期刊文献+
共找到2,591篇文章
< 1 2 130 >
每页显示 20 50 100
Ionic Liquid-Enhanced Assembly of Nanomaterials for Highly Stable Flexible Transparent Electrodes 被引量:1
1
作者 Jianmin Yang Li Chang +2 位作者 Xiqi Zhang Ziquan Cao Lei Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期441-455,共15页
The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr... The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials. 展开更多
关键词 Ionic liquids ASSEMBLY Silver nanowires MXene nanosheets Flexible transparent electrodes
下载PDF
A drug-loaded flexible substrate improves the performance of conformal cortical electrodes 被引量:1
2
作者 Rongrong Qin Tian Li +7 位作者 Yifu Tan Fanqi Sun Yuhao Zhou Ronghao Lv Xiaoli You Bowen Ji Peng Li Wei Huang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期399-412,共14页
Cortical electrodes are a powerful tool for the stimulation and/or recording of electrical activity in the nervous system.However,the inevitable wound caused by surgical implantation of electrodes presents bacterial i... Cortical electrodes are a powerful tool for the stimulation and/or recording of electrical activity in the nervous system.However,the inevitable wound caused by surgical implantation of electrodes presents bacterial infection and inflammatory reaction risks associated with foreign body exposure.Moreover,inflammation of the wound area can dramatically worsen in response to bacterial infection.These consequences can not only lead to the failure of cortical electrode implantation but also threaten the lives of patients.Herein,we prepared a hydrogel made of bacterial cellulose(BC),a flexible substrate for cortical electrodes,and further loaded antibiotic tetracycline(TC)and the anti-inflammatory drug dexamethasone(DEX)onto it.The encapsulated drugs can be released from the BC hydrogel and effectively inhibit the growth of Gram-negative and Gram-positive bacteria.Next,therapeutic cortical electrodes were developed by integrating the drug-loaded BC hydrogel and nine-channel serpentine arrays;these were used to record electrocorticography(ECoG)signals in a rat model.Due to the controlled release of TC and DEX from the BC hydrogel substrate,therapeutic cortical electrodes can alleviate or prevent symptoms associated with the bacterial infection and inflammation of brain tissue.This approach facilitates the development of drug delivery electrodes for resolving complications caused by implantable electrodes. 展开更多
关键词 ANTIBACTERIAL ANTI-INFLAMMATORY Drug loading Cortical electrodes Bacterial cellulose hydrogel
下载PDF
Recent progress of self-supported air electrodes for flexible Zn-air batteries 被引量:1
3
作者 Chen Xu Yanli Niu +5 位作者 Vonika Ka-Man Au Shuaiqi Gong Xuan Liu Jianying Wang Deli Wu Zuofeng Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期110-136,I0004,共28页
Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among... Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed. 展开更多
关键词 Bifunctional electrocatalysts Oxygen reduction reaction Oxygen evolution reaction Self-supported air electrodes Flexible zinc-air batteries
下载PDF
Enhanced performance of solution-processed carbon nanotube transparent electrodes in foldable perovskite solar cells through vertical separation of binders by using eco-friendly parylene substrate
4
作者 Unsoo Kim Jeong-Seok Nam +3 位作者 Jungjin Yoon Jiye Han Mansoo Choi Il Jeon 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期83-93,共11页
The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrat... The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrated.Through the use of a novel inversion transfer technique,vertical separation of the binders from the CNTs was induced,rendering a stronger p-doping effect and thereby a higher conductivity of the CNTs.The resulting foldable devices exhibited a power conversion efficiency of 18.11%,which is the highest reported among CNT transparent electrode-based PSCs to date,and withstood more than 10,000 folding cycles at a radius of 0.5 mm,demonstrating unprecedented mechanical stability.Furthermore,solar modules were fabricated using entirely laser scribing processes to assess the potential of the solution-processable nanocarbon electrode.Notably,this is the only one to be processed entirely by the laser scribing process and to be biocompatible as well as eco-friendly among the previously reported nonindium tin oxide-based perovskite solar modules. 展开更多
关键词 double-walled carbon nanotubes parylene substrates perovskite modules perovskite solar cells solution-processable electrodes surfactant removal
下载PDF
Amorphous Iridium Oxide-Integrated Anode Electrodes with Ultrahigh Material Utilization for Hydrogen Production at Industrial Current Densities
5
作者 Lei Ding Kui Li +10 位作者 Weitian Wang Zhiqiang Xie Shule Yu Haoran Yu David ACullen Alex Keane Kathy Ayers Christopher BCapuano Fangyuan Liu Pu-Xian Gao Feng-Yuan Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期225-239,共15页
Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily s... Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily scalable electrodeposition at room temperature.Combined with a Nafion 117 membrane,the IrO_(x)-integrated electrode with an ultralow loading of 0.075 mg cm^(-2)delivers a high cell efficiency of about 90%,achieving more than 96%catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane(2 mg cm^(-2)).Additionally,the IrO_(x)electrode demonstrates superior performance,higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes.Notably,the remarkable performance could be mainly due to the amorphous phase property,sufficient Ir^(3+)content,and rich surface hydroxide groups in catalysts.Overall,due to the high activity,high cell efficiency,an economical,greatly simplified and easily scalable fabrication process,and ultrahigh material utilization,the IrO_(x)electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution. 展开更多
关键词 Ionomer-free Amorphous IrOx electrodes Ultrahigh material utilization Scalable electrodeposition Hydrogen production
下载PDF
High energy density in ultra-thick and flexible electrodes enabled by designed conductive agent/binder composite
6
作者 Xiaoyu Shen Hailong Yu +6 位作者 Liubin Ben Wenwu Zhao Qiyu Wang Guanjun Cen Ronghan Qiao Yida Wu Xuejie Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期133-143,I0005,共12页
Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us... Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes. 展开更多
关键词 Conductive agent/binder composite Dry process Ultra-thick electrodes High energy density CEI reconstruction ToF-SIMS
下载PDF
A high Li-ion diffusion kinetics in multidimensional and compact-structured electrodes via vacuum filtration casting
7
作者 Jieqiong Li Ting Ouyang +3 位作者 Lu Liu Shu Jiang Yongchao Huang M.-Sadeeq Balogun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期368-376,I0010,共10页
Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is ... Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture. 展开更多
关键词 Thick electrodes Carbon nanotubes Li-ion diffusion co-efficient Vacuum filtration technique High areal capacity Lithium-ion batteries
下载PDF
Spinal intradural electrodes: opportunities, challenges and translation to the clinic
8
作者 Bruce Harland Chien Yew Kow Darren Svirskis 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期503-504,共2页
Damage to the spinal cord disrupts the electrically active nerve cells which normally transmit afferent and efferent signals,resulting in loss of motor,sensory,and autonomic functions.Potential treatments for spinal c... Damage to the spinal cord disrupts the electrically active nerve cells which normally transmit afferent and efferent signals,resulting in loss of motor,sensory,and autonomic functions.Potential treatments for spinal cord injury utilizing implanted spinal electrodes can be broadly classified into three different categories.The first of these approaches is“spinal stimulation”where electrodes,usually positioned above the level of injury,provide electrical stimulation to target and disrupt pain signals before they reach the brain.The second approach uses“activity-dependent neuro-technologies”,in which electrodes positioned below the level of injury initiate a complex spatiotemporal pattern of stimulation at the lumbar spinal cord to generate a walking gait in the limbs(Minev et al.,2015;Wagner et al.,2018). 展开更多
关键词 STIMULATION electrodes utilizing
下载PDF
Formation of diffuse and spark discharges between two needle electrodes with the scattering of particles
9
作者 Victor F TARASENKO Dmitry V BELOPLOTOV +1 位作者 Alexei N PANCHENKO Dmitry A SOROKIN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期32-39,共8页
The development of a nanosecond discharge in a pin-to-pin gap filled with air at atmospheric pressure has been studied with high temporal and spatial resolutions from a breakdown start to the spark decay.Positive and ... The development of a nanosecond discharge in a pin-to-pin gap filled with air at atmospheric pressure has been studied with high temporal and spatial resolutions from a breakdown start to the spark decay.Positive and negative nanosecond voltage pulses with an amplitude of tens of kilovolts were applied.Time-resolved images of the discharge development were taken with a fourchannel Intensified Charge Coupled Device(ICCD)camera.The minimum delay between the camera channels could be as short as≈0.1 ns.This made it possible to study the gap breakdown process with subnanosecond resolution.It was observed that a wide-diameter streamer develops from the high-voltage pointed electrode.The ionization processes near the grounded pin electrode started when the streamer crossed half of the gap.After bridging the gap by the streamer,a diffuse discharge was formed.The development of spark leaders from bright spots on the surface of the pointed electrodes was observed at the next stage.It was found that the rate of development of the spark leader is an order of magnitude lower than that of the wide-diameter streamer.Long thin luminous tracks were observed against the background of a discharge plasma glow.It has been established that the tracks are adjacent to brightly glowing spots on the electrodes and are associated with the flight of small particles. 展开更多
关键词 needle electrodes short voltage pulses atmospheric air streamer breakdown diffuse and spark discharges scattering metal particles
