Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rode...Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.展开更多
BACKGROUND Regulator of G protein signaling(RGS)proteins participate in tumor formation and metastasis by acting on theα-subunit of heterotrimeric G proteins.The speci-fic effect of RGS,particularly RGS4,on the progr...BACKGROUND Regulator of G protein signaling(RGS)proteins participate in tumor formation and metastasis by acting on theα-subunit of heterotrimeric G proteins.The speci-fic effect of RGS,particularly RGS4,on the progression of gastric cancer(GC)is not yet clear.AIM To explore the role and underlying mechanisms of action of RGS4 in GC develop-ment.METHODS The prognostic significance of RGS4 in GC was analyzed using bioinformatics based public databases and verified by immunohistochemistry and quantitative polymerase chain reaction in 90 patients with GC.Function assays were employed to assess the carcinogenic impact of RGS4,and the mechanism of its possible influence was detected by western blot analysis.A nude mouse xenograft model was established to study the effects of RGS4 on GC growth in vitro.RESULTS RGS4 was highly expressed in GC tissues compared with matched adjacent normal tissues.Elevated RGS4 expression was correlated with increased tumor-node-metastasis stage,increased tumor grade as well as poorer overall survival in patients with GC.Cell experiments demonstrated that RGS4 knockdown suppressed GC cell proliferation,migration and invasion.Similarly,xenograft experiments confirmed that RGS4 silencing significantly inhibited tumor growth.Moreover,RGS4 knockdown resulted in reduced phosphorylation levels of focal adhesion kinase,phosphatidyl-inositol-3-kinase,and protein kinase B,decreased vimentin and N-cadherin,and elevated E-cadherin.CONCLUSION High RGS4 expression in GC indicates a worse prognosis and RGS4 is a prognostic marker.RGS4 influences tumor progression via the focal adhesion kinase/phosphatidyl-inositol-3-kinase/protein kinase B pathway and epithelial-mesenchymal transition.展开更多
Current resolved structures of GPCRs and G protein complexes provided important insights into G protein activation. However, the binding or dissociation of GPCRs with G protein is instantaneous and highly dynamic in t...Current resolved structures of GPCRs and G protein complexes provided important insights into G protein activation. However, the binding or dissociation of GPCRs with G protein is instantaneous and highly dynamic in the intracellular environment. The conformational dynamic of G protein still needs to be addressed. In this study, we applied ^(19)F solution NMR spectroscopy to monitor the conformational changes of G protein upon interact with detergent mimicking membrane and receptor. Our results show that there are two states equilibria in the G_(α)in apo states. The interaction of G_(α)with detergents will accelerate this conformational transformation and induce a state that tends to bind to GPCRs. Finally, the G_(α)proteins presented a fully activation state when they coupled to GPCRs.展开更多
Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to ...Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to produce satisfa ctory effects.Therefore,in the search for a solution,we found that a treatment with the gene corresponding to the RGS14414protein in visual area V2,a brain area connected with brain circuits of the ventral stream and the medial temporal lobe,which is crucial for object recognition memory(ORM),can induce enhancement of ORM.In this study,we demonstrated that the same treatment with RGS14414in visual area V2,which is relatively unaffected in neurodegenerative diseases such as Alzheimer s disease,produced longlasting enhancement of ORM in young animals and prevent ORM deficits in rodent models of aging and Alzheimer’s disease.Furthermore,we found that the prevention of memory deficits was mediated through the upregulation of neuronal arbo rization and spine density,as well as an increase in brain-derived neurotrophic factor(BDNF).A knockdown of BDNF gene in RGS14414-treated aging rats and Alzheimer s disease model mice caused complete loss in the upregulation of neuronal structural plasticity and in the prevention of ORM deficits.These findings suggest that BDNF-mediated neuronal structural plasticity in area V2 is crucial in the prevention of memory deficits in RGS14414-treated rodent models of aging and Alzheimer’s disease.Therefore,our findings of RGS14414gene-mediated activation of neuronal circuits in visual area V2 have therapeutic relevance in the treatment of memory deficits.展开更多
Hepatic fibrosis is a consequence of chronic liver disease,which can lead to cirrhosis and liver failure.There is no Food and Drugs Administration approved therapy for liver fibrosis to date;hence,identifying effectiv...Hepatic fibrosis is a consequence of chronic liver disease,which can lead to cirrhosis and liver failure.There is no Food and Drugs Administration approved therapy for liver fibrosis to date;hence,identifying effective therapeutic targets is an urgent need.Hepatic macrophages play a critical role in both initiation and progression of fibrosis.While resident liver macrophages,Kupffer cells are considered more anti-inflammatory,recent view has demonstrated that monocyte-derived macrophages(MoMs)are more pro-inflammatory and pro-fibrogenic[1].Moreover,MoMs exhibit more plasticity and undergo M1/M2“polarization”.The research by Zhang et al.[2]identified GPR65 signaling as a novel mechanism responsible for hepatic macrophage M1 polarization during liver injury and fibrosis.Notably,the role of this receptor in modulating inflammatory responses by various cells in other tissues has been previously reported[3].However,the role of GPR65 in liver inflammation and fibrosis has not been examined until now.展开更多
Numerous Trichoderma spp. are mycoparasites and commercially applied as biological control agents against a large number of plant pathogenic fungi. The mycoparasitic interaction is host-specific and several research s...Numerous Trichoderma spp. are mycoparasites and commercially applied as biological control agents against a large number of plant pathogenic fungi. The mycoparasitic interaction is host-specific and several research strategies have been applied to identify the main genes and compounds involved in the antagonist-plant-pathogen three-way interaction. During mycoparasitism, signals from the host fungus are recognised by Trichoderma, stimulating antifungal activities that are accompanied by morphological changes and the secretion of hydrolytic enzymes and antibiotics. Interestingly some morphological changes appeared highly conserved in the strategy of pathogenicity within the fungal world, i.e. the formation of appressoria as well as the secretion of hydrolytic enzymes seem to be general mechanisms of attack both for plant pathogens and mycoparasitic antagonists. This knowledge is being used to identify receptors and key components of signalling pathways involved in fungus-fungus interaction. For this purpose we have cloned the first genes (tmk1, tga1, tga3) from T. atroviride showing a high similarity to MAP kinase and G protein subunits (see abstract by Zeilinger et al.), which have been found to have an important role in pathogenicity by Magnaporthe grisea. To identify the function and involvement of these factors in mycoparasitism by T. atroviride, tmk1, tga1, tga3 disruptant strains were produced. The knock-out mutants were tested by in vivo biocontrol assays for their ability to inhibit soil and foliar plant pathogens such as Rhizoctonia solani, Pythium ultimum and Botrytis cinerea . Disruption of these genes corresponded to a complete loss of biocontrol ability, suggesting a significant role in mycoparasitism. In particular, it has been suggested that tga3 regulates the expression of chitinase-encoding genes, the secretion of the corresponding enzymes and the process of conidiation. Comparative proteome analysis of wild type and disruptants supported this hypothesis, and indicated many changes in the protein profiles of T. atroviride in different interaction conditions with plants and pathogenic hosts.展开更多
