期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
Coordinated Route Planning via Nash Equilibrium and Evolutionary Computation 被引量:9
1
作者 严平 丁明跃 郑昌文 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第1期18-23,共6页
The coordinated route planning problem for multiple unmanned air vehicles (UAVs), a cooperative optimization problem, also a non-cooperative game, is addressed in the framework of game theory, A Nash equilibrium bas... The coordinated route planning problem for multiple unmanned air vehicles (UAVs), a cooperative optimization problem, also a non-cooperative game, is addressed in the framework of game theory, A Nash equilibrium based route planner is proposed. The rational is that the structure of UAV subteam usually provides some inherent and implicit preference information, which help to find the optimum coordinated routes and the optimum combination of the various objective functions. The route planner combines the concepts of evolutionary computation with problem-specific chromosome structures and evolutionary operators and handles different kinds of mission constraints in hierarchical style. Cooperation and competition among UAVs are reflected by the definition of fitness function. Simulations validate the feasibility and superiority of the game-theoretic coordinated routes planner. 展开更多
关键词 route planning game theory UAV team evolutionary computation
下载PDF
A New Algorithm for On-Line Handwriting Signature Verification Based on Evolutionary Computation 被引量:7
2
作者 ZHENG Jianbin ZHU Guangxi 《Wuhan University Journal of Natural Sciences》 CAS 2006年第3期596-600,共5页
The paper proposes an on-line signature verification algorithm, through which test sample and template signatures can be optimizedly matched, based on evolutionary computation (EC). Firstly, the similarity of signat... The paper proposes an on-line signature verification algorithm, through which test sample and template signatures can be optimizedly matched, based on evolutionary computation (EC). Firstly, the similarity of signature curve segment is defined, and shift and scale transforms are also introduced due to the randoness of on-line signature. Secondly, this paper puts forward signature verification matching algorithm after establishment of the mathematical model. Thirdly, the concrete realization of the algorithm based on EC is discussed as well. In addition, the influence of shift and scale on the matching result is fully considered in the algorithm. Finally, a computation example is given, and the matching results between the test sample curve and the template signature curve are analyzed in detail, The preliminary experiments reveal that the type of signature verification problem can be solved by EC. 展开更多
关键词 on-line signature signature verification evolutionary computation
下载PDF
Using Evolutionary Computation to Solve Problems in Nonparametric Regression 被引量:2
3
作者 Ding Lixin Kang Lishan +1 位作者 Chen Yuping Pan Zhengjun 《Wuhan University Journal of Natural Sciences》 EI CAS 1998年第1期27-31,共5页
This paper studies evolutionary mechanism of parameter selection in the construction of weight function for Nearest Neighbour Estimate in nonparametric regression. Construct an algorithm which adaptively evolves fine ... This paper studies evolutionary mechanism of parameter selection in the construction of weight function for Nearest Neighbour Estimate in nonparametric regression. Construct an algorithm which adaptively evolves fine weight and makes good prediction about unknown points. The numerical experiments indicate that this method is effective. It is a meaningful discussion about practicability of nonparametric regression and methodology of adaptive model-building. 展开更多
关键词 nonparametric regression Nearest Neighbour Estimate evolutionary computation nonhomogeneous selection adaptive model-building
下载PDF
Evolutionary Computation Based Optimization of Image Zernike Moments Shape Feature Vector 被引量:1
4
作者 LIU Maofu HU Hujun +2 位作者 ZHONG Ming HE Yanxiang HE Fazhi 《Wuhan University Journal of Natural Sciences》 CAS 2008年第2期153-158,共6页
The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the origin... The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the original image but has too many elements making trouble for the next image analysis phases. Then the low dimension image Zernike moments shape feature vector should be improved and optimized to describe more detail of the original image. So the optimization algorithm based on evolutionary computation is designed and implemented in this paper to solve this problem. The experimental results demonstrate the feasibility of the optimization algorithm. 展开更多
关键词 Zernike moment image Zernike moments shape feature vector image reconstruction evolutionary computation
下载PDF
Evolutionary computation in China: A literature survey 被引量:1
5
作者 Maoguo Gong Shanfeng Wang +2 位作者 Wenfeng Liu Jianan Yan Licheng Jiao 《CAAI Transactions on Intelligence Technology》 2016年第4期334-354,共21页