下载PDF
Novel Perovskite Oxide Hybrid Nanofibers Embedded with Nanocatalysts for Highly Efficient and Durable Electrodes in Direct CO_(2) Electrolysis
10
作者 Akromjon Akhmadjonov Kyung Taek Bae Kang Taek Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期214-230,共17页
The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)R... The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)RRs)in solid oxide elec-trolysis cells(SOECs).However,practical appli-cation of nanofiber-based electrodes faces chal-lenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte.To tackle this challenge,a novel hybrid nanofiber electrode,La_(0.6)Sr_(0.4)Co_(0.15)Fe_(0.8)Pd_(0.05)O_(3-δ)(H-LSCFP),is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique.After consecutive treatment in 100% H_(2) and CO_(2) at 700°C,LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface,enhancing CO_(2) adsorption.The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm^(-2) in CO_(2) at 800°C and 1.5 V,setting a new benchmark among reported nanofiber-based electrodes.Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO_(2)RR.The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure,paving the way for further advancements and nanofiber applications in CO_(2)-SOECs. 展开更多
关键词 NANOFIBERS Fuel electrodes Digital twinning CO_(2)reduction reaction Solid oxide electrolysis cells
下载PDF
Probing the electric double layer structure at nitrogen-doped graphite electrodes by constant-potential molecular dynamics simulations
11
作者 Legeng Yu Nan Yao +5 位作者 Yu-Chen Gao Zhong-Heng Fu Bo Jiang Ruiping Li Cheng Tang Xiang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期299-305,I0008,共8页
Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite ano... Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes. 展开更多
关键词 Lithium batteries Graphite N-DOPING Electric double layer Molecular dynamics Constant potential method Electrode potential
下载PDF
Current collectors’ effects on the electrochemical performance of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2) suspension electrodes for lithium slurry battery
12
作者 Linshan Peng Yufei Ren +3 位作者 Zhaoqiang Yin Zhitong Wang Xiangkun Wu Lan Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1306-1313,共8页
Take after the advantages of lithium-ion battery (LIB) and redox flow battery (RFB), semi-solid flow battery (SSFB) is a promising electrochemical energy storage device in renewable energy utilization. The flowable sl... Take after the advantages of lithium-ion battery (LIB) and redox flow battery (RFB), semi-solid flow battery (SSFB) is a promising electrochemical energy storage device in renewable energy utilization. The flowable slurry electrode realizes decouple of energy and power density, while it also brings about new challenge to SSFBs, electron transport between active material and the out circuit. In this consideration, three types of current collectors (CCs) are applied to study the resistance and electrochemical performances of slurry cathodes within pouch cells for the first time. It proves that the electronic resistance (Re) between slurry electrode and the CC plays a decisive role in SSFB operation, and it is so large when Al foil is adopted that the cell cannot even work. Contact angle between Ketjen black (KB) slurry without active material (AM) and the CC is a preliminarily sign for the Re, the smaller the angle, the lower the resistance, and the better electrochemical performance of the cell. 展开更多
关键词 Semi-solid flow battery Slurry electrode Current collector Electronic resistance Carbon coated Al
下载PDF
Flexible capacitive pressure sensor based on interdigital electrodes with porous microneedle arrays for physiological signal monitoring
13
作者 Jiahui Xu Minghao Wang +9 位作者 Minyi Jin Siyan Shang Chuner Ni Yili Hu Xun Sun Jun Xu Bowen Ji Le Li Yuhua Cheng Gaofeng Wang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期18-31,共14页
Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stab... Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer. 展开更多
关键词 Capacitive pressure sensor Microneedle array Porous PDMS Interdigital electrode
下载PDF
Advanced 3D ordered electrodes for PEMFC applications: From structural features and fabrication methods to the controllable design of catalyst layers
14
作者 Kaili Wang Tingting Zhou +4 位作者 Zhen Cao Zhimin Yuan Hongyan He Maohong Fan Zaiyong Jiang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1336-1365,共30页