Mycoparasitic species of Trichoderma are commercially applied as biological control agents against various fungal pathogens. The mycoparasitic interaction is host specific and includes recognition, attack and subseque...Mycoparasitic species of Trichoderma are commercially applied as biological control agents against various fungal pathogens. The mycoparasitic interaction is host specific and includes recognition, attack and subsequent penetration and killing of the host. Investigations on the underlying events revealed that Trichoderma responds to multiple signals from the host (e.g. lectins or other ligands such as low molecular weight components released from the host’s cell wall) and host attack is accompanied by morphological changes and the secretion of hydrolytic enzymes and antibiotics. Degradation of the cell wall of the host fungus is-besides glucanases and proteases-mainly achieved by chitinases. In vivo studies showed that the ech42 gene (encoding endochitinase 42) is expressed before physical contact of Trichoderma with its host, probably representing one of the earliest events in mycoparasitism, whereas Nag1 (N-acetylglucosaminidase) plays a key role in the general induction of the chitinolytic enzyme system of T. atroviride . Investigations on the responsible signal transduction pathways of T. atroviride led to the isolation of several genes encoding key components of the cAMP and MAP kinase signaling pathways, as alpha and β subunits of heterotrimeric G proteins, the regulatory subunit of cAMP-dependent protein kinase, adenylate cyclase, and three MAP kinases. Analysis of knockout mutants, generated by Agrobacterium-mediated transformation, revealed that at least two alpha-subunits of heterotrimeric G proteins are participating in mycoparasitism-related signal transduction. The Tga1 G alpha subunit was shown to be involved in mycoparasitism-related processes such as chitinase expression and overproduction of toxic secondary metabolites, whereas Tga3 was found to be completely avirulent showing defects in chitinase formation and host recognition.展开更多
Magnesium(Mg) is crucial for the function of G proteins which play important roles in mediating the inotropic effects of β adrenergic agonists in the heart and are alteredin heart failure.This study was performed to ...Magnesium(Mg) is crucial for the function of G proteins which play important roles in mediating the inotropic effects of β adrenergic agonists in the heart and are alteredin heart failure.This study was performed to determine whether or not dietary Mg deficiency alters functional activity and levels of the two major ventricular G proteins, Gia and Gsa in the heart after myocardial infarction(MI).Six week old rats were fed a Mg adequate or deficient diet for 6 weeks.At the end of week 3,MI was induced by coronary artery ligation.A sham operation was performed as control.After surgery,surviving animals were maintained on their assigned diets for another 3 weeks.Then,cardiac function was measured.Severe hypomagnesemia and increased plasma catecholamine level were observed in all animals fed the Mg deficient diet.A significant reduction of ruyocardial Mg concentration accompanied by elevated plasma and myocardial calcium concentrations was observed in MI animals with existing Mg deficiency vs.animals fed the Mg adequate diet.Cardiac function was impaired in MI rats and further reduced in MI rats with existing Mg deficiency. Gia level was not altered by either Mg deficiency or MI alone,but was dramatically elevated in animals with combined Mg deficiency and MI (9. 9±0.7 arbitrary unit.mg-1 protein) as compared to MI alone (5.8±0. 6,P<0.05 )and Mg deficiency alone(6.1± 0.8,P<0.05 ). Gsa level did not differ between groups.Bacal,GppNHp-and forskolin-but not fluoride-, stimulated adenylyl cyclase activity was signifcantly reduced in MI animals with existing Mg deficiency indicating increased functional activity of Gia.The findings suggest that dietary Mg deficiency increases the expression and functional ac tivity of Gia in the heart after MI, while levels and function of Gsa are not compromised during dietary Mg deficiency either with or without MI.展开更多
Changes in the functional activity and levels of Gsa and Gia in heart failure have been studied predominantly in the end-stage failing heart.The objective of this study was to determine if levels and function of Gsa a...Changes in the functional activity and levels of Gsa and Gia in heart failure have been studied predominantly in the end-stage failing heart.The objective of this study was to determine if levels and function of Gsa and Gia2 in rat hearts change over time following acute myocar(lial infarction (MI) and if so,whether the changes in G proteins are associated with changes in heart function.As compared with sham-operated controls, Giα2, level of MI rats did not change at day l,increased by 64% at day 3 (P<0.01) and 55% at day 9 (P< 0.05)accompanied by reduced adenylyl cyclase activity,and returned to control by day 21. By contrast,Gsa level did not change at any time. Cardiac function in MI animals was markedly impaired at days 1,3 and 9 as evidenced by substantial elevation in LVEDP and reduction in +and -dp/dtmax,and partially restored at day 21. The increased Gia2level in MI rats at days 3 and 9 correlated positively to LVEDP(P< 0.05), and negatively to +and -dp/dtmax (p < 0. 01).The results show a three phase dynamic pattern in Gia2 level following acute MI:a lag phase, an increased expression phase associated with marked impairment of heart function,and a late phase in which the expression retums to control level accompanied by partially restored cardlac function.The results suggest that ② in G protein-mediated pathways,cardiac myocytes respond to MI Via regulating the gene expression of the inhibitory pathway, and ② up-regulation of Gia2 levels is related to the severity of impairment in cardiac function.展开更多
Heterotrimeric G proteins are known to function as messengers in numerous signal transduction pathways.The nullmutation of RGA(rice heterotrimeric G protein α subunit),which encodes the α subunit of heterotrimeric G...Heterotrimeric G proteins are known to function as messengers in numerous signal transduction pathways.The nullmutation of RGA(rice heterotrimeric G protein α subunit),which encodes the α subunit of heterotrimeric G proteinin rice,causes severe dwarfism and reduced responsiveness to gibberellic acid in rice.However,less is known aboutheterotrimeric G protein in brassinosteroid(BR)signaling,one of the well-understood phytohormone pathways.In thepresent study,we used root elongation inhibition assay,lamina inclination assay and coleoptile elongation analysis todemonstrated reduced sensitivity of dl mutant plants(caused by the null mutation of RGA)to 24-epibrassinolide(24-epiBL),which belongs to brassinosteroids and plays a wide variety of roles in plant growth and development.Moreover,RGA transcript level was decreased in 24-epiBL-treated seedlings in a dose-dependent manner.Our results show thatRGA is involved in rice brassinosteroid response,which may be beneficial to elucidate the molecular mechanisms of Gprotein signaling and provide a novel perspective to understand BR signaling in higher plants.展开更多
