期刊文献+
共找到14,089篇文章
< 1 2 250 >
每页显示 20 50 100
The emerging role of mesenchymal stem cell-derived extracellular vesicles to ameliorate hippocampal NLRP3 inflammation induced by binge-like ethanol treatment in adolescence
1
作者 Susana Mellado María JoséMorillo-Bargues +4 位作者 Carla Perpiñá-Clérigues Francisco García-García Victoria Moreno-Manzano Consuelo Guerri María Pascual 《Neural Regeneration Research》 SCIE CAS 2025年第4期1153-1163,共11页
Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with ... Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with neuroinflammation and brain damage.Mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)have been shown to restore the neuroinflammatory response,along with myelin and synaptic structural alterations in the prefrontal cortex,and alleviate cognitive and memory dysfunctions induced by binge-like ethanol treatment in adolescent mice.Considering the therapeutic role of the molecules contained in mesenchymal stem cell-derived extracellular vesicles,the present study analyzed whether the administration of mesenchymal stem cell-derived extracellular vesicles isolated from adipose tissue,which inhibited the activation of the NLRP3 inflammasome,was capable of reducing hippocampal neuroinflammation in adolescent mice treated with binge drinking.We demonstrated that the administration of mesenchymal stem cell-derived extracellular vesicles ameliorated the activation of the hippocampal NLRP3 inflammasome complex and other NLRs inflammasomes(e.g.,pyrin domain-containing 1,caspase recruitment domain-containing 4,and absent in melanoma 2,as well as the alterations in inflammatory genes(interleukin-1β,interleukin-18,inducible nitric oxide synthase,nuclear factor-kappa B,monocyte chemoattractant protein-1,and C–X3–C motif chemokine ligand 1)and miRNAs(miR-21a-5p,miR-146a-5p,and miR-141-5p)induced by binge-like ethanol treatment in adolescent mice.Bioinformatic analysis further revealed the involvement of miR-21a-5p and miR-146a-5p with inflammatory target genes and NOD-like receptor signaling pathways.Taken together,these findings provide novel evidence of the therapeutic potential of MSC-derived EVs to ameliorate the hippocampal neuroinflammatory response associated with NLRP3 inflammasome activation induced by binge drinking in adolescence. 展开更多
关键词 ADOLESCENCE binge-like ethanol treatment extracellular vesicles hippocampus mesenchymal stem cells neuroinflammation NOD- LRR-and pyrin domain-containing protein 3(NLRP3)
下载PDF
A route to selectively increase the microporous structure of zeolite and its optimization in the ethanol to butadiene reaction
2
作者 Tian Ye Yuhao Bai +3 位作者 Kewei Wang Weijie Hu Meng Zhang Li-Ming Wu 《Industrial Chemistry & Materials》 2024年第1期100-109,共10页
Control over the pore structure of zeolite is very important,so researchers are trying to regulate the pore structure of zeolite through various methods to endow it with better performance in industrial applications.H... Control over the pore structure of zeolite is very important,so researchers are trying to regulate the pore structure of zeolite through various methods to endow it with better performance in industrial applications.Here,a confined etching route that could selectively increase the microporous structure of zeolite is developed using ethanol/amine buffer solution.Ethanol is introduced into an aqueous amine solution,where it could decrease the migration rate and concentration of hydroxyl ions which can etch the framework atoms of zeolite to fabricate various porous structures,consequently developing a confined etching route that could selectively increase the microporous structure of zeolite,unlike conventional approaches that generally increase mesoporous and macroporous architectures.In addition,ethanol enhances the solubility of amine in water,and a buffer solution(ethanol/amine)is formed,which is able to release hydroxyl ions continuously.Based on the above confined etching route,a micropore-increased beta crystal is synthesized and when used as a carrier in ZnLaY/beta catalysts,it achieves excellent ethanol conversion of 96.04%and butadiene selectivity of 64.22%in 20 h time-on-stream in an ethanol to butadiene reaction. 展开更多
关键词 ethanol Confined etching route Microporeincreased Beta zeolite ethanol to butadiene
下载PDF
Ethanol changes Nestin-promoter induced neural stem cells to disturb newborn dendritic spine remodeling in the hippocampus of mice 被引量:1
3
作者 Guixiang Wang Wenjia Wang +7 位作者 Ye Zhang Xiaoying Gou Qingqing Zhang Yanmiao Huang Kuo Zhang Haotian Zhang Jingyu Yang Yuting Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期416-424,共9页