The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, iono... The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, ionomer, and Pt nanoparticles, all immersed together and sprayed with a micron-level thickness of CLs. They have a performance trade-off where increasing the Pt loading leads to higher performance of abundant triple-phase boundary areas but increases the electrode cost. Major challenges must be overcome before realizing its wide commercialization. Literature research revealed that it is impossible to achieve performance and durability targets with only high-performance catalysts, so the controllable design of CLs architecture in MEAs for PEMFCs must now be the top priority to meet industry goals. From this perspective, a 3D ordered electrode circumvents this issue with a support-free architecture and ultrathin thickness while reducing noble metal Pt loadings. Herein, we discuss the motivation in-depth and summarize the necessary CLs structural features for designing ultralow Pt loading electrodes. Critical issues that remain in progress for 3D ordered CLs must be studied and characterized. Furthermore, approaches for 3D ordered CLs architecture electrode development, involving material design, structure optimization, preparation technology, and characterization techniques, are summarized and are expected to be next-generation CLs for PEMFCs. Finally, the review concludes with perspectives on possible research directions of CL architecture to address the significant challenges in the future. 展开更多
关键词 PEMFC 3D ordered electrode Structural features Preparation technology Ultralow Pt loading
下载PDF
Understanding of the Relationship between the Properties of Cu(In,Ga)Se_(2) Solar Cells and the Structure of Ag Network Electrodes
15
作者 Hyesun Yoo Hoang Van Quy +8 位作者 Inpyo Lee Seung Taek Jo Tae Ei Hong JunHo Kim Dae-Hwang Yoo Jinwook Shin Walter Commerell Dae-Hwan Kim Jong Wook Roh 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期246-253,共8页
The relation between the structure of the silver network electrodes and the properties of Cu(In,Ga)Se_(2)(CIGS)solar cells is systemically investigated.The Ag network electrode is deposited onto an Al:ZnO(AZO)thin fil... The relation between the structure of the silver network electrodes and the properties of Cu(In,Ga)Se_(2)(CIGS)solar cells is systemically investigated.The Ag network electrode is deposited onto an Al:ZnO(AZO)thin film,employing a self-forming cracked template.Precise control over the cracked template's structure is achieved through careful adjustment of temperature and humidity.The Ag network electrodes with different coverage areas and network densities are systemically applied to the CIGS solar cells.It is revealed that predominant fill factor(FF)is influenced by the figure of merit of transparent conducting electrodes,rather than sheet resistance,particularly when the coverage area falls within the range of 1.3–5%.Furthermore,a higher network density corresponds to an enhanced FF when the coverage areas of the Ag networks are similar.When utilizing a thinner AZO film,CIGS solar cells with a surface area of 1.0609 cm^(2)exhibit a notable performance improvement,with efficiency increasing from 10.48%to 11.63%.This enhancement is primarily attributed to the increase in FF from 45%to 65%.These findings underscore the considerable potential for reducing the thickness of the transparent conductive oxide(TCO)in CIGS modules with implications for practical applications in photovoltaic technology. 展开更多
关键词 CIGS large-area solar cell metal mesh metallic network transparent electrode
下载PDF
3D-Printed Monolith Metallic Ni-Mo Electrodes for Ultrahigh Current Hydrogen Evolution
16
作者 Yanran Xun Hongmei Jin +7 位作者 Yuemeng Li Shixiang Zhou Kaixi Zhang Xi Xu Win Jonhson Shuai Chang Teck Leong Tan Jun Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期224-233,共10页
In this work,we reported a series of monolithic 3D-printed Ni-Mo alloy electrodes for highly efficient water splitting at high current density(1500 mA cm^(-2))with excellent stability,which provides a solution to scal... In this work,we reported a series of monolithic 3D-printed Ni-Mo alloy electrodes for highly efficient water splitting at high current density(1500 mA cm^(-2))with excellent stability,which provides a solution to scale up Ni-Mo catalysts for HER to industry use.All possible Ni-Mo metal/alloy phases were achieved by tuning the atomic composition and heat treatment procedure,and they were investigated through both experiment and simulation,and the optimal NiMo phase shows the best performance.Density functional theory(DFT)calculations elucidate that the NiMo phase has the lowest H2O dissociation energy,which further explains the exceptional performance of NiMo.In addition,the microporosity was modulated via controlled thermal treatment,indicating that the 1100℃sintered sample has the best catalytic performance,which is attributed to the high electrochemically active surface area(ECSA).Finally,the four different macrostructures were achieved by 3D printing,and they further improved the catalytic performance.The gyroid structure exhibits the best catalytic performance of driving 500 mA cm^(-2)at a low overpotential of 228 mV and 1500 mA cm^(-2)at 325 mV,as it maximizes the efficient bubble removal from the electrode surface,which offers the great potential for high current density water splitting. 展开更多
关键词 3D-printed electrode Ni-Mo catalyst phase tuning ultra-high current density HER
下载PDF
Towards a new avenue for rapid synthesis of electrocatalytic electrodes via laser-induced hydrothermal reaction for water splitting
17
作者 Yang Sha Menghui Zhu +6 位作者 Kun Huang Yang Zhang Francis Moissinac Zhizhou Zhang Dongxu Cheng Paul Mativenga Zhu Liu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期340-351,共12页
Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring ... Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production. 展开更多
关键词 electrocatalytic electrode laser-induced hydrothermal reaction NiFe layered double hydroxides hydrogen evolution reaction water splitting energy consumption production rate
下载PDF
Rapid Fabrication of Electrodes for Symmetrical Solid Oxide Cells by Extreme Heat Treatment
18
作者 Weiwei Fan Zhu Sun +2 位作者 Manxi Wang Manxian Li Yuming Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期349-356,共8页
Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop... Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop a novel method,extreme heat treatment(EHT),to rapidly fabricate electrodes for SSOC.We show that by using the EHT method,the electrode can be fabricated in seconds(the fastest method to date),benefiting from enhanced reaction kinetics.The EHT-fabricated electrode presents a porous structure and good adhesion with the electrolyte.In contrast,tens of hours are needed to prepare the electrode by the conventional approach,and the prepared electrode exhibits a dense structure with a larger particle size due to the lengthy treatment.The EHT-fabricated electrode shows desirable electrochemical performance.Moreover,we show that the electrocatalytic activity of the perovskite electrode can be tuned by the vigorous approach of fast exsolution,deriving from the increased active sites for enhancing the electrochemical reactions.At 900℃,a promising peak power density of 966 mW cm^(-2)is reached.Our work exploits a new territory to fabricate and develop advanced electrodes for SSOCs in a rapid and high-throughput manner. 展开更多
关键词 electrochemical performance extreme heat treatment perovskite electrode symmetrical solid oxide cells
下载PDF
Electrosynthesis and physicochemical properties ofα-PbO_2-CeO_2-TiO_2 composite electrodes 被引量:4
19
作者 陈步明 郭忠诚 徐瑞东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1191-1198,共8页
In order to investigate the effect of solid particles dopants on physicochemical properties of α-PbO2 electrodes, a-PbO2 composite electrodes doped with nano-TiO2 and nano-CeO2 particles were respectively prepared on... In order to investigate the effect of solid particles dopants on physicochemical properties of α-PbO2 electrodes, a-PbO2 composite electrodes doped with nano-TiO2 and nano-CeO2 particles were respectively prepared on A1/conductive coating electrodes in 4 mol/L NaOH solution with addition of PbO until saturation by anodic codeposition. The electrodeposition mechanism, morphology, composition and structure of the composite electrodes were characterized by cyclic voltarnmogram (CV), SEM, EDAX and XRD. Results show that the doping solid particles can not change reaction mechanism of α-PbO2 electrode in alkaline or acid plating bath, but can improve deposition rate and reduce oxygen evolution potential. The doping solid particles can inhibit the growth of a-PbO2 unit cell and improve specific surface area. The diffraction peak intensity of a-PbO2-CeO2-TiO2 composite electrode is lower than that of pure a-PbO2 electrode. The electrocatalytic activity of a-PbO2-2.12%CEO2-3.71%TIO2 composite electrode is the best. The Guglielmi model for CeO2 and TiO2 codeposition with a-PbO2 is also pronosed. 展开更多
关键词 A1 lead dioxide composite electrodes ELECTROCATALYSIS physicochemical property
下载PDF
Biomass carbon materials for high-performance secondary battery electrodes:A review
20
作者 Qiankun Zhou Wenjie Yang +5 位作者 Lili Wang Hongdian Lu Shibin Nie Liangji Xu Wei Yang Chunxiang Wei 《Resources Chemicals and Materials》 2024年第2期123-145,共23页
Recently,the challenges pertaining to the recycling of metal-based electrode materials and the resulting environmental pollution have impeded the advancement of battery technology.Consequently,biomass-derived carbon m... Recently,the challenges pertaining to the recycling of metal-based electrode materials and the resulting environmental pollution have impeded the advancement of battery technology.Consequently,biomass-derived carbon materials,distinguished by their eco-friendliness and consistent performance,stand as a pivotal solution to this predicament.Researchers have made significant strides in the integration of porous carbon materials derived from biomass into battery systems.Nevertheless,these materials face issues such as limited efficiency,modest yields,and a complex fabrication process.This paper endeavors to summarize the recent advancements in the utilization of biomass-derived carbon materials within the realm of batteries,offering a comprehensive examination of their battery performance from three distinct perspectives:synthesis,structure,and application.We posit that composite materials composed of biomass-derived carbon align with the trajectory of future development and present extensive potential for application.Ultimately,we will expound upon our profound outlook regarding the furtherance of biomass-derived carbon materials. 展开更多
关键词 Biomass carbon POROSITY DOPANT Electrode Ionic batteries
下载PDF
上一页 1 2 130 下一页 到第
使用帮助 返回顶部