The heterotrimeric guanine nucleotide-binding protein (G-protein) has been demonstrated to mediate various signaling pathways in plants. However, its role in phytochrome A (phyA) signaling remains elusive. In this...The heterotrimeric guanine nucleotide-binding protein (G-protein) has been demonstrated to mediate various signaling pathways in plants. However, its role in phytochrome A (phyA) signaling remains elusive. In this study, we discover a new phyA-mediated phenotype designated far-red irradiation (FR) preconditioned cell death, which occurs only in the hypocotyls of FR-grown seedlings following exposure to white light (WL). The cell death is mitigated in the Gα mutant gpal but aggravated in the Gβ mutant agbl in comparison with the wild type (WT), indicative of antagonistic roles of GPA1 and AGBI in the phyA-mediated cell-death pathway. Further investigation indicates that FR-induced accumulation of nonphotoconvertible protochlorophyllide (Pchlide^633), which generates reactive oxygen species (ROS) on exposure to WL, is required for FR-preconditioned cell death. Moreover, ROS is mainly detected in chloroplasts using the fluorescent probe. Interestingly, the application of H2O2 to dark-grown seedlings results in a phenotype similar to FR-preconditioned cell death. This reveals that ROS is a critical mediator for the ceil death. In addition, we observe that agb1 is more sensitive to H2O2 than WT seedlings, indicating that the G-protein may also modify the sensitivity of the seedlings to ROS stress. Taking these results together, we infer that the G-protein may be involved in the phyA signaling pathway to regulate FR-preconditioned cell death ofArabidopsis hypocotyls. A possible mechanism underlying the involvement of the G-protein in phyA signaling is discussed in this study.展开更多
Objective To explore the association between the three polymorphisms [ C825T, C1429T and G(-350)A] of the gene encoding the G protein beta 3 subunit (GNB3) and hypertension by performing a case-control study in th...Objective To explore the association between the three polymorphisms [ C825T, C1429T and G(-350)A] of the gene encoding the G protein beta 3 subunit (GNB3) and hypertension by performing a case-control study in the northern Han Chinese population. Methods We recnaited 731 hypertensive patients and 673 control subjects (the calculated power value was 〉 0.8). Genotyping was performed to identify C825T, C1429T and G(-350)A polymorphisms using the TaqMan assay. Comparisons of allelic and genotypic frequencies between cases and controls were made by using the chi-square test. Logistic regression analyses were performed to investigate the relationships between the three polymorphisms of GNB3 gene under different genetic models (additive, dominant and recessive models). Results The genotype dis- tribution and allele frequencies of C825T, C1429T and G(-350)A polymorphisms did not differ significantly between hypertensive patients and control subjects, either when the full sample was assessed, or when the sample was stratified by gender. No significant association was observed between C825T, C 1429T and G(-350)A polymorphisms and the risk of essential hypertension in any genetic model. Linkage dis- equilibrium was only detected between C825T and C 1429T polymorphisms. Haplotype analyses observed that none of the three estimated haplotypes significantly increased the risk of hypertension. Conclusions Our study suggested that the GNB3 gene polymorphisms [C825T, C 1429T and G(-350)A] were not significantly associated with essential hypertension in northern Han Chinese population.展开更多
AIM: To analyze the impact of the GNAS1 T393C polymorphism on prognosis and histopathology of gastric cancer. METHODS: Genomic DNA was extracted from paraffinembedded tissues of 122 patients with primary gastric car...AIM: To analyze the impact of the GNAS1 T393C polymorphism on prognosis and histopathology of gastric cancer. METHODS: Genomic DNA was extracted from paraffinembedded tissues of 122 patients with primary gastric carcinoma and from the blood of 820 healthy white individuals. Allelic discrimination was performed by quantitative real-time polymerase chain reaction. Genotyping was correlated with histopathologic parameters and with overall survival according to the Kaplan-Meier approach and with multivariate analysis by multiple stepwise regression. RESULTS: Thirty-nine (32%) patients displayed a CC genotype, 57 (46.7%) a CT genotype and 26 (21.3%) a TT genotype. The frequency of the C allele (fC) in the patient group was 0.55, which was not significantly different from that of healthy blood donors. The distribution was compatible with the Hardy-Weinberg equilibrium. Analysis of clinicopathological parameters did not show any significant correlation of the T393C genotype with gender (P = 0.50), differentiation (P = 0.29), pT-category (P = 0.19), pN-category (P = 0.30), pM-category (P = 0.25), R-category (P = 0.95), the classifications according to WHO (P = 0.34), Lauren (P = 0.16), Goseki (P = 1.00) and Ming (P =0.74). Dichotomization between C+ (CC+CT) and C-genotypes (FI), however, revealed significantly more advanced tumor stages (P = 0.023) and lower survival rates (P = 0.043) for C allele carriers. CONCLUSION: The present study provides strong evidence to suggest that the GNAS1 T393C allele carrier status influences tumor progression and survival in gastric cancer with higher tumor stages and a worse outcome for C allele carriers.展开更多
The cDNA encoding the G protein αq subunit was isolated from the antennae of Helicoverpa assulta (Guen6e) by reverse transcription polymerase chain reaction (RT-PCR) and named as HassGαq. Sequencing analysis sho...The cDNA encoding the G protein αq subunit was isolated from the antennae of Helicoverpa assulta (Guen6e) by reverse transcription polymerase chain reaction (RT-PCR) and named as HassGαq. Sequencing analysis showed that the fulllength of HassGαq open reading frame (ORF) is 1 062 bp, 353 amino acid residues are encoded. The predicted molecular weights (MW) and isoelectric point (PI) are 41.5 kD and 5.15, respectively. HassGαq gene was then constructed into expression vector pGEX-4T-2 for over expression in prokaryotic cells. The SDS-PAGE and Western blot analysis showed that induced by Isopropyl-β-D-Thiogalactoside (IPTG), the GST-HassGαq fusion protein is expressed in Escherichia coil BL21, and its MW was found to be about 66 kD nearly equal to the predicted. In addition, RT-PCR analysis showed that the expressions of HassGαq are not tissue specific.展开更多
Accurate quantification of transcripts using quantitative real-time polymerase chain reaction (qPCR) depends on the identification of reliable reference genes for normalization. This study aimed to identify and vali...Accurate quantification of transcripts using quantitative real-time polymerase chain reaction (qPCR) depends on the identification of reliable reference genes for normalization. This study aimed to identify and validate seven reference genes, including actin-2 (ACT-2), elongation factor 1 alpha (EF-1α), elongation factor 1 beta (EF-1β), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ubiquitin (UBQ), β-tubulin (β-TUB), and 18 S ribosomal RNA, from Crassostrea angulata, a valuable marine bivalve cultured worldwide. Transcript levels of the candidate reference genes were examined using qPCR analysis and showed differential expression patterns in the mantle, gill, adductor muscle, labial palp, visceral mass, hemolymph and gonad tissues. Quantitative data were analyzed using the geNorm software to assess the expression stability of the candidate reference genes, revealing that β-TUB and UBQ were the most stable genes. The commonly used GAPDH and 18S rRNA showed low stability, making them unsuitable candidates in this system. The expression pattern of the G protein β-subunit gene (Gβ) across tissue types was also examined and normalized to the expression of each or both of UBQ andβ-TUB as internal controls. This revealed consistent trends with all three normalization approaches, thus validating the reliability of UBQ and β-TUB as optimal internal controls. The study provides the first validated reference genes for accurate data normalization in transcript profiling in Crassostrea angulata, which will be indispensable for further fimetional genomics studies in this economically valuable marine bivalve.展开更多