Adolescent binge drinking leads to long-lasting disorders of the adult central nervous system,particularly aberrant hippocampal neurogenesis.In this study,we applied in vivo fluorescent tracing using NestinCreERT2::Ro... Adolescent binge drinking leads to long-lasting disorders of the adult central nervous system,particularly aberrant hippocampal neurogenesis.In this study,we applied in vivo fluorescent tracing using NestinCreERT2::Rosa26-tdTomato mice and analyzed the endogenous neurogenesis lineage progression of neural stem cells(NSCs)and dendritic spine formation of newborn neurons in the subgranular zone of the dentate gyrus.We found abnormal orientation of tamoxifen-induced tdTomato+(tdTom^(+))NSCs in adult mice 2 months after treatment with EtOH(5.0 g/kg,i.p.)for 7 consecutive days.EtOH markedly inhibited tdTom^(+)NSCs activation and hippocampal neurogenesis in mouse dentate gyrus from adolescence to adulthood.EtOH(100 mM)also significantly inhibited the proliferation to 39.2%and differentiation of primary NSCs in vitro.Adult mice exposed to EtOH also exhibited marked inhibitions in dendritic spine growth and newborn neuron maturation in the dentate gyrus,which was partially reversed by voluntary running or inhibition of the mammalian target of rapamycinenhancer of zeste homolog 2 pathway.In vivo tracing revealed that EtOH induced abnormal orientation of tdTom+NSCs and spatial misposition defects of newborn neurons,thus causing the disturbance of hippocampal neurogenesis and dendritic spine remodeling in mice. 展开更多
关键词 ADOLESCENCE ADULTHOOD ethanol dentate gyrus EZH2 in vivo tracing lineage progression mTOR neural stem cell newborn dendritic spine newborn neurons
下载PDF
Microchannel reactive distillation for the conversion of aqueous ethanol to ethylene
4
作者 Johnny Saavedra-Lopez Stephen D.Davidson +6 位作者 Paul H.Humble Dan R.Bottenus Vanessa Lebarbier Dagle Yuan Jiang Charles J.Freeman Ward E.Te Grotenhuis Robert A.Dagle 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期481-493,共13页
Here we demonstrate the proof-of-concept for microchannel reactive distillation for alcohol-to-jet application:combining ethanol/water separation and ethanol dehydration in one unit operation.Ethanol is first distille... Here we demonstrate the proof-of-concept for microchannel reactive distillation for alcohol-to-jet application:combining ethanol/water separation and ethanol dehydration in one unit operation.Ethanol is first distilled into the vapor phase,converted to ethylene and water,and then the water co-product is condensed to shift the reaction equilibrium.Process intensification is achieved through rapid mass transfer-ethanol stripping from thin wicks using novel microchannel architectures-leading to lower residence time and improved separation efficiency.Energy savings are realized with integration of unit operations.For example,heat of condensing water can offset vaporizing ethanol.Furthermore,the dehydration reaction equilibrium shifts towards completion by immediate removal of the water byproduct upon formation while maintaining aqueous feedstock in the condensed phase.For aqueous ethanol feedstock(40%_w),71% ethanol conversion with 91% selectivity to ethylene was demonstrated at 220℃,600psig,and 0.28 h^(-1) wt hour space velocity.2.7 stages of separation were also demonstrated,under these conditions,using a device length of 8.3 cm.This provides a height equivalent of a theoretical plate(HETP),a measure of separation efficiency,of ^(3).3 cm.By comparison,conventional distillation packing provides an HETP of ^(3)0 cm.Thus,9,1 × reduction in HETP was demonstrated over conventional technology,providing a means for significant energy savings and an example of process intensification.Finally,preliminary process economic analysis indicates that by using microchannel reactive distillation technology,the operating and capital costs for the ethanol separation and dehydration portion of an envisioned alcoholto-jet process could be reduced by at least 35% and 55%,respectively,relative to the incumbent technology,provided future improvements to microchannel reactive distillation design and operability are made. 展开更多
关键词 Catalytic distillation ethanol dehydration Process intensification MICROCHANNEL Alcohol-to-jet process
下载PDF
Impact of ethanol on the flotation efficiency of imidazolium ionic liquids as collectors:Insights from dynamic surface tension and solvation analysis
5
作者 Qian Cheng Zerui Lei +1 位作者 Guangjun Mei Jianhua Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2645-2656,共12页
To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interest... To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interesting phenomena were observed in which EtOH exerted different effects on the flotation efficiency of two ILs with similar structures.When EtOH was used to dissolve 1-dodecyl-3-methylimidazolium chloride(C12[mim]Cl)and as a collector for pure quartz flotation tests at a concentration of 1×10^(−5)mol·L^(−1),quartz recovery increased from 23.77%to 77.91%compared with ILs dissolved in water.However,quartz recovery of 1-dodecyl-3-methylim-idazolium hexafluorophosphate(C12[mim]PF6)decreased from 60.45%to 24.52%under the same conditions.The conditional experi-ments under 1×10^(−5)mol·L^(−1)ILs for EtOH concentration and under 2vol%EtOH for ILs concentration confirmed this difference.After being affected by EtOH,the mixed ore flotation tests of quartz and hematite showed a decrease in the hematite concentrate grade and re-covery