This study compared proximal femoral morphology in patients living in soft and hard water regions. The proximal femoral morphology of two groups of 70 patients living in hard and soft water regions with a mean age of ...This study compared proximal femoral morphology in patients living in soft and hard water regions. The proximal femoral morphology of two groups of 70 patients living in hard and soft water regions with a mean age of 72.29 (range: 50 to 87 years) was measured using an antero-posterior radiograph of the non-operated hip with magnification adjusted. The medullary canal diameter at the level of the lesser trochanter (LT) was significantly wider in patients living in the hard water region (mean width: 1.9 mm wider;p = 0.003). No statistical significant difference was found in the medullary canal width at 10 cm below the level of LT, Dorr index, or Canal Bone Ratio (CBR). In conclusion, the proximal femoral morphology does differ in patients living in soft and hard water areas. These results may have an important clinical bearing in patients undergoing total hip replacement surgery. Further research is needed to determine whether implant survivorship is affected in patients living in hard and soft water regions.展开更多
Pain is one of the manifestations of hip disorder and has been proven to lead to the remodeling of somatotopic map plasticity in the cortex.However,most studies are volume-based which may lead to inaccurate anatomical...Pain is one of the manifestations of hip disorder and has been proven to lead to the remodeling of somatotopic map plasticity in the cortex.However,most studies are volume-based which may lead to inaccurate anatomical positioning of functional data.The methods that work on the cortical surface may be more sensitive than those using the full brain volume and thus be more suitable for map plasticity study.In this prospective cross-sectional study performed in Yueyang Hospital of Integrated Traditional Chinese and Western Medicine,Shanghai University of Traditional Chinese Medicine,China,20 patients with osteonecrosis of the femoral head(12 males and 8 females,aged 56.80±13.60 years)and 20 healthy controls(9 males and 11 females,aged 54.56±10.23 years)were included in this study.Data of resting-state functional magnetic resonance imaging were collected.The results revealed that compared with healthy controls,compared with the healthy controls,patients with osteonecrosis of the femoral head(ONFH)showed significantly increased surface-based regional homogeneity(Re Ho)in areas distributed mainly in the left dorsolateral prefrontal cortex,frontal eye field,right frontal eye field,and the premotor cortex and decreased surface-based Re Ho in the right primary motor cortex and primary sensory cortex.Regions showing significant differences in surfacebased Re Ho values between the healthy controls and patients with ONFH were defined as the regions of interests.Seed-based functional connectivity was performed to investigate interregional functional synchronization.When the areas with decreased surface-based Re Ho in the frontal eye field and right premotor cortex were used as the regions of interest,compared with the healthy controls,the patients with ONFH displayed increased functional connectivity in the right middle frontal cortex and right inferior parietal cortex and decreased functional connectivity in the right precentral cortex and right middle occipital cortex.Compared with healthy controls,patients with ONFH showed significantly decreased cortical thickness in the para-insular area,posterior insular area,anterior superior temporal area,frontal eye field and supplementary motor cortex and reduced volume of subcortical gray matter nuclei in the right nucleus accumbens.These findings suggest that hip disorder patients showed cortical plasticity changes,mainly in sensorimotor-and pain-related regions.This study was approved by the Medical Ethics Committee of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine,Shanghai University of Traditional Chinese Medicine(approval No.2018-041)on August 1,2018.展开更多
Osteoporosis is a common metabolic skeletal disorder characterized by decreased bone mass and deteriorated bone structure, leading to increased susceptibility to fractures. With aging population, osteoporotic fracture...Osteoporosis is a common metabolic skeletal disorder characterized by decreased bone mass and deteriorated bone structure, leading to increased susceptibility to fractures. With aging population, osteoporotic fractures are of global health and socioeconomic importance. The three-dimensional microstructural information of the common osteoporosis-related fracture sites, including vertebra, femoral neck and distal radius, is a key for fully understanding osteoporosis pathogenesis and predicting the fracture risk. Low vertebral bone mineral density(BMD) is correlated with increased fracture of the spine. Vertebral BMD decreases from cervical to lumbar spine, with the lowest BMD at the third lumbar vertebra. Trabecular bone mass of the vertebrae is much lower than that of the peripheral bone. Cancellous bone of the vertebral body has a complex heterogeneous three-dimensional microstructure, with lower bone volume in the central and anterior superior regions. Trabecular bone quality is a key element to maintain the vertebral strength. The increased fragility of osteoporotic femoral neck is attributed to low cancellous bone volume and high compact porosity. Compared with age-matched controls, increased cortical porosity is observed at the femoral neck in osteoporoticfracture patients. Distal radius demonstrates spatial inhomogeneous characteristic in cortical microstructure. The medial region of the distal radius displays the highest cortical porosity compared with the lateral, anterior and posterior regions. Bone strength of the distal radius is mainly determined by cortical porosity, which deteriorates with advancing age.展开更多
文摘This study compared proximal femoral morphology in patients living in soft and hard water regions. The proximal femoral morphology of two groups of 70 patients living in hard and soft water regions with a mean age of 72.29 (range: 50 to 87 years) was measured using an antero-posterior radiograph of the non-operated hip with magnification adjusted. The medullary canal diameter at the level of the lesser trochanter (LT) was significantly wider in patients living in the hard water region (mean width: 1.9 mm wider;p = 0.003). No statistical significant difference was found in the medullary canal width at 10 cm below the level of LT, Dorr index, or Canal Bone Ratio (CBR). In conclusion, the proximal femoral morphology does differ in patients living in soft and hard water areas. These results may have an important clinical bearing in patients undergoing total hip replacement surgery. Further research is needed to determine whether implant survivorship is affected in patients living in hard and soft water regions.