Nitric oxide(NO)/cyclic guanosine 3′,5′-monophosphate(cGMP) signaling has been shown to act as a mediator involved in pain transmission and processing. In this review, we summarize and discuss the mechanisms of the ...Nitric oxide(NO)/cyclic guanosine 3′,5′-monophosphate(cGMP) signaling has been shown to act as a mediator involved in pain transmission and processing. In this review, we summarize and discuss the mechanisms of the NO/cGMP signaling pathway involved in chronic pain, including neuropathic pain, bone cancer pain, inflammatory pain, and morphine tolerance. The main process in the NO/cGMP signaling pathway in cells involves NO activating soluble guanylate cyclase, which leads to subsequent production of cGMP. cGMP then activates cGMP-dependent protein kinase(PKG), resulting in the activation of multiple targets such as the opening of ATP-sensitive K+ channels. The activation of NO/cGMP signaling in the spinal cord evidently induces upregulation of downstream molecules, as well as reactive astrogliosis and microglial polarization which participate in the process of chronic pain. In dorsal root ganglion neurons, natriuretic peptide binds to particulate guanylyl cyclase, generating and further activating the cGMP/PKG pathway, and it also contributes to the development of chronic pain. Upregulation of multiple receptors is involved in activation of the NO/cGMP signaling pathway in various pain models. Notably the NO/cGMP signaling pathway induces expression of downstream effectors, exerting both algesic and analgesic effects in neuropathic pain and inflammatory pain. These findings suggest that activation of NO/cGMP signaling plays a constituent role in the development of chronic pain, and this signaling pathway with dual effects is an interesting and promising target for chronic pain therapy.展开更多
BACKGROUND: G protein is closely associated with vasomotion. Vasomotor dysfunction accompanies migraine attack. OBJECTIVE: To investigate the effects of the San Jiao meridian acupuncture on G protein content in a ra...BACKGROUND: G protein is closely associated with vasomotion. Vasomotor dysfunction accompanies migraine attack. OBJECTIVE: To investigate the effects of the San Jiao meridian acupuncture on G protein content in a rat migraine model. DESIGN, TIME AND SETTING: The present randomized grouping, cellular and molecular biological level trial was performed at the Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University & Key Laboratory for Tumor Proteomics of Ministry of Health between October 2003 and June 2004. MATERIALS: Forty healthy, male, Sprague Dawtey rats were included in this study. The G6805-2A electro-acupuncture apparatus was a product of Shanghai Huayi Medical Instrument Factory, China. Nitroglycerin was produced by Guangzhou Mingxing Pharmaceutical Factory, China. Antibodies against inhibitory and stimulatory G proteins were purchased from Sigma Chemical Company, USA. METHODS: All 40 rats were randomly and evenly divided into 4 groups. In the blank control group, the rats remained untouched. Rats from the normal control group were subcutaneously administered 2 mL/kg physiological saline. In the model group, migraine was induced with a subcutaneous injection of 10 mg/kg nitroglycerin (5 g/L), and the rats received no further treatment. In the acupuncture-treated group, 30 minutes after migraine induction, acupuncture was performed at the bilateral Waiguan (SJ 5) and Yifeng (SJ 17) points, with an acupuncture depth of 1 mm. Electric-stimulation parameters of 20 Hz for low frequency, 40 Hz for high frequency, and 0.5-1.0 mA for current intensity were set. Ten acupuncture sessions were applied, with 20-minute low-frequency and 20-minute high-frequency stimulation and 3 seconds of interval time. MAIN OUTCOME MEASURES: Inhibitory and stimulatory G protein contents were detected by Western blot analysis. RESULTS: At 4 hours after migraine induction, compared with the blank control and normal control groups stimulatory G protein concentration was significantly increased, while inhibitory G protein levels were significantly decreased in the model group (P 〈 0.01 ). In the acupuncture-treated group, both stimulatory and inhibitory G protein concentrations were significantly increased following acupuncture treatment (P 〈 0.01), but stimulatory G protein levels were less and the inhibitory G protein concentrations were greater compared to the model group (P 〈 0.01 ). There was no significant difference in stimulatory and inhibitory G protein levels between the blank control and normal control groups (P 〉 0.05). CONCLUSION: Dysfunctional G protein signal transductions in the rat brain stem may be responsible tor migraine attack. Acupuncture at the San Jiao meridian ameliorates migraines by mediating the G protein signal transduction pathway.展开更多
A gene encoding a novel G protein β subunit of β1 subclass, GβMmed was isolated from Microplitis mediator (Hymenoptera: Braconidae). The full-length sequence of GβMmed is 1 119 bp, the cDNA contains a 1 023 bp...A gene encoding a novel G protein β subunit of β1 subclass, GβMmed was isolated from Microplitis mediator (Hymenoptera: Braconidae). The full-length sequence of GβMmed is 1 119 bp, the cDNA contains a 1 023 bp open reading frame that encodes a protein with 340 amino acids, and the predicted molecular weight of GβMmed is 37.23 kDa and isoelectric point is 5.86. By the quantitative real-time RT-PCR method, the tissue-specific expression and quantitative changes in the developmental expression profile of GβMmed were detected. It was found that GβMmed was abundantly expressed in M. mediator antennae, head (without antennae), thorax, abdomen, legs and the wings, and especially at high levels in abdomen. In antennae, expression varied through 1st day before emergence to 5-d-old adults, and had equal expression levels detected in females and males in total. In head, GβMmed expresses while initially high in females, and have another peaked in stage 4 and 1st day, in males showed a peak of GβMmed expression prior to emergence and relatively low levels after emergence. In female abdomen GβMmed expression levels have two peaks in stage 1 and the 5th d, but just have one peak in male abdomen in stage 1. In all other tissues expression was low and stable.展开更多
AIM: To systematically investigate if cGMP/cGMP- dependent protein kinase G (PKG) signaling pathway may participate in dendroaspis natriuretic peptide (DNP)-induced relaxation of gastric circular smooth muscle. METHOD...AIM: To systematically investigate if cGMP/cGMP- dependent protein kinase G (PKG) signaling pathway may participate in dendroaspis natriuretic peptide (DNP)-induced relaxation of gastric circular smooth muscle. METHODS: The content of cGMP in guinea pig gastric antral smooth muscle tissue and perfusion solution were measured using radioimmunoassay; spontaneous contraction of gastric antral circular muscles recorded using a 4-channel physiograph; and Ca2+-activated K+ currents (IK(Ca)) and spontaneous transient outward currents (STOCs) in isolated gastric antral myocytes were recorded using the whole-cell patch clamp technique. RESULTS: DNP markedly enhanced cGMP levels in gastric antral smooth muscle tissue and in the perfusion medium. DNP induced relaxation in gastricantral circular smooth muscle, which was inhibited by KT5823, a cGMP-dependent PKG inhibitor. DNP increased IK(Ca). This effect was almost completely blocked by KT5823, and partially blocked by LY83583, an inhibitor of guanylate cyclase to change the production of cGMP. DNP also increased STOCs. The effect of DNP on STOCs was abolished in the presence of KT5823, but not affected by KT-5720, a PKA-specific inhibitor. CONCLUSION: DNP activates IK(Ca) and relaxes guinea-pig gastric antral circular smooth muscle via the cGMP/PKG-dependent singling axis instead of cAMP/ PKA pathway.展开更多
基金supported by the National Institutes of Health,Nos.AA025919,AA025919-03S1,and AA025919-05S1(all to RAF).