for the C12[mim]Cl collector,whereas the hematite concentrate grade and recovery for the C12[mim]PF6 collector increased.On the basis of these differences and observations of flotation foam,two-phase bubble observation tests were carried out.The EtOH promoted the foam height of two ILs during aeration.It accelerated static froth defoaming after aeration stopped,and the foam of C12[mim]PF6 de-foaming especially quickly.In the discussion of flotation tests and foam observation,an attempt was made to explain the reasons and mechanisms behind the diverse phenomena using the dynamic surface tension effect and solvation effect results from EtOH.The solva-tion effect was verified through Fourier transform infrared(FT-IR),X-ray photoelectron spectroscopy(XPS),and Zeta potential tests.Al-though EtOH affects the adsorption of ILs on the ore surface during flotation negatively,it holds an positive value of inhibiting foam mer-ging during flotation aeration and accelerating the defoaming of static foam.And induce more robust secondary enrichment in the mixed ore flotation of the C12[mim]PF6 collector,facilitating effective mixed ore separation even under inhibitor-free conditions. 展开更多
关键词 ionic liquid ethanol flotation foam SOLVATION dynamic surface tension
下载PDF
Albizzia chinensis(Osbeck)Merr extract YS ameliorates ethanol-induced acute gastric ulcer injury in rats by regulating NRF2 signaling pathway
6
作者 Bo Tang Liangning Li +4 位作者 Yuanzhi Yu Guibin Wang Shuanggang Ma Shishan Yu Jianjun Zhang 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第3期275-282,共8页
Background:Around the world,there is a high incidence of gastric ulcers.YS,an extract from the Chinese herb Albizzia chinensis(Osbeck)Merr,has potential therapeutic applications for gastrointestinal diseases.Here we e... Background:Around the world,there is a high incidence of gastric ulcers.YS,an extract from the Chinese herb Albizzia chinensis(Osbeck)Merr,has potential therapeutic applications for gastrointestinal diseases.Here we elucidated the protective effect and underlying mechanism of action of YS on gastric ulcer in rats injured by ethanol.Methods:The ethanol-i nduced gastric ulcer rat model was used to assess the protective effect of YS.A pathological examination of gastric tissue was performed by H&E staining.GES-1 cells damaged by hydrogen peroxide were used to simulate oxidative damage in gastric mucosal epithelial cells.Endogenous NRF2 was knocked down using small interfering RNA.Immunoprecipitation was used to detect ubiquitination of NRF2.Co-i mmunoprecipitation was used to detect the NRF2-Keap1 interaction.Results:YS(10 and 30 mg/kg,i.g.)significantly reduced the ulcer index,decreased MDA level,and increased SOD and GSH levels in gastric tissues damaged by ethanol.YS promoted NRF2 translocation from cytoplasm to nucleus and enhanced the NQO1 and HO-1 expression levels in injured rat gastric tissue.In addition,YS regulated NQO1 and HO-1 via NRF2 in H_(2)O_(2)-i nduced oxidative injured GES-1 cells.Further studies on the underlying mechanism indicated that YS reduced the interaction between NRF2 and Keap1 and decreased ubiquitylation of NRF2,thereby increasing its stability and expression of downstream factors.NRF2 knockdown abolished the effect of YS on MDA and SOD in GES-1 cells treated with H_(2)O_(2).Conclusion:YS reduced the NRF2-Keap1 interaction,promoting NRF2 translocation into the nucleus,which increasing the transcription and translation of NQO1 and HO-1 and improved the antioxidant capacity of rat stomach. 展开更多
关键词 ANTIOXIDATIVE ethanol gastric ulcer NRF2 YS
下载PDF
Recent advances in Ni-based catalysts for the electrochemical oxidation of ethanol
7
作者 Xing Tan Shiming Chen +5 位作者 Dafeng Yan Ruixing Du Qitong Zhong Longfei Liao Zhenchen Tang Feng Zeng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期588-614,共27页
The electrochemical ethanol oxidation reaction(EOR) plays a crucial role in electrochemical hydrogen production and direct ethanol fuel cells, both vital for utilizing renewable energies. Ni-based catalysts are pivota... The electrochemical ethanol oxidation reaction(EOR) plays a crucial role in electrochemical hydrogen production and direct ethanol fuel cells, both vital for utilizing renewable energies. Ni-based catalysts are pivotal in enabling efficient EOR, leading to the formation of acetic acid/acetaldehyde or CO_(2). These can serve as alternative anodic oxidation reactions for oxygen evolution reaction(OER) in water electrolysis or the anodic reaction for direct ethanol fuel cells, respectively. This review explores recent advancements in EOR over Ni-based catalysts. It begins with an overview of EOR performance across various Ni-based catalysts, followed by an examination of the reaction chemistry, mechanism, and active sites.The review then delves into strategies for designing highly active Ni-based EOR catalysts. These strategies include promotion with transition metals, noble metals, nonmetals, and carbon materials, as well as creating amorphous structures, special morphologies, and single-atom catalysts. Additionally, it discusses the concept of self-supporting catalysts using three-dimensional porous substrates. Finally, the review highlights emerging methodologies that warrant further exploration, along with future directions for designing highly active and stable EOR catalysts. 展开更多
