The molecular behavior of polyurethane(PU)coating materials during the surface adsorption of poly-α-olefin as a drag reducing polymer was explored by a molecular dynamics simulation.Three different PU capsule wall ma...The molecular behavior of polyurethane(PU)coating materials during the surface adsorption of poly-α-olefin as a drag reducing polymer was explored by a molecular dynamics simulation.Three different PU capsule wall materials were synthesized using two reaction monomers,and a poly-α-olefin/PU drag reducer microcapsule was prepared based on interface polymerization.The structure,morphology,thermal stability,compressive strength,and drag reduction performance of the microcapsules were characterized and compared.The results showed that a non-bonding interaction induced the adsorption of the PU coating material,poly-α-olefin and PU then fused at the interface,and the PU coating material was embedded into the inner grooves of poly-α-olefin in the form of a local mosaic,thereby forming a stable core–shell structure.The morphological characterization indicated that PU and poly-α-olefin could form microcapsule structures.The thermal decomposition temperature of the microcapsule was dependent on the type of capsule wall material.The microcapsule structure had a slight effect on poly-α-olefin drag reduction.The system enabled poly-α-olefin to exist in powdered particles through microcapsulation,and had a good dispersion effect that facilitated storage and transport processes.The method effectively inhibited the accumulation and bonding of poly-α-olefin at room temperature.展开更多
Microcapsules containing oil drag-reducing polymer particles were prepared by melting-scattering and condensing of polyethylene wax,in-situ polymerization of urea and formaldehyde,and interfacial polymerization of sty...Microcapsules containing oil drag-reducing polymer particles were prepared by melting-scattering and condensing of polyethylene wax,in-situ polymerization of urea and formaldehyde,and interfacial polymerization of styrene respectively.The related processes were studied by a molecular dynamics simulation method,and molecular design of microcapsule isolation agent was carried out on the basis of the simulation.The technologies for preparing microencapsulated oil drag-reducing polymer particles were compared and the circulation drag reducing efficiency of the microencapsulated polymer particles was evaluated based on the characterization results and their dissolution properties.Molecular design of a microcapsule isolation agent suggests that a-olefin polymer particles can be stably dispersed in water by using long-chain alkyl sodium salt surfactant which can prevent the agglomeration ofα-olefin polymer particles.The results of simulation of the adsorption process shows that the amount of alkyl sodium salt surfactant can directly affect the stability of microencapsulatedα-olefin polymer particles, and there must be a minimum critical amount of it.After characterization of the morphology by Scanning Electron Microscopy(SEM) and comparison of the static pressure stability,especially the conditions of reaction and technological control of microcapsules with different shell materials,microencapsulation of a-olefin polymer particles with poly-(urea-formaldehyde) as shell material was selected as the optimum scheme,because it can react under mild conditions and its technological process can be controlled in a large range.The relationship of drag reducing rate and dissolving time of microcapsules showed that the formation of microcapsules did not affect the maximum drag reducing rate,and the drag reducing rate of each sample can reach about 35%along with the dissolving time,i.e.microencapsulation did not affect the drag reducing property ofα-olefin polymer.展开更多
The production of poly-α-olefins(PAOs)has attracted attention due to their excellent viscosity-temperature dependence,wear characteristics,oxidative properties,and high thermal stability.In this study,indene extracte...The production of poly-α-olefins(PAOs)has attracted attention due to their excellent viscosity-temperature dependence,wear characteristics,oxidative properties,and high thermal stability.In this study,indene extracted during coal tar refining was used as a raw material to synthesize a bis(indenyl)zirconium dichloride metallocene catalyst.A PAO with low viscosity and a high viscosity index was produced via the oligomerization of 1-decene in the presence of both the prepared metallocene and a methylaluminoxane(MAO)co-catalyst.Notably,the effects of different synthesis reaction parameters,such as Al:Zr ratio,amount of catalyst,and reaction temperature,on the conversion ratio and product selectivity were investigated in detail.The produced PAO was thoroughly characterized using Fourier-transform infrared,^(13)C,and^(1)H nuclear magnetic resonance spectroscopies;gas chromatography;and viscosity measurements.At 70℃,the metallocene catalyst created more stable active sites.In addition,the alkylation effect of MAO was noticeable.Interestingly,the obtained catalysis results demonstrated that a high conversion ratio of~93%was achieved at a low reaction temperature of 70℃,with a catalyst dosage of 0.0848 mmol and Al:Zr ratio of 8.48mmol:0.0848mmol.Moreover,under these optimal conditions,the kinematic viscosity of PAO was 4.25 mm2/s at 100℃,and the viscosity index was 139,indicating good viscosity-temperature properties.展开更多
基金This paper is supported by the Shandong Provincial Key Research and Development Program(Project No.2020CXGC010403)the Key Projects of New and Old Kinetic Energy Conversion(No.[2020]1220)the scientific research project of SINOPEC Corporation(CLY19005).