文摘Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.
基金Supported by the Fundamental Research Program of Shanxi Province,No.202203021222418Research Program of Shanxi Provincial Health Commission,No.2023061+2 种基金Fundamental Research Cooperation Program of Beijing-Tianjin-Hebei Region of Natural Science Foundation of Tianjin,No.22JCZXJC00140Tianjin Major Science and Technology Project,No.21ZXJBSY00110Tianjin Health and Science and Technology Project,No.TJWJ2024ZK001.
文摘BACKGROUND Regulator of G protein signaling(RGS)proteins participate in tumor formation and metastasis by acting on theα-subunit of heterotrimeric G proteins.The speci-fic effect of RGS,particularly RGS4,on the progression of gastric cancer(GC)is not yet clear.AIM To explore the role and underlying mechanisms of action of RGS4 in GC develop-ment.METHODS The prognostic significance of RGS4 in GC was analyzed using bioinformatics based public databases and verified by immunohistochemistry and quantitative polymerase chain reaction in 90 patients with GC.Function assays were employed to assess the carcinogenic impact of RGS4,and the mechanism of its possible influence was detected by western blot analysis.A nude mouse xenograft model was established to study the effects of RGS4 on GC growth in vitro.RESULTS RGS4 was highly expressed in GC tissues compared with matched adjacent normal tissues.Elevated RGS4 expression was correlated with increased tumor-node-metastasis stage,increased tumor grade as well as poorer overall survival in patients with GC.Cell experiments demonstrated that RGS4 knockdown suppressed GC cell proliferation,migration and invasion.Similarly,xenograft experiments confirmed that RGS4 silencing significantly inhibited tumor growth.Moreover,RGS4 knockdown resulted in reduced phosphorylation levels of focal adhesion kinase,phosphatidyl-inositol-3-kinase,and protein kinase B,decreased vimentin and N-cadherin,and elevated E-cadherin.CONCLUSION High RGS4 expression in GC indicates a worse prognosis and RGS4 is a prognostic marker.RGS4 influences tumor progression via the focal adhesion kinase/phosphatidyl-inositol-3-kinase/protein kinase B pathway and epithelial-mesenchymal transition.
基金supported by the National Key Research and Development Project of China (Nos.2019YFA0904100 and 2017YFA0505400)the National Natural Science Foundation of China (Nos.22077117 and 31971152)the USTC Research Funds of the Double First-Class Initiative。
文摘Current resolved structures of GPCRs and G protein complexes provided important insights into G protein activation. However, the binding or dissociation of GPCRs with G protein is instantaneous and highly dynamic in the intracellular environment. The conformational dynamic of G protein still needs to be addressed. In this study, we applied ^(19)F solution NMR spectroscopy to monitor the conformational changes of G protein upon interact with detergent mimicking membrane and receptor. Our results show that there are two states equilibria in the G_(α)in apo states. The interaction of G_(α)with detergents will accelerate this conformational transformation and induce a state that tends to bind to GPCRs. Finally, the G_(α)proteins presented a fully activation state when they coupled to GPCRs.
基金supported by grants from the Ministerio de Economia y Competitividad(BFU2013-43458-R)Junta de Andalucia(P12-CTS-1694 and Proyexcel-00422)to ZUK。
文摘Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to produce satisfa ctory effects.Therefore,in the search for a solution,we found that a treatment with the gene corresponding to the RGS14414protein in visual area V2,a brain area connected with brain circuits of the ventral stream and the medial temporal lobe,which is crucial for object recognition memory(ORM),can induce enhancement of ORM.In this study,we demonstrated that the same treatment with RGS14414in visual area V2,which is relatively unaffected in neurodegenerative diseases such as Alzheimer s disease,produced longlasting enhancement of ORM in young animals and prevent ORM deficits in rodent models of aging and Alzheimer’s disease.Furthermore,we found that the prevention of memory deficits was mediated through the upregulation of neuronal arbo rization and spine density,as well as an increase in brain-derived neurotrophic factor(BDNF).A knockdown of BDNF gene in RGS14414-treated aging rats and Alzheimer s disease model mice caused complete loss in the upregulation of neuronal structural plasticity and in the prevention of ORM deficits.These findings suggest that BDNF-mediated neuronal structural plasticity in area V2 is crucial in the prevention of memory deficits in RGS14414-treated rodent models of aging and Alzheimer’s disease.Therefore,our findings of RGS14414gene-mediated activation of neuronal circuits in visual area V2 have therapeutic relevance in the treatment of memory deficits.
文摘Hepatic fibrosis is a consequence of chronic liver disease,which can lead to cirrhosis and liver failure.There is no Food and Drugs Administration approved therapy for liver fibrosis to date;hence,identifying effective therapeutic targets is an urgent need.Hepatic macrophages play a critical role in both initiation and progression of fibrosis.While resident liver macrophages,Kupffer cells are considered more anti-inflammatory,recent view has demonstrated that monocyte-derived macrophages(MoMs)are more pro-inflammatory and pro-fibrogenic[1].Moreover,MoMs exhibit more plasticity and undergo M1/M2“polarization”.The research by Zhang et al.[2]identified GPR65 signaling as a novel mechanism responsible for hepatic macrophage M1 polarization during liver injury and fibrosis.Notably,the role of this receptor in modulating inflammatory responses by various cells in other tissues has been previously reported[3].However,the role of GPR65 in liver inflammation and fibrosis has not been examined until now.
文摘Numerous Trichoderma spp. are mycoparasites and commercially applied as biological control agents against a large number of plant pathogenic fungi. The mycoparasitic interaction is host-specific and several research strategies have been applied to identify the main genes and compounds involved in the antagonist-plant-pathogen three-way interaction. During mycoparasitism, signals from the host fungus are recognised by Trichoderma, stimulating antifungal activities that are accompanied by morphological changes and the secretion of hydrolytic enzymes and antibiotics. Interestingly some morphological changes appeared highly conserved in the strategy of pathogenicity within the fungal world, i.e. the formation of appressoria as well as the secretion of hydrolytic enzymes seem to be general mechanisms of attack both for plant pathogens and mycoparasitic antagonists. This knowledge is being used to identify receptors and key components of signalling pathways involved in fungus-fungus interaction. For this purpose we have cloned the first genes (tmk1, tga1, tga3) from T. atroviride showing a high similarity to MAP kinase and G protein subunits (see abstract by Zeilinger et al.), which have been found to have an important role in pathogenicity by Magnaporthe grisea. To identify the function and involvement of these factors in mycoparasitism by T. atroviride, tmk1, tga1, tga3 disruptant strains were produced. The knock-out mutants were tested by in vivo biocontrol assays for their ability to inhibit soil and foliar plant pathogens such as Rhizoctonia solani, Pythium ultimum and Botrytis cinerea . Disruption of these genes corresponded to a complete loss of biocontrol ability, suggesting a significant role in mycoparasitism. In particular, it has been suggested that tga3 regulates the expression of chitinase-encoding genes, the secretion of the corresponding enzymes and the process of conidiation. Comparative proteome analysis of wild type and disruptants supported this hypothesis, and indicated many changes in the protein profiles of T. atroviride in different interaction conditions with plants and pathogenic hosts.
