The authors described a novel submerged batch culture system that produced high levels of amylase by Aspergillus kawachii using whole barley (WB), the surface of which is covered by its husk. In this study, detailed...The authors described a novel submerged batch culture system that produced high levels of amylase by Aspergillus kawachii using whole barley (WB), the surface of which is covered by its husk. In this study, detailed analyses determining the amylase activities, residual sugars, fungal morphology and expression levels of genes were performed in a submerged culture using WB to address the mechanism underlying high amylase productivity in A. kawachii. High levels of glucoamylase and acid-stable u-amylase were produced in this culture, and expression levels of amylases, as well as glucose-repressive genes including high-affinity glucose transporter and peroxidase/catalase were also high. On the other hand, the morphology of mycelia was altered, with swollen, bulbous, multi-septum hyphae and conidiophores that normally form in a solid culture being partially generated. Furthermore, cell cycle and post-translational modification-related gene expression levels were altered, and were similar to those in the solid culture. These findings suggest that high amylase productivity in the submerged culture using WB is accompanied by both the up-regulation of amylase genes and activation of post-translational modifications due to fungal morphological changes being brought closer to those in the solid culture.展开更多
文摘The authors described a novel submerged batch culture system that produced high levels of amylase by Aspergillus kawachii using whole barley (WB), the surface of which is covered by its husk. In this study, detailed analyses determining the amylase activities, residual sugars, fungal morphology and expression levels of genes were performed in a submerged culture using WB to address the mechanism underlying high amylase productivity in A. kawachii. High levels of glucoamylase and acid-stable u-amylase were produced in this culture, and expression levels of amylases, as well as glucose-repressive genes including high-affinity glucose transporter and peroxidase/catalase were also high. On the other hand, the morphology of mycelia was altered, with swollen, bulbous, multi-septum hyphae and conidiophores that normally form in a solid culture being partially generated. Furthermore, cell cycle and post-translational modification-related gene expression levels were altered, and were similar to those in the solid culture. These findings suggest that high amylase productivity in the submerged culture using WB is accompanied by both the up-regulation of amylase genes and activation of post-translational modifications due to fungal morphological changes being brought closer to those in the solid culture.