关键词 ethanol oxidation NICKEL Water electrolysis Fuel cell
下载PDF
Local coordination and electronic interactions of Pd/MXene via dual‐atom codoping with superior durability for efficient electrocatalytic ethanol oxidation
8
作者 Zhangxin Chen Fan Jing +7 位作者 Minghui Luo Xiaohui Wu Haichang Fu Shengwei Xiao Binbin Yu Dan Chen Xianqiang Xiong Yanxian Jin 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期166-177,共12页
Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promisin... Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promising approach for the rational design of catalysts involving heteroatoms as anchors for Pd nanoparticles for ethanol oxidation reaction(EOR)catalysis.The doped B and N atoms from dimethylamine borane(DB)occupy the position of the Ti_(3)C_(2) lattice to anchor the supported Pd nanoparticles.The electrons transfer from the support to B atoms,and then to the metal Pd to form a stable electronic center.A strong electronic interaction can be produced and the d‐band center can be shifted down,driving Pd into the dominant metallic state and making Pd nanoparticles deposit uniformly on the support.As‐obtained Pd/DB–Ti_(3)C_(2) exhibits superior durability to its counterpart(∼14.6% retention)with 91.1% retention after 2000 cycles,placing it among the top single metal anodic catalysts.Further,in situ Raman and density functional theory computations confirm that Pd/DB–Ti_(3)C_(2) is capable of dehydrogenating ethanol at low reaction energies. 展开更多
关键词 DURABILITY electronic interactions ethanol oxidation heteroatom codoping Pd/MXene
下载PDF
Rational modulation of electronic structure in PtAuCuNi alloys boosts efficient electrocatalytic ethanol oxidation assisted with energy-saving hydrogen evolution
9
作者 Hu Yao Yinan Zheng +3 位作者 Xin Yu Songjie Hu Baolian Su Xiaohui Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期557-567,I0014,共12页
Compared to conventional electrocatalytic water splitting,electrocatalytic ethanol oxidation reaction(EOR)along with hydrogen production is considered a more energy-efficient strategy.Herein,we prepared a type of nove... Compared to conventional electrocatalytic water splitting,electrocatalytic ethanol oxidation reaction(EOR)along with hydrogen production is considered a more energy-efficient strategy.Herein,we prepared a type of novel quaternary alloy catalyst(PtAuCuNi@NF)that exhibits excellent activity for EOR(0.215 V at 10 mA cm^(-2))and hydrogen evolution reaction(HER)(7 mV at 10 mA cm^(-2)).Experimental results demonstrated that both Cu and Ni modulated the electronic environment around Pt and Au.The electron-rich active center facilitates the rapid adsorption and dissociation of reactants and intermediates for both EOR and HER.Impressively,in the ethanol-assisted overall water splitting(E-OWS),a current density of 10 mA cm^(-2)was achieved at 0.28 V.Moreover,an advanced acid-base self-powered system(A-Bsps)that can achieve a self-powered voltage of 0.59 V was assembled.Accordingly,the self-driven hydrogen production with zero external power supply was realized by integrating A-Bsps with the E-OWS equipment.The interesting results can provide a feasible strategy for designing and developing advanced nanoalloy-based materials for clean energy integration and use in various fields. 展开更多
关键词 Pt-based alloy Electronic structure ethanol oxidation Self-powered system Overall water splitting
下载PDF
Acetic acid-and furfural-based adaptive evolution of Saccharomyces cerevisiae strains for improving stress tolerance and lignocellulosic ethanol production
10
作者 Omama Rehman Youduo Wu +7 位作者 Quan Zhang Jin Guo Cuihuan Sun Huipeng Gao Yaqing Xu Rui Xu Ayesha Shahid Chuang Xue 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期26-33,共8页
Acetic acid and furfural are known as prevalent inhibitors deriving from pretreatment during lignocellulosic ethanol production.They negatively impact cell growth,glucose uptake and ethanol biosynthesis of Saccharomyc... Acetic acid and furfural are known as prevalent inhibitors deriving from pretreatment during lignocellulosic ethanol production.They negatively impact cell growth,glucose uptake and ethanol biosynthesis of Saccharomyces cerevisiae strains.Development of industrial S.cerevisiae strains with high tolerance towards these inhibitors is thus critical for efficient lignocellulosic ethanol production.In this study,the acetic acid or furfural tolerance of different S.cerevisiae strains could be significantly enhanced after adaptive evolution via serial cultivation for 40 generations under stress conditions.The acetic acid-based adaptive strain SPSC01-TA9 produced 30.5 g·L^(-1)ethanol with a yield of 0.46 g·g^(-1)in the presence of 9 g·L^(-1)acetic acid,while the acetic acid/furfural-based adaptive strain SPSC01-TAF94 