文摘Mycoparasitic species of Trichoderma are commercially applied as biological control agents against various fungal pathogens. The mycoparasitic interaction is host specific and includes recognition, attack and subsequent penetration and killing of the host. Investigations on the underlying events revealed that Trichoderma responds to multiple signals from the host (e.g. lectins or other ligands such as low molecular weight components released from the host’s cell wall) and host attack is accompanied by morphological changes and the secretion of hydrolytic enzymes and antibiotics. Degradation of the cell wall of the host fungus is-besides glucanases and proteases-mainly achieved by chitinases. In vivo studies showed that the ech42 gene (encoding endochitinase 42) is expressed before physical contact of Trichoderma with its host, probably representing one of the earliest events in mycoparasitism, whereas Nag1 (N-acetylglucosaminidase) plays a key role in the general induction of the chitinolytic enzyme system of T. atroviride . Investigations on the responsible signal transduction pathways of T. atroviride led to the isolation of several genes encoding key components of the cAMP and MAP kinase signaling pathways, as alpha and β subunits of heterotrimeric G proteins, the regulatory subunit of cAMP-dependent protein kinase, adenylate cyclase, and three MAP kinases. Analysis of knockout mutants, generated by Agrobacterium-mediated transformation, revealed that at least two alpha-subunits of heterotrimeric G proteins are participating in mycoparasitism-related signal transduction. The Tga1 G alpha subunit was shown to be involved in mycoparasitism-related processes such as chitinase expression and overproduction of toxic secondary metabolites, whereas Tga3 was found to be completely avirulent showing defects in chitinase formation and host recognition.
文摘Magnesium(Mg) is crucial for the function of G proteins which play important roles in mediating the inotropic effects of β adrenergic agonists in the heart and are alteredin heart failure.This study was performed to determine whether or not dietary Mg deficiency alters functional activity and levels of the two major ventricular G proteins, Gia and Gsa in the heart after myocardial infarction(MI).Six week old rats were fed a Mg adequate or deficient diet for 6 weeks.At the end of week 3,MI was induced by coronary artery ligation.A sham operation was performed as control.After surgery,surviving animals were maintained on their assigned diets for another 3 weeks.Then,cardiac function was measured.Severe hypomagnesemia and increased plasma catecholamine level were observed in all animals fed the Mg deficient diet.A significant reduction of ruyocardial Mg concentration accompanied by elevated plasma and myocardial calcium concentrations was observed in MI animals with existing Mg deficiency vs.animals fed the Mg adequate diet.Cardiac function was impaired in MI rats and further reduced in MI rats with existing Mg deficiency. Gia level was not altered by either Mg deficiency or MI alone,but was dramatically elevated in animals with combined Mg deficiency and MI (9. 9±0.7 arbitrary unit.mg-1 protein) as compared to MI alone (5.8±0. 6,P<0.05 )and Mg deficiency alone(6.1± 0.8,P<0.05 ). Gsa level did not differ between groups.Bacal,GppNHp-and forskolin-but not fluoride-, stimulated adenylyl cyclase activity was signifcantly reduced in MI animals with existing Mg deficiency indicating increased functional activity of Gia.The findings suggest that dietary Mg deficiency increases the expression and functional ac tivity of Gia in the heart after MI, while levels and function of Gsa are not compromised during dietary Mg deficiency either with or without MI.
文摘Changes in the functional activity and levels of Gsa and Gia in heart failure have been studied predominantly in the end-stage failing heart.The objective of this study was to determine if levels and function of Gsa and Gia2 in rat hearts change over time following acute myocar(lial infarction (MI) and if so,whether the changes in G proteins are associated with changes in heart function.As compared with sham-operated controls, Giα2, level of MI rats did not change at day l,increased by 64% at day 3 (P<0.01) and 55% at day 9 (P< 0.05)accompanied by reduced adenylyl cyclase activity,and returned to control by day 21. By contrast,Gsa level did not change at any time. Cardiac function in MI animals was markedly impaired at days 1,3 and 9 as evidenced by substantial elevation in LVEDP and reduction in +and -dp/dtmax,and partially restored at day 21. The increased Gia2level in MI rats at days 3 and 9 correlated positively to LVEDP(P< 0.05), and negatively to +and -dp/dtmax (p < 0. 01).The results show a three phase dynamic pattern in Gia2 level following acute MI:a lag phase, an increased expression phase associated with marked impairment of heart function,and a late phase in which the expression retums to control level accompanied by partially restored cardlac function.The results suggest that ② in G protein-mediated pathways,cardiac myocytes respond to MI Via regulating the gene expression of the inhibitory pathway, and ② up-regulation of Gia2 levels is related to the severity of impairment in cardiac function.
基金This project was supported by the Major State Basic Research Program of China (2005CB 120806), National Natural Science Foundation of China for Distinguished Young Scholars (30525026) and the State Transgenic Plant Project (JY04-A-01)
文摘Heterotrimeric G proteins are known to function as messengers in numerous signal transduction pathways.The nullmutation of RGA(rice heterotrimeric G protein α subunit),which encodes the α subunit of heterotrimeric G proteinin rice,causes severe dwarfism and reduced responsiveness to gibberellic acid in rice.However,less is known aboutheterotrimeric G protein in brassinosteroid(BR)signaling,one of the well-understood phytohormone pathways.In thepresent study,we used root elongation inhibition assay,lamina inclination assay and coleoptile elongation analysis todemonstrated reduced sensitivity of dl mutant plants(caused by the null mutation of RGA)to 24-epibrassinolide(24-epiBL),which belongs to brassinosteroids and plays a wide variety of roles in plant growth and development.Moreover,RGA transcript level was decreased in 24-epiBL-treated seedlings in a dose-dependent manner.Our results show thatRGA is involved in rice brassinosteroid response,which may be beneficial to elucidate the molecular mechanisms of Gprotein signaling and provide a novel perspective to understand BR signaling in higher plants.
