The outbreak of coronavirus disease 2019 has seriously threatened human health.Rapidly and sensitively detecting SARSCoV-2 viruses can help control the spread of viruses.However,it is an arduous challenge to apply sem...The outbreak of coronavirus disease 2019 has seriously threatened human health.Rapidly and sensitively detecting SARSCoV-2 viruses can help control the spread of viruses.However,it is an arduous challenge to apply semiconductor-based substrates for virus SERS detection due to their poor sensitivity.Therefore,it is worthwhile to search novel semiconductor-based substrates with excellent SERS sensitivity.Herein we report,for the first time,Nb2C and Ta2C MXenes exhibit a remarkable SERS enhancement,which is synergistically enabled by the charge transfer resonance enhancement and electromagnetic enhancement.Their SERS sensitivity is optimized to 3.0×10^6 and 1.4×10^6 under the optimal resonance excitation wavelength of 532 nm.Additionally,remarkable SERS sensitivity endows Ta2C MXenes with capability to sensitively detect and accurately identify the SARS-CoV-2 spike protein.Moreover,its detection limit is as low as 5×10^−9 M,which is beneficial to achieve real-time monitoring and early warning of novel coronavirus.This research not only provides helpful theoretical guidance for exploring other novel SERS-active semiconductor-based materials but also provides a potential candidate for the practical applications of SERS technology.展开更多
[Objective] To obtain pure recombinant S1 and S2 of SARS S protein. [Method] Using asymmetric PCR and ligation with endonuclease, S1 and S2 fragments of SARSV HK strain S gene were synthesized. Then, these two fragmen...[Objective] To obtain pure recombinant S1 and S2 of SARS S protein. [Method] Using asymmetric PCR and ligation with endonuclease, S1 and S2 fragments of SARSV HK strain S gene were synthesized. Then, these two fragments were inserted into plasmid pET28a to obtain recombinant vectors pET28a-S1 and pET28a-S2, respectively. These recombinant vectors were transformed into E. coli BL21, and expression of S1 and S2 fragments were induced by IPTG. The conditions of expression and purification were optimized. [Result] The S1 and S2 fragments were amplified and successfully expressed in E. coli. [Conclusion] This research provides detection antigens for follow-up development of SARS vaccine.展开更多
The pandemic of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has caused a high number of deaths in the world.To combat it,it is necessary to develop a better understanding of how the virus infects ho...The pandemic of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has caused a high number of deaths in the world.To combat it,it is necessary to develop a better understanding of how the virus infects host cells.Infection normally starts with the attachment of the virus to cell-surface glycans like heparan sulfate(HS)and sialic acid-containing glycolipids/glycoproteins.In this study,we examined and compared the binding of the subunits and spike(S)proteins of SARS-CoV-2,SARS-Co V,and Middle East respiratory disease(MERS)-Co V to these glycans.Our results revealed that the S proteins and subunits can bind to HS in a sulfation-dependent manner and no binding with sialic acid residues was detected.Overall,this work suggests that HS binding may be a general mechanism for the attachment of these coronaviruses to host cells,and supports the potential importance of HS in infection and in the development of antiviral agents against these viruses.展开更多
基金The authors gratefully acknowledge the finical support of the National Key Research and Development Project(No.2017YFB0310600)this work is also supported by Shanghai International Science and Technology Cooperation Fund(Nos.17520711700 and 18520744200).
文摘The outbreak of coronavirus disease 2019 has seriously threatened human health.Rapidly and sensitively detecting SARSCoV-2 viruses can help control the spread of viruses.However,it is an arduous challenge to apply semiconductor-based substrates for virus SERS detection due to their poor sensitivity.Therefore,it is worthwhile to search novel semiconductor-based substrates with excellent SERS sensitivity.Herein we report,for the first time,Nb2C and Ta2C MXenes exhibit a remarkable SERS enhancement,which is synergistically enabled by the charge transfer resonance enhancement and electromagnetic enhancement.Their SERS sensitivity is optimized to 3.0×10^6 and 1.4×10^6 under the optimal resonance excitation wavelength of 532 nm.Additionally,remarkable SERS sensitivity endows Ta2C MXenes with capability to sensitively detect and accurately identify the SARS-CoV-2 spike protein.Moreover,its detection limit is as low as 5×10^−9 M,which is beneficial to achieve real-time monitoring and early warning of novel coronavirus.This research not only provides helpful theoretical guidance for exploring other novel SERS-active semiconductor-based materials but also provides a potential candidate for the practical applications of SERS technology.
基金funded by Natural Science Foundation of Jian-gsu Province (BK2009660)Huaiyin Institute of Technology Foundation (35170706)
文摘[Objective] To obtain pure recombinant S1 and S2 of SARS S protein. [Method] Using asymmetric PCR and ligation with endonuclease, S1 and S2 fragments of SARSV HK strain S gene were synthesized. Then, these two fragments were inserted into plasmid pET28a to obtain recombinant vectors pET28a-S1 and pET28a-S2, respectively. These recombinant vectors were transformed into E. coli BL21, and expression of S1 and S2 fragments were induced by IPTG. The conditions of expression and purification were optimized. [Result] The S1 and S2 fragments were amplified and successfully expressed in E. coli. [Conclusion] This research provides detection antigens for follow-up development of SARS vaccine.
基金supported by the National Natural Science Foundation of China(91853120)the National Major Scientific and Technological Special Project of China(2018ZX09711001-013 and 2018ZX09711001-005)+2 种基金the National Key Research and Development Program of China(2018YFE0111400 and 2016YFD0500300)the State Key Laboratory of Bioactive Substance and Function of Natural Medicines,Institute of Materia Medica,the Chinese Academy of Medical Sciences and Peking Union Medical College,the NIH Research Project Grant Program(R01 EB025892)the CRP-ICGEB Research Grant 2019(CRP/CHN19-02)。
文摘The pandemic of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has caused a high number of deaths in the world.To combat it,it is necessary to develop a better understanding of how the virus infects host cells.Infection normally starts with the attachment of the virus to cell-surface glycans like heparan sulfate(HS)and sialic acid-containing glycolipids/glycoproteins.In this study,we examined and compared the binding of the subunits and spike(S)proteins of SARS-CoV-2,SARS-Co V,and Middle East respiratory disease(MERS)-Co V to these glycans.Our results revealed that the S proteins and subunits can bind to HS in a sulfation-dependent manner and no binding with sialic acid residues was detected.Overall,this work suggests that HS binding may be a general mechanism for the attachment of these coronaviruses to host cells,and supports the potential importance of HS in infection and in the development of antiviral agents against these viruses.