produced more ethanol of 36.2 g·L^(-1)with increased yield up to 0.49 g·g^(-1)in the presence of both 9 g·L^(-1)acetic acid and 4 g·L^(-1)furfural.Significant improvements were also observed during non-detoxified corn stover hydrolysate culture by SPSC01-TAF94,which achieved ethanol production and yield of 29.1 g·L^(-1)and 0.49 g·g^(-1),respectively,the growth and fermentation efficiency of acetic acid/furfural-based adaptive strain in hydrolysate was 95%higher than those of wildtype strains,indicating the acetic acid-and furfural-based adaptive evolution strategy could be an effective approach for improving lignocellulosic ethanol production.The adapted strains developed in this study with enhanced tolerance against acetic acid and furfural could be potentially contribute to economically feasible and sustainable lignocellulosic biorefinery. 展开更多
关键词 Saccharomyces cerevisiae Lignocellulosic ethanol production Adaptive evolution Acetic acid FURFURAL
下载PDF
Tailoring Ni based catalysts by indium for the dehydrogenative coupling of ethanol into ethyl acetate
11
作者 Ming Yin Jifeng Pang +4 位作者 Jin Guo Xianquan Li Yujia Zhao Pengfei Wu Mingyuan Zheng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1321-1331,共11页
Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts we... Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium(In)for this reaction.Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst,the ethyl acetate selectivity reached 90.1%at 46.2%ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h^(-1)in the 370 h time on stream.Moreover,the ethyl acetate productivity surpassed 1.1 g_(ethyl acetate)g_(catalyst)^(-1)h^(-1),,one of the best performance in current works.According to catalyst characterizations and conditional experiments,the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys.The presence of In tailored the chemical properties of Ni,and subsequently inhibited the C-C cracking and/or condensation reactions during ethanol conversions.Over Ni4In alloy sites,ethanol was dehydrogenated into acetaldehyde,and then transformed into acetyl species with the removal of H atoms.Finally,the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved,affording a high ethyl acetate selectivity and catalyst stability. 展开更多
关键词 Dehydrogenative coupling ethanol Ethyl acetate Nickel and indium alloys
下载PDF
Ethanol steam reforming over Ni/ZSM-5 nanosheet for hydrogen production
12
作者 Porapak Suriya Shanshan Xu +8 位作者 Shengzhe Ding Sarayute Chansai Yilai Jiao Joseph Hurd Daniel Lee Yuxin Zhang Christopher Hardacre Prasert Reubroycharoen Xiaolei Fan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期247-256,共10页
Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the ... Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C. 展开更多
关键词 ZSM-5 nanosheet In situ encapsulation Ni catalyst ethanol steam reforming Hydrogen production
下载PDF
In-situ photodeposition of co-catalyst Ni_(2)P on CdS for photocatalytic conversion of ethanol for synergistic hydrogen production
13
作者 LIU Yiming MIAO Jingjing +2 位作者 ZHANG Wanggang WEI Aili WANG Jian 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第11期1629-1640,共12页
In this study,Ni_(2)P/CdS composites were constructed by depositing non-precious metal co-catalyst Ni_(2)P on a one-dimensional network of CdS using a simple in-situ photodeposition method.The prepared photocatalysts ... In this study,Ni_(2)P/CdS composites were constructed by depositing non-precious metal co-catalyst Ni_(2)P on a one-dimensional network of CdS using a simple in-situ photodeposition method.The prepared photocatalysts promoted the decomposition of ethanol into high-value-added products while generating hydrogen.The composite photoanodes loaded with the Ni_(2)P co-catalysts showed significantly higher ethanol conversion and hydrogen production in the visible light region,which was almost three times higher than that of pure CdS.The main products of photocatalytic ethanol production are acetaldehyde(AA)and 2,3-butanediol(2,3-BDA).Compared with CdS,the selectivity of the composite photocatalysts for converting ethanol to acetaldehyde was significantly improved(62% to 78%).Characterization of the prepared photocatalysts confirmed that the loading of Ni_(2)P co-catalysts on CdS not only broadened the optical region of the catalysts for trapping light but also effectively promoted the separation and transfer of charge carriers,which significantly improved the photocatalytic efficiency of ethanol conversion and hydrogen production in the catalysts.It has been proven through Electron Paramagnetic Resonance testing that loading a Ni_(2)P co-catalyst on CdS is beneficial for the adsorption of hydroxyethyl radicals(*CH(OH)CH_(3)),thereby further improving the selectivity of acetaldehyde.This study plays an important role in the rational design of composite catalyst structures and the introduction of co-catalysts to improve catalyst performance,promote green chemistry,advocate a low-carbon society,and promote sustainable development. 展开更多
关键词 photocatalysis Ni_(2)P/CdS ethanol conversion hydrogen production