文摘The heterotrimeric guanine nucleotide-binding protein (G-protein) has been demonstrated to mediate various signaling pathways in plants. However, its role in phytochrome A (phyA) signaling remains elusive. In this study, we discover a new phyA-mediated phenotype designated far-red irradiation (FR) preconditioned cell death, which occurs only in the hypocotyls of FR-grown seedlings following exposure to white light (WL). The cell death is mitigated in the Gα mutant gpal but aggravated in the Gβ mutant agbl in comparison with the wild type (WT), indicative of antagonistic roles of GPA1 and AGBI in the phyA-mediated cell-death pathway. Further investigation indicates that FR-induced accumulation of nonphotoconvertible protochlorophyllide (Pchlide^633), which generates reactive oxygen species (ROS) on exposure to WL, is required for FR-preconditioned cell death. Moreover, ROS is mainly detected in chloroplasts using the fluorescent probe. Interestingly, the application of H2O2 to dark-grown seedlings results in a phenotype similar to FR-preconditioned cell death. This reveals that ROS is a critical mediator for the ceil death. In addition, we observe that agb1 is more sensitive to H2O2 than WT seedlings, indicating that the G-protein may also modify the sensitivity of the seedlings to ROS stress. Taking these results together, we infer that the G-protein may be involved in the phyA signaling pathway to regulate FR-preconditioned cell death ofArabidopsis hypocotyls. A possible mechanism underlying the involvement of the G-protein in phyA signaling is discussed in this study.
基金grants of the National High Technology Research and Development Program,grants of the National Eleventh Five-year Plan Program from the Ministry of Science and Technology of China,Beijing Natural Science Foundation
文摘Objective To explore the association between the three polymorphisms [ C825T, C1429T and G(-350)A] of the gene encoding the G protein beta 3 subunit (GNB3) and hypertension by performing a case-control study in the northern Han Chinese population. Methods We recnaited 731 hypertensive patients and 673 control subjects (the calculated power value was 〉 0.8). Genotyping was performed to identify C825T, C1429T and G(-350)A polymorphisms using the TaqMan assay. Comparisons of allelic and genotypic frequencies between cases and controls were made by using the chi-square test. Logistic regression analyses were performed to investigate the relationships between the three polymorphisms of GNB3 gene under different genetic models (additive, dominant and recessive models). Results The genotype dis- tribution and allele frequencies of C825T, C1429T and G(-350)A polymorphisms did not differ significantly between hypertensive patients and control subjects, either when the full sample was assessed, or when the sample was stratified by gender. No significant association was observed between C825T, C 1429T and G(-350)A polymorphisms and the risk of essential hypertension in any genetic model. Linkage dis- equilibrium was only detected between C825T and C 1429T polymorphisms. Haplotype analyses observed that none of the three estimated haplotypes significantly increased the risk of hypertension. Conclusions Our study suggested that the GNB3 gene polymorphisms [C825T, C 1429T and G(-350)A] were not significantly associated with essential hypertension in northern Han Chinese population.
基金Supported by The Kln Fortune Program,the CIO/Faculty of Medicine,University of Cologne and the Hoff'sche Stiftung
文摘AIM: To analyze the impact of the GNAS1 T393C polymorphism on prognosis and histopathology of gastric cancer. METHODS: Genomic DNA was extracted from paraffinembedded tissues of 122 patients with primary gastric carcinoma and from the blood of 820 healthy white individuals. Allelic discrimination was performed by quantitative real-time polymerase chain reaction. Genotyping was correlated with histopathologic parameters and with overall survival according to the Kaplan-Meier approach and with multivariate analysis by multiple stepwise regression. RESULTS: Thirty-nine (32%) patients displayed a CC genotype, 57 (46.7%) a CT genotype and 26 (21.3%) a TT genotype. The frequency of the C allele (fC) in the patient group was 0.55, which was not significantly different from that of healthy blood donors. The distribution was compatible with the Hardy-Weinberg equilibrium. Analysis of clinicopathological parameters did not show any significant correlation of the T393C genotype with gender (P = 0.50), differentiation (P = 0.29), pT-category (P = 0.19), pN-category (P = 0.30), pM-category (P = 0.25), R-category (P = 0.95), the classifications according to WHO (P = 0.34), Lauren (P = 0.16), Goseki (P = 1.00) and Ming (P =0.74). Dichotomization between C+ (CC+CT) and C-genotypes (FI), however, revealed significantly more advanced tumor stages (P = 0.023) and lower survival rates (P = 0.043) for C allele carriers. CONCLUSION: The present study provides strong evidence to suggest that the GNAS1 T393C allele carrier status influences tumor progression and survival in gastric cancer with higher tumor stages and a worse outcome for C allele carriers.
文摘The cDNA encoding the G protein αq subunit was isolated from the antennae of Helicoverpa assulta (Guen6e) by reverse transcription polymerase chain reaction (RT-PCR) and named as HassGαq. Sequencing analysis showed that the fulllength of HassGαq open reading frame (ORF) is 1 062 bp, 353 amino acid residues are encoded. The predicted molecular weights (MW) and isoelectric point (PI) are 41.5 kD and 5.15, respectively. HassGαq gene was then constructed into expression vector pGEX-4T-2 for over expression in prokaryotic cells. The SDS-PAGE and Western blot analysis showed that induced by Isopropyl-β-D-Thiogalactoside (IPTG), the GST-HassGαq fusion protein is expressed in Escherichia coil BL21, and its MW was found to be about 66 kD nearly equal to the predicted. In addition, RT-PCR analysis showed that the expressions of HassGαq are not tissue specific.
基金Supported by the National Natural Science Foundation of China(No.41176113)the National Basic Research Program of China(973 Program)(No.2010CB126403)+1 种基金the Changjiang Scholars Program for Innovative Research Team in Universities(No.IRT0941)the Earmarked Fund for Modern Agro-Industry Technology Research System(No.nycytx-47)
文摘Accurate quantification of transcripts using quantitative real-time polymerase chain reaction (qPCR) depends on the identification of reliable reference genes for normalization. This study aimed to identify and validate seven reference genes, including actin-2 (ACT-2), elongation factor 1 alpha (EF-1α), elongation factor 1 beta (EF-1β), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ubiquitin (UBQ), β-tubulin (β-TUB), and 18 S ribosomal RNA, from Crassostrea angulata, a valuable marine bivalve cultured worldwide. Transcript levels of the candidate reference genes were examined using qPCR analysis and showed differential expression patterns in the mantle, gill, adductor muscle, labial palp, visceral mass, hemolymph and gonad tissues. Quantitative data were analyzed using the geNorm software to assess the expression stability of the candidate reference genes, revealing that β-TUB and UBQ were the most stable genes. The commonly used GAPDH and 18S rRNA showed low stability, making them unsuitable candidates in this system. The expression pattern of the G protein β-subunit gene (Gβ) across tissue types was also examined and normalized to the expression of each or both of UBQ andβ-TUB as internal controls. This revealed consistent trends with all three normalization approaches, thus validating the reliability of UBQ and β-TUB as optimal internal controls. The study provides the first validated reference genes for accurate data normalization in transcript profiling in Crassostrea angulata, which will be indispensable for further fimetional genomics studies in this economically valuable marine bivalve.