文摘The molecular behavior of polyurethane(PU)coating materials during the surface adsorption of poly-α-olefin as a drag reducing polymer was explored by a molecular dynamics simulation.Three different PU capsule wall materials were synthesized using two reaction monomers,and a poly-α-olefin/PU drag reducer microcapsule was prepared based on interface polymerization.The structure,morphology,thermal stability,compressive strength,and drag reduction performance of the microcapsules were characterized and compared.The results showed that a non-bonding interaction induced the adsorption of the PU coating material,poly-α-olefin and PU then fused at the interface,and the PU coating material was embedded into the inner grooves of poly-α-olefin in the form of a local mosaic,thereby forming a stable core–shell structure.The morphological characterization indicated that PU and poly-α-olefin could form microcapsule structures.The thermal decomposition temperature of the microcapsule was dependent on the type of capsule wall material.The microcapsule structure had a slight effect on poly-α-olefin drag reduction.The system enabled poly-α-olefin to exist in powdered particles through microcapsulation,and had a good dispersion effect that facilitated storage and transport processes.The method effectively inhibited the accumulation and bonding of poly-α-olefin at room temperature.
文摘Microcapsules containing oil drag-reducing polymer particles were prepared by melting-scattering and condensing of polyethylene wax,in-situ polymerization of urea and formaldehyde,and interfacial polymerization of styrene respectively.The related processes were studied by a molecular dynamics simulation method,and molecular design of microcapsule isolation agent was carried out on the basis of the simulation.The technologies for preparing microencapsulated oil drag-reducing polymer particles were compared and the circulation drag reducing efficiency of the microencapsulated polymer particles was evaluated based on the characterization results and their dissolution properties.Molecular design of a microcapsule isolation agent suggests that a-olefin polymer particles can be stably dispersed in water by using long-chain alkyl sodium salt surfactant which can prevent the agglomeration ofα-olefin polymer particles.The results of simulation of the adsorption process shows that the amount of alkyl sodium salt surfactant can directly affect the stability of microencapsulatedα-olefin polymer particles, and there must be a minimum critical amount of it.After characterization of the morphology by Scanning Electron Microscopy(SEM) and comparison of the static pressure stability,especially the conditions of reaction and technological control of microcapsules with different shell materials,microencapsulation of a-olefin polymer particles with poly-(urea-formaldehyde) as shell material was selected as the optimum scheme,because it can react under mild conditions and its technological process can be controlled in a large range.The relationship of drag reducing rate and dissolving time of microcapsules showed that the formation of microcapsules did not affect the maximum drag reducing rate,and the drag reducing rate of each sample can reach about 35%along with the dissolving time,i.e.microencapsulation did not affect the drag reducing property ofα-olefin polymer.
基金supported by the Chinese Academy of Sciences Strategic Pilot Science and Technology Special (Class A)(XDA21020000)the National Natural Science Foundation of China (22072175,21673272)support from the Ulam program,awarded by the Polish National Agency for Academic Exchange (NAWA),Poland,under project No.PPN/ULM/2020/1/00006/DEC/1
文摘The production of poly-α-olefins(PAOs)has attracted attention due to their excellent viscosity-temperature dependence,wear characteristics,oxidative properties,and high thermal stability.In this study,indene extracted during coal tar refining was used as a raw material to synthesize a bis(indenyl)zirconium dichloride metallocene catalyst.A PAO with low viscosity and a high viscosity index was produced via the oligomerization of 1-decene in the presence of both the prepared metallocene and a methylaluminoxane(MAO)co-catalyst.Notably,the effects of different synthesis reaction parameters,such as Al:Zr ratio,amount of catalyst,and reaction temperature,on the conversion ratio and product selectivity were investigated in detail.The produced PAO was thoroughly characterized using Fourier-transform infrared,^(13)C,and^(1)H nuclear magnetic resonance spectroscopies;gas chromatography;and viscosity measurements.At 70℃,the metallocene catalyst created more stable active sites.In addition,the alkylation effect of MAO was noticeable.Interestingly,the obtained catalysis results demonstrated that a high conversion ratio of~93%was achieved at a low reaction temperature of 70℃,with a catalyst dosage of 0.0848 mmol and Al:Zr ratio of 8.48mmol:0.0848mmol.Moreover,under these optimal conditions,the kinematic viscosity of PAO was 4.25 mm2/s at 100℃,and the viscosity index was 139,indicating good viscosity-temperature properties.