下载PDF
Antibacterial,antioxidant and antiproliferation activities of essential oils and ethanolic extracts from Chinese mugwort(Artemisia vulgaris L.)leaf in Shanxi
14
作者 Hu-Tan-Xian Zhang Feng-Ru Lyu +5 位作者 Jia-Tong He Chen-Yu Liu Zheng-Yang Zhou Rui-Jie Wu Zi-Qing Zhao He Li 《Traditional Medicine Research》 2024年第1期47-56,共10页
Background:Artemisia vulgaris,a medicinal aromatic plant,is widely used as a food item,tonic pharmaceutical,and cosmetic industry additive owing to its antibacterial,antihypertensive,hepatoprotective,antioxidant,and a... Background:Artemisia vulgaris,a medicinal aromatic plant,is widely used as a food item,tonic pharmaceutical,and cosmetic industry additive owing to its antibacterial,antihypertensive,hepatoprotective,antioxidant,and antispasmodic properties.But the effect of different geographic locations on the chemical composition and bioactivities of its extracts is unclear.Methods:Biological activities of essential oils and ethanol extracts of three varieties of Artemisia vulgaris leaves,which are grown in Shanxi province China,were studied.Results:Gas chromatography-mass spectrometry analysis revealed that the main components of essential oils were terpenes and ketones.Essential oils and ethanol extract of Artemisia vulgaris leaves possessed good antioxidant activities,and their half maximal inhibitory concentrations determined using 1,1-diphenyl-2-picrylhydrazyl and 2,2’-azinobis-(3-ethylbenzthiazoline-6-sulphonate)assays were 57.0 and 22.9μg/mL,respectively.The essential oils also exhibited remarkable antibacterial activity against three foodborne pathogenic bacterial strains.The ethanol extract presented a high anticancer activity against the MGC-803 human gastric cancer cell line.Conclusion:These biological activities were well correlated with the composition of the extract and EOs,which in turn is affected by the genetic composition of Artemisia vulgaris and geographic location and diverse climatic condition under which it is grown.These findings demonstrate the remarkable potential of Artemisia vulgaris as a valuable source of antioxidant,antibacterial,and anticancer agents. 展开更多
关键词 Artemisia vulgaris essential oils ethanol extracts ANTIOXIDANT ANTIPROLIFERATION
下载PDF
Mono Ethanol Amine (MEA) Pulping of Wheat Straw: An Environmentally Friendly Suggestion for the Fluff Pulp Production
15
作者 Saeed Ismaeilimoghadam Saeed Mahdavi +2 位作者 Mehdi Pourhashemi Afsaneh Shahraki Mehdi Jonoobi 《Journal of Renewable Materials》 EI CAS 2024年第10期1771-1789,共19页
This research aimed to investigate the effect of pulping conditions and refining intensities of wheat straw to be recommended for fluff pulp production.For this purpose,mono ethanol amine(MEA)was selected as a de-lign... This research aimed to investigate the effect of pulping conditions and refining intensities of wheat straw to be recommended for fluff pulp production.For this purpose,mono ethanol amine(MEA)was selected as a de-lignification agent at three levels of 50:50,25:75,and 15:85(MEA/water,W/V%),and soda-AQ 14 W/V%was used as a reference pulping.To investigate the optimal refining intensity,the obtained pulp was passed through a single disk laboratory refiner from 0 to 6 times and in two different consistencies(1.5 and 2.5 W/V%).Total yield,kappa number,ash content,and the Schopper-Riegler(SR°)freeness of the prepared pulps were investigated.Finally,hand sheets with a targeted basic weight of 70 g/m^(2) were made according to the related standards.The hand sheets were characterized using Fourier transform infrared(FTIR)spectroscopy and a field emission scanning electron microscope(FE-SEM).Sheet density,brightness,and mechanical properties such as burst,tensile,and tear indices were also investigated.The FE-SEM photographs showed that the texture of the hand sheet became denser as the refining intensity increased.External fibrillation on the surface of the fibers was also observed,especially on those refined with 2.5%consistency.The results of the chemical composition of wheat straw indicated that wheat straw containing a high percentage of holocellulose is an excellent candidate for the production of fluff pulp.The total yield and kappa number of MEA pulps increased with the decrease in MEA concentration.FTIR results indicated the presence of a peak related to amino groups in the pulp related to MEA pulp.The results also indicated that the mechanical properties of the papers,except for the tear index,were enhanced as the intensity of refining and the pulp consistency during refining increased. 展开更多
关键词 Wheat straw mono ethanol amine fluff pulp CELLULOSE
下载PDF
Efficient stabilizing agent-free synthesis of gold nanoparticles via square-wave pulse deposition for enhanced catalytic performance in ethanol electrooxidation
16
作者 Setia Budi Aulia Siti Pathoni +5 位作者 Annisa Auliya Suci Winarsih Mohammad Hamzah Fauzi Yusmaniar Babay Asih Suliasih Hilman Syafei 《Materials Reports(Energy)》 EI 2024年第4期67-74,I0002,共9页