基金supported by National Key R&D Program of China,No.2018YFC2001600(to JGX)the National Natural Science Foundation of China,Nos.81802249(to XYH),81871836(to MXZ)+4 种基金a grant from Shanghai Science and Technology Committee of China,Nos.18511108300(to JGX),18441903903900(to XYH),18441903800(to MXZ)Three-Year Action Plan for Traditional Chinese Medicine Development from Shanghai Municipal Health Commission of China,No.ZY(2018-2020)-ZWB-1001-CPJS49(to BL)ZY(2018-2020)-RCPY-3007(to JM)Traditional Chinese Medicine Diagnosis and Treatment Technology Improvement Project from Shanghai Municipal Commission of Health and Family Planning of China,No.Zyjx-2017006(to BL)Special Project of Postgraduate Innovation Training of China,No.A1-GY20-204-0107(to JM)。
文摘Pain is one of the manifestations of hip disorder and has been proven to lead to the remodeling of somatotopic map plasticity in the cortex.However,most studies are volume-based which may lead to inaccurate anatomical positioning of functional data.The methods that work on the cortical surface may be more sensitive than those using the full brain volume and thus be more suitable for map plasticity study.In this prospective cross-sectional study performed in Yueyang Hospital of Integrated Traditional Chinese and Western Medicine,Shanghai University of Traditional Chinese Medicine,China,20 patients with osteonecrosis of the femoral head(12 males and 8 females,aged 56.80±13.60 years)and 20 healthy controls(9 males and 11 females,aged 54.56±10.23 years)were included in this study.Data of resting-state functional magnetic resonance imaging were collected.The results revealed that compared with healthy controls,compared with the healthy controls,patients with osteonecrosis of the femoral head(ONFH)showed significantly increased surface-based regional homogeneity(Re Ho)in areas distributed mainly in the left dorsolateral prefrontal cortex,frontal eye field,right frontal eye field,and the premotor cortex and decreased surface-based Re Ho in the right primary motor cortex and primary sensory cortex.Regions showing significant differences in surfacebased Re Ho values between the healthy controls and patients with ONFH were defined as the regions of interests.Seed-based functional connectivity was performed to investigate interregional functional synchronization.When the areas with decreased surface-based Re Ho in the frontal eye field and right premotor cortex were used as the regions of interest,compared with the healthy controls,the patients with ONFH displayed increased functional connectivity in the right middle frontal cortex and right inferior parietal cortex and decreased functional connectivity in the right precentral cortex and right middle occipital cortex.Compared with healthy controls,patients with ONFH showed significantly decreased cortical thickness in the para-insular area,posterior insular area,anterior superior temporal area,frontal eye field and supplementary motor cortex and reduced volume of subcortical gray matter nuclei in the right nucleus accumbens.These findings suggest that hip disorder patients showed cortical plasticity changes,mainly in sensorimotor-and pain-related regions.This study was approved by the Medical Ethics Committee of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine,Shanghai University of Traditional Chinese Medicine(approval No.2018-041)on August 1,2018.
文摘Osteoporosis is a common metabolic skeletal disorder characterized by decreased bone mass and deteriorated bone structure, leading to increased susceptibility to fractures. With aging population, osteoporotic fractures are of global health and socioeconomic importance. The three-dimensional microstructural information of the common osteoporosis-related fracture sites, including vertebra, femoral neck and distal radius, is a key for fully understanding osteoporosis pathogenesis and predicting the fracture risk. Low vertebral bone mineral density(BMD) is correlated with increased fracture of the spine. Vertebral BMD decreases from cervical to lumbar spine, with the lowest BMD at the third lumbar vertebra. Trabecular bone mass of the vertebrae is much lower than that of the peripheral bone. Cancellous bone of the vertebral body has a complex heterogeneous three-dimensional microstructure, with lower bone volume in the central and anterior superior regions. Trabecular bone quality is a key element to maintain the vertebral strength. The increased fragility of osteoporotic femoral neck is attributed to low cancellous bone volume and high compact porosity. Compared with age-matched controls, increased cortical porosity is observed at the femoral neck in osteoporoticfracture patients. Distal radius demonstrates spatial inhomogeneous characteristic in cortical microstructure. The medial region of the distal radius displays the highest cortical porosity compared with the lateral, anterior and posterior regions. Bone strength of the distal radius is mainly determined by cortical porosity, which deteriorates with advancing age.