Evolutionary computation (EC) has received significant attention in China during the last two decades. In this paper, we present an overview of the current state of this rapidly growing field in China. Chinese resea... Evolutionary computation (EC) has received significant attention in China during the last two decades. In this paper, we present an overview of the current state of this rapidly growing field in China. Chinese research in theoretical foundations of EC, EC-based optimization, EC-based data mining, and EC-based real-world applications are summarized. 展开更多
关键词 evolutionary computation evolutionary algorithms OPTIMIZATION Data mining
下载PDF
Evolutionary Computation for Image Feature Extraction
6
作者 Radunovic Ljubisa Shuo-zhong Wang 《Advances in Manufacturing》 SCIE CAS 2000年第4期295-298,共4页
Modifications to an image feature extraction approach involving evolutionary computation and autonomous agents are proposed. The described algorithm allows extraction of features with certain specified characteristics... Modifications to an image feature extraction approach involving evolutionary computation and autonomous agents are proposed. The described algorithm allows extraction of features with certain specified characteristics, while omitting other undesirable details in the image. Experimental results are presented with remarks. 展开更多
关键词 evolutionary computation autonomous agent replacement policy FITNESS STIMULUS
下载PDF
Orbit Design for Responsive Space Using Multiple-objective Evolutionary Computation
7
作者 FU Xiaofeng WU Meiping ZHANG Jing 《空间科学学报》 CAS CSCD 北大核心 2012年第2期238-244,共7页
Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A... Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A special multiple-objective genetic algorithm,namely the Nondominated Sorting Genetic AlgorithmⅡ(NSGAⅡ),is used to design responsive orbits.This algorithm has considered the conflicting metrics of orbits to achieve the optimal solution,including the orbital elements and launch programs of responsive vehicles.Low-Earth fast access orbits and low-Earth repeat coverage orbits,two subtypes of responsive orbits,can be designed using NSGAI under given metric tradeoffs,number of vehicles,and launch mode.By selecting the optimal solution from the obtained Pareto fronts,a designer can process the metric tradeoffs conveniently in orbit design.Recurring to the flexibility of the algorithm,the NSGAI promotes the responsive orbit design further. 展开更多
关键词 Multiple-objective evolutionary computation Non-dominated Sorting Genetic AlgorithmⅡ(NSGAⅡ) Low-Earth Fast Access Orbit(FAO) Low-Earth Repeat Coverage Orbit(RCO) Successive-coverage constellation for responsive deployment
下载PDF
The Applications of Evolutionary Computation in Software Reliability
8
作者 Youbing Wang Hao Sun and Lishan Kang(National Key Laboratory of Computer Software Engincering.Wuhan University Wuhan 430072, P. R. China.) 《Wuhan University Journal of Natural Sciences》 CAS 1996年第Z1期645-650,共6页
Software reliability models(SRMs) are the theoretic foundation of software reliability. However, the existence of intrinsic limitation of the preposition in traditional model building confines the applications of SRMs... Software reliability models(SRMs) are the theoretic foundation of software reliability. However, the existence of intrinsic limitation of the preposition in traditional model building confines the applications of SRMs. In this paper, a new method,evolutionary computation,is used to estimate parameters of SRMs .At the same time, new algorithms are also proposed and employed to build SRMs. As the experiment results demonstrate, evolutionary computation method is po'verful and effective. 展开更多
关键词 evolutionary computation software reliability model parameters estimationmodel building
下载PDF
Modeling and Simulation for High Energy Sub-Nuclear Interactions Using Evolutionary Computation Technique
9
作者 Mahmoud Y. El-Bakry El-Sayed A. El-Dahshan +2 位作者 Amr Radi Mohamed Tantawy Moaaz A. Moussa 《Journal of Applied Mathematics and Physics》 2016年第1期53-65,共13页
High energy sub-nuclear interactions are a good tool to dive deeply in the core of the particles to recognize their structures and the forces governed. The current article focuses on using one of the evolutionary comp... High energy sub-nuclear interactions are a good tool to dive deeply in the core of the particles to recognize their structures and the forces governed. The current article focuses on using one of the evolutionary computation techniques, the so-called genetic programming (GP), to model the hadron nucleus (h-A) interactions through discovering functions. In this article, GP is used to simulate the rapidity distribution  of total charged, positive and negative pions for p<sup>-</sup>-Ar and p<sup>-</sup>-Xe interactions at 200 GeV/c and charged particles for p-pb collision at 5.02 TeV. We have done so many runs to select the best runs of the GP program and finally obtained the rapidity distribution  as a function of the lab momentum , mass number (A) and the number of particles per unit solid angle (Y). In all cases studied, we compared our seven discovered functions produced by GP technique with the corresponding experimental data and the excellent matching was so clear. 展开更多
关键词 Modeling Simulation evolutionary computation Genetic Programming Hadron-Nucleus Interaction Rapidity Distribution
下载PDF
Evolutionary Neural Architecture Search and Its Applications in Healthcare 被引量:1
10