The pressing environmental concerns and the depletion of fossil fuel reserves necessitate a transition toward sustainable energy sources.Ethanol,a renewable biomass-derived fuel,is a promising alternative due to its a... The pressing environmental concerns and the depletion of fossil fuel reserves necessitate a transition toward sustainable energy sources.Ethanol,a renewable biomass-derived fuel,is a promising alternative due to its availability and high energy density.This study investigates the synthesis of gold nanoparticles(Au NPs)via a square-wave pulse deposition technique,aiming to enhance catalytic activity for ethanol electrooxidation.By varying pulse durations,we were able to exert precise control over Au NP size and distribution without stabilizing agents.Characterization using field emission scanning electron microscopy and X-ray diffraction techniques confirmed the formation of clustered nanoparticles of metallic gold phase.Electrochemical characteristics analyses revealed that Au NPs synthesized with a 900 ms pulse duration exhibited the lowest charge transfer resistance and the highest electrochemically active surface area.The electrocatalytic performance test of these Au NPs demonstrated an anodic current density of 2.5 mA cm^-(2)and a Tafel slope of 78 mV dec^(-1),indicating superior catalytic performance and reaction kinetics.Additionally,the Au NPs showed high resistance to poisoning,as evidenced by a low j_(b)/j_(f)ratio of 0.28 and stable chronoamperometric response.These findings underscore the potential of this synthesis method for producing high-performance electrocatalysts utilized in exploiting ethanol's potential as an environmentally friendly energy carrier. 展开更多
关键词 Gold nanoparticles Stabilizing agent-free synthesis method Square-wave pulse deposition ELECTRODEPOSITION ethanol electrooxidation
下载PDF
Validation of a Method for Characterization of Ethanol in Water by HS-GC-FID to Serve the Traceability of Halal Measurements
17
作者 Adel B. Shehata Abdulrahman R. Al Askar +3 位作者 Mohammed A. Al Rasheed Abdulrahman M. Al Zahrany Fahd A. Al Kharraa Sowailem A. Al Sowailem 《Green and Sustainable Chemistry》 2024年第2期17-28,共12页
The determination of the ethanol content in food products is of fundamental importance for HALAL certification. In this work, an analytical method for the determination of ethanol in water by headspace gas chromatogra... The determination of the ethanol content in food products is of fundamental importance for HALAL certification. In this work, an analytical method for the determination of ethanol in water by headspace gas chromatography with flame ionization detector (HS-GC-FID) has been developed and validated for the use in characterization of ethanol reference materials. The validation study was carried out in the linear calibration range 100 - 1500 mg/kg using the NIST SRM 2900, nominal 95.6%. The studied performance characteristics of the method were the limit of detection, LOD, the limit of quantification LOQ, selectivity, linearity, precision, recovery and bias. The validation results showed that the method is selective, precise, accurate and free from any significant bias. The LOD and LOQ were 1.27 and 3.86 mg/kg respectively and the estimated expanded uncertainty was 2% indicating that the method is fit for the purpose of certification of ethanol in water reference materials. 展开更多
关键词 ethanol HS-GC-FID VALIDATION LINEARITY Precision Bias
下载PDF
Ethanol extract of cassia seed alleviates metabolic dysfunction-associated steatotic liver disease by acting on multiple lipid metabolism-related pathways
18
作者 Wen Li Jia Wang +10 位作者 YilianYang Chunlei Duan Bing Shao Mingxiu Zhang Jiapan Wang Peifeng Li Ye Yuan Yan Zhang Hongyu Ji Xingda Li Zhimin Du 《Frigid Zone Medicine》 2024年第3期160-176,共17页
Background and objective:In northern China's cold regions,the prevalence of metabolic dysfunction-associated steatotic liver disease(MASLD)exceeds 50%,significantly higher than the national and global rates.MASLD ... Background and objective:In northern China's cold regions,the prevalence of metabolic dysfunction-associated steatotic liver disease(MASLD)exceeds 50%,significantly higher than the national and global rates.MASLD is an important risk factor for cardiovascular and cerebrovascular diseases,including coronary heart disease,stroke,and tumors,with no specific therapeutic drugs currently available.The ethanol extract of cassia seed(CSEE)has shown promise in lowering blood lipids and improving hepatic steatosis,but its mechanism in treating MASLD remains underexplored.This study aims to investigate the therapeutic effects and mechanisms of CSEE.Methods:MASLD models were established in male Wistar rats and golden hamsters using a high fat diet(HFD).CSEE(10,50,250 mg/kg)was administered via gavage for six weeks.Serum levels of total cholesterol(TC),triglyceride(TG),low-density lipoprotein cholesterol(LDL-C),high-density lipoprotein cholesterol(HDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),as well as liver TC and TG,were measured using biochemical kits.Histopathological changes in the liver were evaluated using Oil Red O