operators on the Siegel upper half space is given in this paper.The main result not only implies the upper L^(p) norm estimate of the Bergman projection,but also implies the precise L^(p) norm of the Berezin transform.展开更多
In this article, the authors give a typical integral's bidirectional estimates for allcases. At the same time, several equivalent characterizations on the F(p, q, s, k) space in theunit ball of Cn are given.
For a convex set-valued map between p-normed (0 < p < 1) spaces, we give a criterion for its inverse to be locally Lipschitz of order p. From this we obtain the Robinson-Ursescu Theorem in p-normed spaces and th...For a convex set-valued map between p-normed (0 < p < 1) spaces, we give a criterion for its inverse to be locally Lipschitz of order p. From this we obtain the Robinson-Ursescu Theorem in p-normed spaces and the open mapping and closed graph theorems for closed convex set-valued maps.展开更多
The generalized stability of the Euler-Lagrange quadratic mappings in the framework of non-Archimedean random normed spaces is proved. The interdisciplinary relation among the theory of random spaces, the theory of no...The generalized stability of the Euler-Lagrange quadratic mappings in the framework of non-Archimedean random normed spaces is proved. The interdisciplinary relation among the theory of random spaces, the theory of non-Archimedean spaces, and the theory of functional equations is presented.展开更多
多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算...多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算法要求缺失数据随机分布于不完整的矩阵中,无法适用于整行缺失数据的恢复问题。为此,提出了一种基于低秩块Hankel矩阵正则化的阵元故障MIMO雷达DOA估计方法。首先,通过奇异值分解(Singular Value Decomposition,SVD)降低虚拟阵列输出矩阵的维度,以减少计算复杂度。然后,对降维数据矩阵建立基于块Hankel矩阵正则化的低秩矩阵填充模型,在该模型中将MIMO雷达降维数据矩阵排列成块Hankel矩阵并施加Schatten-p范数作为正则项。最后,结合交替方向乘子法(Alternate Direction Multiplier Method,ADMM)求解该模型,获得完整的MIMO雷达降维数据矩阵。仿真结果表明,所提方法能够有效恢复降维数据矩阵中的整行数据缺失,具有较高的DOA估计精度和实时性,在阵元故障率低于50.0%时DOA估计精度优于现有方法。展开更多
基金Supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01B35)Natural Science Foundation of colleges and universities in Xinjiang Uygur Au-tonomous Region(XJEDU2021Y048)Doctoral Initiation Fund of Xinjiang Institute of Engineering(2020xgy012302).
文摘与均匀阵列相比,稀疏阵列可以使天线阵列成本降低,减少数据处理,同时带来更大的阵列孔径提高信号解析能力,在信号处理中有着广泛的应用。但是由于其排布的不规则性,计算量较大,二维面阵合成协方差矩阵存在空洞,对角度估计的准确性造成负面影响,增强了系统对噪声的敏感度。为了克服这些问题,本文提出了一种新的角度估计方法,采用截断核范数以降低噪声的影响,并通过ℓ_(p)范数优化提升信号的稀疏表示,利用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)算法构造子问题恢复出完整的阵列信号。随后采用子阵划分技术和基于最小二乘的传播算子模型(Propagator Method,PM)对恢复的信号处理,精确估计信号源的方位和俯仰角。仿真结果表明,所提出的角度估计算法在角度精度和时间复杂度方面具有优越性。
基金Supported by the National Natural Science Foundation of China(11871452,12071052the Natural Science Foundation of Henan(202300410338)the Nanhu Scholar Program for Young Scholars of XYNU。
文摘A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.
文摘在信号处理领域,传统的自适应滤波算法采用的固定步长会导致稳态误差和收敛速度无法同时兼顾。针对这个问题,对最小平均p范数(Least Mean p-norm,LMP)算法进行改进,提出了一种基于改进双曲正切(tanh)函数的变步长最小平均p范数算法。该算法利用改进的tanh函数来调节步长,采用移动加权平均法构造变步长函数;同时引入了一个调节函数以进一步提升算法的性能。通过在海洋脉冲噪声干扰下进行仿真,实验表明,与已有的固定步长和变步长算法相比,改进的变步长LMP算法较好地兼顾系统的收敛速度和稳态误差;引入调节函数后的新算法在保证原有算法收敛速度的同时进一步降低了算法的稳态误差,从而兼顾了算法的收敛性和稳定性,具有较好的可行性。
基金supported by the National Natural Science Foundation of China(61201323)the Special Fund Project for Promoting Scientific and Technological Innovation in Xuzhou City(KC18013)the Cultivation Project of Xuzhou Institute of Technology(XKY2017112)
文摘For a class of fractional-order linear continuous-time switched systems specified by an arbitrary switching sequence,the performance of PDα-type fractional-order iterative learning control(FOILC)is discussed in the sense of L^p norm.When the systems are disturbed by bounded external noises,robustness of the PDα-type algorithm is firstly analyzed in the iteration domain by taking advantage of the generalized Young inequality of convolution integral.Then,convergence of the algorithm is discussed for the systems without any external noise.The results demonstrate that,under some given conditions,both convergence and robustness can be guaranteed during the entire time interval.Simulations support the correctness of the theory.
基金supported by the National Natural Science Foundation of China(11801172,11771139,12071130)supported by the Natural Science Foundation of Zhejiang Province(LQ21A010002)supported by the Natural Science Foundation of Zhejiang Province(LY20A010007).
文摘The precise L^(p) norm of a class of Forelli-Rudin type operators on the Siegel upper half space is given in this paper.The main result not only implies the upper L^(p) norm estimate of the Bergman projection,but also implies the precise L^(p) norm of the Berezin transform.
基金supported by the National Natural Science Foundation of China(11571104)the Hunan Provincial Innovation Foundation for Postgraduate(CX2017B220)Supported by the Construct Program of the Key Discipline in Hunan Province
文摘In this article, the authors give a typical integral's bidirectional estimates for allcases. At the same time, several equivalent characterizations on the F(p, q, s, k) space in theunit ball of Cn are given.
基金The NSF (Q1107107) of Jiangsu Educational Commission.
文摘For a convex set-valued map between p-normed (0 < p < 1) spaces, we give a criterion for its inverse to be locally Lipschitz of order p. From this we obtain the Robinson-Ursescu Theorem in p-normed spaces and the open mapping and closed graph theorems for closed convex set-valued maps.
基金supported by the Natural Science Foundation of Yibin University(No.2009Z03)
文摘The generalized stability of the Euler-Lagrange quadratic mappings in the framework of non-Archimedean random normed spaces is proved. The interdisciplinary relation among the theory of random spaces, the theory of non-Archimedean spaces, and the theory of functional equations is presented.
文摘多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算法要求缺失数据随机分布于不完整的矩阵中,无法适用于整行缺失数据的恢复问题。为此,提出了一种基于低秩块Hankel矩阵正则化的阵元故障MIMO雷达DOA估计方法。首先,通过奇异值分解(Singular Value Decomposition,SVD)降低虚拟阵列输出矩阵的维度,以减少计算复杂度。然后,对降维数据矩阵建立基于块Hankel矩阵正则化的低秩矩阵填充模型,在该模型中将MIMO雷达降维数据矩阵排列成块Hankel矩阵并施加Schatten-p范数作为正则项。最后,结合交替方向乘子法(Alternate Direction Multiplier Method,ADMM)求解该模型,获得完整的MIMO雷达降维数据矩阵。仿真结果表明,所提方法能够有效恢复降维数据矩阵中的整行数据缺失,具有较高的DOA估计精度和实时性,在阵元故障率低于50.0%时DOA估计精度优于现有方法。