作者 Xin Liu Jie Li +3 位作者 Jianwei Zhao Bin Cao Rongge Yan Zhihan Lyu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期143-185,共43页
Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human ... Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications. 展开更多
关键词 Neural architecture search evolutionary computation large-scale multiobjective optimization distributed parallelism healthcare
下载PDF
Evolutionary Variational YOLOv8 Network for Fault Detection in Wind Turbines
11
作者 Hongjiang Wang Qingze Shen +3 位作者 Qin Dai Yingcai Gao Jing Gao Tian Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第7期625-642,共18页
Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have ... Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have been used to solve fault detection.However,the current design of CNNs for fault detection of wind turbine blades is highly dependent on domain knowledge and requires a large amount of trial and error.For this reason,an evolutionary YOLOv8 network has been developed to automatically find the network architecture for wind turbine blade-based fault detection.YOLOv8 is a CNN-backed object detection model.Specifically,to reduce the parameter count,we first design an improved FasterNet module based on the Partial Convolution(PConv)operator.Then,to enhance convergence performance,we improve the loss function based on the efficient complete intersection over the union.Based on this,a flexible variable-length encoding is proposed,and the corresponding reproduction operators are designed.Related experimental results confirmthat the proposed approach can achieve better fault detection results and improve by 2.6%in mean precision at 50(mAP50)compared to the existing methods.Additionally,compared to training with the YOLOv8n model,the YOLOBFE model reduces the training parameters by 933,937 and decreases the GFLOPS(Giga Floating Point Operations Per Second)by 1.1. 展开更多
关键词 Neural architecture search YOLOv8 evolutionary computation fault detection
下载PDF
Recent Advances in Evolutionary Computation 被引量:30
12
作者 姚新 徐永 《Journal of Computer Science & Technology》 SCIE EI CSCD 2006年第1期1-18,共18页
Evolutionary computation has experienced a tremendous growth in the last decade in both theoretical analyses and industrial applications. Its scope has evolved beyond its original meaning of "biological evolution" t... Evolutionary computation has experienced a tremendous growth in the last decade in both theoretical analyses and industrial applications. Its scope has evolved beyond its original meaning of "biological evolution" toward a wide variety of nature inspired computational algorithms and techniques, including evolutionary, neural, ecological, social and economical computation, etc, in a unified framework. Many research topics in evolutionary computation nowadays are not necessarily "evolutionary". This paper provides an overview of some recent advances in evolutionary computation that have been made in CERCIA at the University of Birmingham, UK. It covers a wide range of topics in optimization, learning and design using evolutionary approaches and techniques, and theoretical results in the computational time complexity of evolutionary algorithms. Some issues related to future development of evolutionary computation are also discussed. 展开更多
关键词 evolutionary computation neural network ensemble prisoner's dilemma real-world application computational time complexity
原文传递
Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses 被引量:6
13
作者 Wen-Jing Hong Peng Yang Ke Tang 《International Journal of Automation and computing》 EI CSCD 2021年第2期155-169,共15页
Large-scale multi-objective optimization problems(MOPs)that involve a large number of decision variables,have emerged from many real-world applications.While evolutionary algorithms(EAs)have been widely acknowledged a... Large-scale multi-objective optimization problems(MOPs)that involve a large number of decision variables,have emerged from many real-world applications.While evolutionary algorithms(EAs)have been widely acknowledged as a mainstream method for MOPs,most research progress and successful applications of EAs have been restricted to MOPs with small-scale decision variables.More recently,it has been reported that traditional multi-objective EAs(MOEAs)suffer severe deterioration with the increase of decision variables.As a result,and motivated by the emergence of real-world large-scale MOPs,investigation of MOEAs in this aspect has attracted much more attention in the past decade.This paper reviews the progress of evolutionary computation for large-scale multi-objective optimization from two angles.From the key difficulties of the large-scale MOPs,the scalability analysis is discussed by focusing on the performance of existing MOEAs and the challenges induced by the increase of the number of decision variables.From the perspective of methodology,the large-scale MOEAs are categorized into three classes and introduced respectively:divide and conquer based,dimensionality reduction based and enhanced search-based approaches.Several future research directions are also discussed. 展开更多
关键词 Large-scale multi-objective optimization high-dimensional search space evolutionary computation evolutionary algorithms SCALABILITY