staining,Hematoxylin-eosin(H&E)staining,and transmission electron microscopy(TEM).HepG2 cell viability was assessed using the cell counting kit-8(CCK8)and Calcein-AM/PI staining.Network pharmacology was used to analyze drug-disease targets,and western blotting was used to confirm these predictions.Results:CSEE treatment significantly reduced serum levels of TC,TG,LDL-C,ALT,and AST,and improved liver weight,liver index,and hepatic lipid deposition in rats and golden hamsters.In addition,CSEE alleviated free fatty acid(FFA)-induced lipid deposition in HepG2 cells.Molecular biology experiments demonstrated that CSEE increased the protein levels of p-AMPK,p-ACC,PPARα,CPT1A,PI3K P110 and p-AKT,while decreasing the protein levels of SREBP1,FASN,C/EBPα,and PPARγ,thus improving hepatic lipid metabolism and reducing lipid deposition.The beneficial effects of CSEE were reversed by small molecule inhibitors of the signaling pathways in vitro.Conclusion:CSEE improves liver lipid metabolism and reduces lipid droplet deposition in Wistar rats and golden hamsters with MASLD by activating hepatic AMPK,PPARα,and PI3K/AKT signaling pathways. 展开更多
关键词 cassia seed ethanol extract metabolic dysfunction related fatty liver disease network pharmacology
下载PDF
Enhanced ethanol electro-oxidation on CeO_2-modified Pt/Ni catalysts in alkaline solution 被引量:3
19
作者 徐志花 饶丽霞 +3 位作者 宋海燕 严朝雄 张利君 杨水彬 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期305-312,共8页
Pt/Ni catalysts modified with CeO2 nanoparticles were prepared by simple composite electrodeposition of Ni and CeO2,and spontaneous Ni partial replacement by Pt processes.The as-prepared CeO2-modified Pt/Ni catalysts ... Pt/Ni catalysts modified with CeO2 nanoparticles were prepared by simple composite electrodeposition of Ni and CeO2,and spontaneous Ni partial replacement by Pt processes.The as-prepared CeO2-modified Pt/Ni catalysts showed enhanced catalytic performance for ethanol electro-oxidation compared with pure Pt/Ni,and acetate species were proposed to be the main products of the oxidation when using these catalysts.The content of CeO2 in the as-prepared catalysts influenced their catalytic activity,with Pt/NiCe2(obtained from an electrolyte containing 100 mg/L CeO2 nanoparticles) exhibiting higher activity and relatively better stability in ethanol electro-oxidation.This was mainly due to the oxygen storage capacity of CeO2,the interaction between Pt and CeO2/Ni,and the relatively small contact and charge transfer resistances.The results of this work thus suggest that electrocatalysts with low price and high activity can be rationally designed and produced by a simple route for use in direct ethanol fuel cells. 展开更多
关键词 Direct ethanol fuel cell ethanol oxidation CeO2 nanoparticle Composite electrodeposition ELECTROCATALYST
下载PDF
Comparative Analysis: Trays versus Packed Columns in Pressure-Swing Distillation for the Separation of Tetrahydrofuran, Water and Ethanol Azeotropic Mixture
20
作者 Samuel Oluwaseun Ogunrinde Tolulope Daniel Adekoya Thomas A. Orhadahwe 《World Journal of Engineering and Technology》 2024年第3期798-819,共22页
This paper delves into the comparative study of tray and packed column pressure swing distillation systems, focusing on the separation of a ternary mixture containing ethanol, tetrahydrofuran (THF), and water. The stu... This paper delves into the comparative study of tray and packed column pressure swing distillation systems, focusing on the separation of a ternary mixture containing ethanol, tetrahydrofuran (THF), and water. The study particularly emphasizes the production of 99.5 w/w% tetrahydrofuran from the downstream product of 1,4-butanediol synthesis via diethyl maleate. Pro/II simulation software is utilized to explore various system configurations, including sieve trays, valve trays, and packed columns. Material and energy balances are performed to ascertain stream compositions and energy demands. The investigation encompasses the effects of column operating pressure on condenser and reboiler temperatures, as well as the implications of utility streams. A rigorous distillation model is employed to compare valve tray, sieve tray, and random packing (utilizing Norton Super Intalox) column designs by varying the number of trays, reflux ratio, and second distillation column pressure. Heat exchangers are integrated into the model, and their areas and utility flow rates are computed and integrated into the economic assessment. Economic analysis, guided by Net Present Value (NPV) calculations over a 20-year span, drives the selection of the most cost-effective design. Results demonstrate that while all designs are energy-efficient, the packed column system emerges as the most economical choice, offering a comprehensive framework for the separation process. Furthermore, optimal design configurations and operating conditions for both tray and packed column systems are outlined, providing valuable insights for industrial applications. 展开更多
关键词 Azetrope TETRAHYDROFURAN ethanol Pressure-Swing DISTILLATION Simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部