In order to investigate the distribution of rare earth elements (REEs) in the natural hyperaccumulator fern Dicranopteris dichotoma Bernh. and to characterize this plant photosynthetically, concentrations of REEs in...In order to investigate the distribution of rare earth elements (REEs) in the natural hyperaccumulator fern Dicranopteris dichotoma Bernh. and to characterize this plant photosynthetically, concentrations of REEs in D. dichotoma from mines mining heavy and light REEs (HREEs and LREEs, respectively), as well as in D. dichotoma from an area in which no mining occurred, in southern Jiangxi Province were determined using inductively coupled plasma-mass spectrometry. The REE concentrations in the lamina of D. dichotoma were in the order LREEs mine 〉 HREEs mine 〉 non-mining area. The maximum REE content in the lamina of D. dichotoma from the LREE mine was approximately 2 648 mg/kg dry weight. The photosynthetic activity of D. dichotoma from areas of HREE and LREE mines was improved by the presence of high concentrations of REEs in the lamina compared with D. dichotoma from the non-mining area. However, this enhancement varied according to the concentrations of the REEs, as well as their type. In addition, 77K fluorescence, electron transport rate, and chlorophyll-protein complex studies showed that the enhancement of the photosynthetic activity of D. dichotoma from HREE mines was mainly due to an increase in the chlorophyll-protein complex of the reaction center of photosystem (PS) Ⅰ, whereas the enhancement observed in D. dichotoma from LREE mines was due to an increase in the internal antennae chlorophyll-protein complex of PS Ⅱ and greater light energy distribution to the light-harvesting chlorophyll-protein complex of PS Ⅱ.展开更多
文摘In order to investigate the distribution of rare earth elements (REEs) in the natural hyperaccumulator fern Dicranopteris dichotoma Bernh. and to characterize this plant photosynthetically, concentrations of REEs in D. dichotoma from mines mining heavy and light REEs (HREEs and LREEs, respectively), as well as in D. dichotoma from an area in which no mining occurred, in southern Jiangxi Province were determined using inductively coupled plasma-mass spectrometry. The REE concentrations in the lamina of D. dichotoma were in the order LREEs mine 〉 HREEs mine 〉 non-mining area. The maximum REE content in the lamina of D. dichotoma from the LREE mine was approximately 2 648 mg/kg dry weight. The photosynthetic activity of D. dichotoma from areas of HREE and LREE mines was improved by the presence of high concentrations of REEs in the lamina compared with D. dichotoma from the non-mining area. However, this enhancement varied according to the concentrations of the REEs, as well as their type. In addition, 77K fluorescence, electron transport rate, and chlorophyll-protein complex studies showed that the enhancement of the photosynthetic activity of D. dichotoma from HREE mines was mainly due to an increase in the chlorophyll-protein complex of the reaction center of photosystem (PS) Ⅰ, whereas the enhancement observed in D. dichotoma from LREE mines was due to an increase in the internal antennae chlorophyll-protein complex of PS Ⅱ and greater light energy distribution to the light-harvesting chlorophyll-protein complex of PS Ⅱ.