原文传递
Evolutionary Computation for Expensive Optimization:A Survey 被引量:4
14
作者 Jian-Yu Li Zhi-Hui Zhan Jun Zhang 《Machine Intelligence Research》 EI CSCD 2022年第1期3-23,共21页
Expensive optimization problem(EOP) widely exists in various significant real-world applications. However, EOP requires expensive or even unaffordable costs for evaluating candidate solutions, which is expensive for t... Expensive optimization problem(EOP) widely exists in various significant real-world applications. However, EOP requires expensive or even unaffordable costs for evaluating candidate solutions, which is expensive for the algorithm to find a satisfactory solution. Moreover, due to the fast-growing application demands in the economy and society, such as the emergence of the smart cities, the internet of things, and the big data era, solving EOP more efficiently has become increasingly essential in various fields, which poses great challenges on the problem-solving ability of optimization approach for EOP. Among various optimization approaches, evolutionary computation(EC) is a promising global optimization tool widely used for solving EOP efficiently in the past decades. Given the fruitful advancements of EC for EOP, it is essential to review these advancements in order to synthesize and give previous research experiences and references to aid the development of relevant research fields and real-world applications. Motivated by this, this paper aims to provide a comprehensive survey to show why and how EC can solve EOP efficiently. For this aim, this paper firstly analyzes the total optimization cost of EC in solving EOP. Then, based on the analysis, three promising research directions are pointed out for solving EOP, which are problem approximation and substitution, algorithm design and enhancement, and parallel and distributed computation. Note that, to the best of our knowledge, this paper is the first that outlines the possible directions for efficiently solving EOP by analyzing the total expensive cost. Based on this, existing works are reviewed comprehensively via a taxonomy with four parts, including the above three research directions and the real-world application part. Moreover, some future research directions are also discussed in this paper. It is believed that such a survey can attract attention, encourage discussions, and stimulate new EC research ideas for solving EOP and related real-world applications more efficiently. 展开更多
关键词 Expensive optimization problem evolutionary computation evolutionary algorithm swarm intelligence particle swarm optimization differential evolution
原文传递
Gait Optimization of a Quadruped Robot Using Evolutionary Computation 被引量:3
15
作者 Jihoon Kim Dang Xuan Ba +1 位作者 Hoyeon Yeom Joonbum Bae 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第2期306-318,共13页
Evolutionary Computation(EC)has strengths in terms of computation for gait optimization.However,conventional evolutionary algorithms use typical gait parameters such as step length and swing height,which limit the tra... Evolutionary Computation(EC)has strengths in terms of computation for gait optimization.However,conventional evolutionary algorithms use typical gait parameters such as step length and swing height,which limit the trajectory deformation for optimization of the foot trajectory.Furthermore,the quantitative index of fitness convergence is insufficient.In this paper,we perform gait optimization of a quadruped robot using foot placement perturbation based on EC.The proposed algorithm has an atypical solution search range,which is generated by independent manipulation of each placement that forms the foot trajectory.A convergence index is also introduced to prevent premature cessation of learning.The conventional algorithm and the proposed algorithm are applied to a quadruped robot;walking performances are then compared by gait simulation.Although the two algorithms exhibit similar computation rates,the proposed algorithm shows better fitness and a wider search range.The evolutionary tendency of the walking trajectory is analyzed using the optimized results,and the findings provide insight into reliable leg trajectory design. 展开更多
关键词 bionic robot evolutionary computation genetic algorithm gait optimization parameter perturbation convergence index
原文传递
Evolutionary Computation in Social Propagation over Complex Networks: A Survey 被引量:1
16
作者 Tian-Fang Zhao Wei-Neng Chen +1 位作者 Xin-Xin Ma Xiao-Kun Wu 《International Journal of Automation and computing》 EI CSCD 2021年第4期503-520,共18页