基金supported by the National Natural Science Foundation of China,Nos. 82071556 (to WM), 81873793 (to WM), 82001198 (to YQZ), 82101310 (to DQL)the National Key Research and Development Program of China,No. 2020YFC2005300 (to WM)。
文摘Nitric oxide(NO)/cyclic guanosine 3′,5′-monophosphate(cGMP) signaling has been shown to act as a mediator involved in pain transmission and processing. In this review, we summarize and discuss the mechanisms of the NO/cGMP signaling pathway involved in chronic pain, including neuropathic pain, bone cancer pain, inflammatory pain, and morphine tolerance. The main process in the NO/cGMP signaling pathway in cells involves NO activating soluble guanylate cyclase, which leads to subsequent production of cGMP. cGMP then activates cGMP-dependent protein kinase(PKG), resulting in the activation of multiple targets such as the opening of ATP-sensitive K+ channels. The activation of NO/cGMP signaling in the spinal cord evidently induces upregulation of downstream molecules, as well as reactive astrogliosis and microglial polarization which participate in the process of chronic pain. In dorsal root ganglion neurons, natriuretic peptide binds to particulate guanylyl cyclase, generating and further activating the cGMP/PKG pathway, and it also contributes to the development of chronic pain. Upregulation of multiple receptors is involved in activation of the NO/cGMP signaling pathway in various pain models. Notably the NO/cGMP signaling pathway induces expression of downstream effectors, exerting both algesic and analgesic effects in neuropathic pain and inflammatory pain. These findings suggest that activation of NO/cGMP signaling plays a constituent role in the development of chronic pain, and this signaling pathway with dual effects is an interesting and promising target for chronic pain therapy.
基金supported by Hunan Provincial Administration of Traditional Chinese Medicine, No. 200125.
文摘BACKGROUND: G protein is closely associated with vasomotion. Vasomotor dysfunction accompanies migraine attack. OBJECTIVE: To investigate the effects of the San Jiao meridian acupuncture on G protein content in a rat migraine model. DESIGN, TIME AND SETTING: The present randomized grouping, cellular and molecular biological level trial was performed at the Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University & Key Laboratory for Tumor Proteomics of Ministry of Health between October 2003 and June 2004. MATERIALS: Forty healthy, male, Sprague Dawtey rats were included in this study. The G6805-2A electro-acupuncture apparatus was a product of Shanghai Huayi Medical Instrument Factory, China. Nitroglycerin was produced by Guangzhou Mingxing Pharmaceutical Factory, China. Antibodies against inhibitory and stimulatory G proteins were purchased from Sigma Chemical Company, USA. METHODS: All 40 rats were randomly and evenly divided into 4 groups. In the blank control group, the rats remained untouched. Rats from the normal control group were subcutaneously administered 2 mL/kg physiological saline. In the model group, migraine was induced with a subcutaneous injection of 10 mg/kg nitroglycerin (5 g/L), and the rats received no further treatment. In the acupuncture-treated group, 30 minutes after migraine induction, acupuncture was performed at the bilateral Waiguan (SJ 5) and Yifeng (SJ 17) points, with an acupuncture depth of 1 mm. Electric-stimulation parameters of 20 Hz for low frequency, 40 Hz for high frequency, and 0.5-1.0 mA for current intensity were set. Ten acupuncture sessions were applied, with 20-minute low-frequency and 20-minute high-frequency stimulation and 3 seconds of interval time. MAIN OUTCOME MEASURES: Inhibitory and stimulatory G protein contents were detected by Western blot analysis. RESULTS: At 4 hours after migraine induction, compared with the blank control and normal control groups stimulatory G protein concentration was significantly increased, while inhibitory G protein levels were significantly decreased in the model group (P 〈 0.01 ). In the acupuncture-treated group, both stimulatory and inhibitory G protein concentrations were significantly increased following acupuncture treatment (P 〈 0.01), but stimulatory G protein levels were less and the inhibitory G protein concentrations were greater compared to the model group (P 〈 0.01 ). There was no significant difference in stimulatory and inhibitory G protein levels between the blank control and normal control groups (P 〉 0.05). CONCLUSION: Dysfunctional G protein signal transductions in the rat brain stem may be responsible tor migraine attack. Acupuncture at the San Jiao meridian ameliorates migraines by mediating the G protein signal transduction pathway.
基金support from the Na-tional Natural Science Foundation of China (30871640,30330410)the National Basic Research Program ofChina (2007CB109202)the Research Foundationof State Key Laboratory for Biology of Plant Diseasesand Insect Pests of China (SKL2007SR01)
文摘A gene encoding a novel G protein β subunit of β1 subclass, GβMmed was isolated from Microplitis mediator (Hymenoptera: Braconidae). The full-length sequence of GβMmed is 1 119 bp, the cDNA contains a 1 023 bp open reading frame that encodes a protein with 340 amino acids, and the predicted molecular weight of GβMmed is 37.23 kDa and isoelectric point is 5.86. By the quantitative real-time RT-PCR method, the tissue-specific expression and quantitative changes in the developmental expression profile of GβMmed were detected. It was found that GβMmed was abundantly expressed in M. mediator antennae, head (without antennae), thorax, abdomen, legs and the wings, and especially at high levels in abdomen. In antennae, expression varied through 1st day before emergence to 5-d-old adults, and had equal expression levels detected in females and males in total. In head, GβMmed expresses while initially high in females, and have another peaked in stage 4 and 1st day, in males showed a peak of GβMmed expression prior to emergence and relatively low levels after emergence. In female abdomen GβMmed expression levels have two peaks in stage 1 and the 5th d, but just have one peak in male abdomen in stage 1. In all other tissues expression was low and stable.
基金The National Natural Science Foundation of China, No. 30800382the Youth Science Foundation of Dalian to Professor Hui-Shu Guo, No. 2006B3NS218
文摘AIM: To systematically investigate if cGMP/cGMP- dependent protein kinase G (PKG) signaling pathway may participate in dendroaspis natriuretic peptide (DNP)-induced relaxation of gastric circular smooth muscle. METHODS: The content of cGMP in guinea pig gastric antral smooth muscle tissue and perfusion solution were measured using radioimmunoassay; spontaneous contraction of gastric antral circular muscles recorded using a 4-channel physiograph; and Ca2+-activated K+ currents (IK(Ca)) and spontaneous transient outward currents (STOCs) in isolated gastric antral myocytes were recorded using the whole-cell patch clamp technique. RESULTS: DNP markedly enhanced cGMP levels in gastric antral smooth muscle tissue and in the perfusion medium. DNP induced relaxation in gastricantral circular smooth muscle, which was inhibited by KT5823, a cGMP-dependent PKG inhibitor. DNP increased IK(Ca). This effect was almost completely blocked by KT5823, and partially blocked by LY83583, an inhibitor of guanylate cyclase to change the production of cGMP. DNP also increased STOCs. The effect of DNP on STOCs was abolished in the presence of KT5823, but not affected by KT-5720, a PKA-specific inhibitor. CONCLUSION: DNP activates IK(Ca) and relaxes guinea-pig gastric antral circular smooth muscle via the cGMP/PKG-dependent singling axis instead of cAMP/ PKA pathway.