Social propagation denotes the spread phenomena directly correlated to the human world and society, which includes but is not limited to the diffusion of human epidemics, human-made malicious viruses, fake news, socia... Social propagation denotes the spread phenomena directly correlated to the human world and society, which includes but is not limited to the diffusion of human epidemics, human-made malicious viruses, fake news, social innovation, viral marketing, etc. Simulation and optimization are two major themes in social propagation, where network-based simulation helps to analyze and understand the social contagion, and problem-oriented optimization is devoted to contain or improve the infection results. Though there have been many models and optimization techniques, the matter of concern is that the increasing complexity and scales of propagation processes continuously refresh the former conclusions. Recently, evolutionary computation(EC) shows its potential in alleviating the concerns by introducing an evolving and developing perspective. With this insight, this paper intends to develop a comprehensive view of how EC takes effect in social propagation. Taxonomy is provided for classifying the propagation problems, and the applications of EC in solving these problems are reviewed. Furthermore, some open issues of social propagation and the potential applications of EC are discussed.This paper contributes to recognizing the problems in application-oriented EC design and paves the way for the development of evolving propagation dynamics. 展开更多
关键词 evolutionary computation complex network propagation dynamics social diffusion evolution model optimization algorithm
原文传递
Regularized machine learning through constraint swarm and evolutionary computation applied to regression problems 被引量:1
17
作者 Ahmad Mozaffari Nasser Lashgarian Azad Alireza Fathi 《International Journal of Intelligent Computing and Cybernetics》 EI 2014年第4期346-381,共36页
Purpose–The purpose of this paper is to demonstrate the applicability of swarm and evolutionary techniques for regularized machine learning.Generally,by defining a proper penalty function,regularization laws are embe... Purpose–The purpose of this paper is to demonstrate the applicability of swarm and evolutionary techniques for regularized machine learning.Generally,by defining a proper penalty function,regularization laws are embedded into the structure of common least square solutions to increase the numerical stability,sparsity,accuracy and robustness of regression weights.Several regularization techniques have been proposed so far which have their own advantages and disadvantages.Several efforts have been made to find fast and accurate deterministic solvers to handle those regularization techniques.However,the proposed numerical and deterministic approaches need certain knowledge of mathematical programming,and also do not guarantee the global optimality of the obtained solution.In this research,the authors propose the use of constraint swarm and evolutionary techniques to cope with demanding requirements of regularized extreme learning machine(ELM).Design/methodology/approach–To implement the required tools for comparative numerical study,three steps are taken.The considered algorithms contain both classical and swarm and evolutionary approaches.For the classical regularization techniques,Lasso regularization,Tikhonov regularization,cascade Lasso-Tikhonov regularization,and elastic net are considered.For swarm and evolutionary-based regularization,an efficient constraint handling technique known as self-adaptive penalty function constraint handling is considered,and its algorithmic structure is modified so that it can efficiently perform the regularized learning.Several well-known metaheuristics are considered to check the generalization capability of the proposed scheme.To test the efficacy of the proposed constraint evolutionary-based regularization technique,a wide range of regression problems are used.Besides,the proposed framework is applied to a real-life identification problem,i.e.identifying the dominant factors affecting the hydrocarbon emissions of an automotive engine,for further assurance on the performance of the proposed scheme.Findings–Through extensive numerical study,it is observed that the proposed scheme can be easily used for regularized machine learning.It is indicated that by defining a proper objective function and considering an appropriate penalty function,near global optimum values of regressors can be easily obtained.The results attest the high potentials of swarm and evolutionary techniques for fast,accurate and robust regularized machine learning.Originality/value–The originality of the research paper lies behind the use of a novel constraint metaheuristic computing scheme which can be used for effective regularized optimally pruned extreme learning machine(OP-ELM).The self-adaption of the proposed method alleviates the user from the knowledge of the underlying system,and also increases the degree of the automation of OP-ELM.Besides,by using different types of metaheuristics,it is demonstrated that the proposed methodology is a general flexible scheme,and can be combined with different types of swarm and evolutionary-based optimization techniques to form a regularized machine learning approach. 展开更多
关键词 evolutionary computation Function approximation Hybrid systems
原文传递
A Fast Clustering Based Evolutionary Algorithm for Super-Large-Scale Sparse Multi-Objective Optimization 被引量:6
18
作者 Ye Tian Yuandong Feng +1 位作者 Xingyi Zhang Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期1048-1063,共16页
During the last three decades,evolutionary algorithms(EAs)have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable landscapes.However,due to the ... During the last three decades,evolutionary algorithms(EAs)have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable landscapes.However,due to the stochastic search strategies,the performance of most EAs deteriorates drastically when handling a large number of decision variables.To tackle the curse of dimensionality,this work proposes an efficient EA for solving super-large-scale multi-objective optimization problems with sparse optimal solutions.The proposed algorithm estimates the sparse distribution of optimal solutions by optimizing a binary vector for each solution,and provides a fast clustering method to highly reduce the dimensionality of the search space.More importantly,all the operations related to the decision variables only contain several matrix calculations,which can be directly accelerated by GPUs.While existing EAs are capable of handling fewer than 10000 real variables,the proposed algorithm is verified to be effective in handling 1000000 real variables.Furthermore,since the proposed algorithm handles the large number of variables via accelerated matrix calculations,its runtime can be reduced to less than 10%of the runtime of existing EAs. 展开更多
关键词 evolutionary computation fast clustering sparse multi-objective optimization super-large-scale optimization
下载PDF
Evolutionary Multi-objective Portfolio Optimization in Practical Context 被引量:5
19
作者 S.C.Chiam A.Al Mamum 《International Journal of Automation and computing》 EI 2008年第1期67-80,共14页
This paper addresses evolutionary multi-objective portfolio optimization in the practical context by incorporating realistic constraints into the problem model and preference criterion into the optimization search pro... This paper addresses evolutionary multi-objective portfolio optimization in the practical context by incorporating realistic constraints into the problem model and preference criterion into the optimization search process. The former is essential to enhance the realism of the classical mean-variance model proposed by Harry Markowitz, since portfolio managers often face a number of realistic constraints arising from business and industry regulations, while the latter reflects the fact that portfolio managers are ultimately interested in specific regions or points along the efficient frontier during the actual execution of their investment orders. For the former, this paper proposes an order-based representation that can be easily extended to handle various realistic constraints like floor and ceiling constraints and cardinality constraint. An experimental study, based on benchmark problems obtained from the OR-library, demonstrates its capability to attain a better approximation of the efficient frontier in terms of proximity and diversity with respect to other conventional representations. The experimental results also illustrated its viability and practicality in handling the various realistic constraints. A simple strategy to incorporate preferences into the multi-objective optimization process is highlighted and the experimental study demonstrates its capability in driving the evolutionary search towards specific regions of the efficient frontier. 展开更多
关键词 evolutionary computation multi-objective optimization portfolio optimization preference-based multi-objective optimization constraint handling
下载PDF
Integrating Conjugate Gradients Into Evolutionary Algorithms for Large-Scale Continuous Multi-Objective Optimization 被引量:4
20
作者 Ye Tian Haowen Chen +3 位作者 Haiping Ma Xingyi Zhang Kay Chen Tan Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第10期1801-1817,共17页
Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms a... Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms are good at solving small-scale multi-objective optimization problems,they are criticized for low efficiency in converging to the optimums of LSMOPs.By contrast,mathematical programming methods offer fast convergence speed on large-scale single-objective optimization problems,but they have difficulties in finding diverse solutions for LSMOPs.Currently,how to integrate evolutionary algorithms with mathematical programming methods to solve LSMOPs remains unexplored.In this paper,a hybrid algorithm is tailored for LSMOPs by coupling differential evolution and a conjugate gradient method.On the one hand,conjugate gradients and differential evolution are used to update different decision variables of a set of solutions,where the former drives the solutions to quickly converge towards the Pareto front and the latter promotes the diversity of the solutions to cover the whole Pareto front.On the other hand,objective decomposition strategy of evolutionary multi-objective optimization is used to differentiate the conjugate gradients of solutions,and the line search strategy of mathematical programming is used to ensure the higher quality of each offspring than its parent.In comparison with state-of-the-art evolutionary algorithms,mathematical programming methods,and hybrid algorithms,the proposed algorithm exhibits better convergence and diversity performance on a variety of benchmark and real-world LSMOPs. 展开更多
关键词 Conjugate gradient differential evolution evolutionary computation large-scale multi-objective optimization mathematical programming
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部