Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Her...Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Here,we present evidence suggesting that the lysine-specific demethylase 1 inhibitor–tranylcypromine is an otoprotective agent that could be used to treat noise-induced hearing loss,and elucidate its underlying regulatory mechanisms.We established a mouse model of permanent threshold shift hearing loss by exposing the mice to white broadband noise at a sound pressure level of 120 d B for 4 hours.We found that tranylcypromine treatment led to the upregulation of Sestrin2(SESN2)and activation of the autophagy markers light chain 3B and lysosome-associated membrane glycoprotein 1 in the cochleae of mice treated with tranylcypromine.The noise exposure group treated with tranylcypromine showed significantly lower average auditory brainstem response hearing thresholds at click,4,8,and 16 k Hz frequencies compared with the noise exposure group treated with saline.These findings indicate that tranylcypromine treatment resulted in increased SESN2,light chain 3B,and lysosome-associated membrane glycoprotein 1 expression after noise exposure,leading to a reduction in levels of 4-hydroxynonenal and cleaved caspase-3,thereby reducing noise-induced hair cell loss.Additionally,immunoblot analysis demonstrated that treatment with tranylcypromine upregulated SESN2 expression via the autophagy pathway.Tranylcypromine treatment also reduced the production of NOD-like receptor family pyrin domaincontaining 3(NLRP3)production.In conclusion,our results showed that tranylcypromine treatment ameliorated cochlear inflammation by promoting the expression of SESN2,which induced autophagy,thereby restricting NLRP3-related inflammasome signaling,alleviating cochlear hair cell loss,and protecting hearing function.These findings suggest that inhibiting lysine-specific demethylase 1 is a potential therapeutic strategy for preventing hair cell loss and noise-induced hearing loss.展开更多
Introduction: Noise is the second leading cause of hearing loss in adults after presbycusis. The objective of this work was to study hearing loss induced by the noise of mills in the markets of Parakou. Methods: This ...Introduction: Noise is the second leading cause of hearing loss in adults after presbycusis. The objective of this work was to study hearing loss induced by the noise of mills in the markets of Parakou. Methods: This was a descriptive and analytical cross-sectional study, conducted from February 3 to June 3, 2021 in the markets of Parakou. It concerned millers and sellers located within a 5 meter radius around the mills and among whom pure-tone audiometry was performed to detect a hearing loss. Subjects with no particular medical health history, under 55 years of age and having been working in these markets since more than 12 months, were included. Results: In this study, 103 subjects were selected, including 43 millers and 61 sellers. Their average age was 29 ± 13 years. The sex ratio was 0.49. The average length of service in the profession was 8 years with the extremes of 3 months and 47 years. They were exposed to noise on average 10 hours per day and 6 days a week. The average duration of weekly noise exposure was 23 h 28 min ± 13 h 32 min with the extremes of 5 h 00 min and 52 h 30 min. The average level of noise exposure was 90 dB with the extremes of 72 and 110 dB. 24 subjects reported symptoms related to noise such as headache, tinnitus, and hearing loss, with respective proportions of 22.33%, 20.39% and 06.80%. The prevalence of noise-related hearing loss was 26.21% (n = 27/103). Subjects with a notch at 4000 Hz and normal Average Hearing Loss (AHL) (20.39%) had a seven-time greater risk of developing noise-induced hearing loss (OR = 6.58;95% CI [2.54 - 18.8], p Conclusion: Hearing loss related to the noise of mills affected both millers and sellers near the mills in markets, hence the importance of regulating mills.展开更多
Objective:To explore the clinical evaluation role of the Digits-in-Noise(DIN)test and Hearing Handicap Inventory for Adults Screening(HHIA-S)for patients with occupational noise-induced hearing loss and to observe and...Objective:To explore the clinical evaluation role of the Digits-in-Noise(DIN)test and Hearing Handicap Inventory for Adults Screening(HHIA-S)for patients with occupational noise-induced hearing loss and to observe and analyze their application values.Methods:Fifty patients with suspected occupational noise-induced hearing loss were randomly selected from the Department of Otolaryngology at the hospital as the research target.The collection period for the research cases spanned from January 2022 to November 2023,and all patients had a history of noise exposure.The DIN test and HHIA-S were used for hearing examinations,with clinical,comprehensive diagnosis serving as the gold standard to study their diagnostic performance.Results:The compliance rate of the DIN test was 88.00%,the HHIA-S’s compliance rate was 80.00%,and the combined compliance rate was 94.00%.The compliance rate of the DIN test and the combined compliance rates of the patients were statistically significant compared to the clinical gold standard data(P<0.05),while there was no difference between the compliance rate of the HHIA-S and the gold standard(P>0.05).The data shows that the sensitivity of the combined diagnosis is significantly higher than the sensitivity data of the DIN test and HHIA-S examination alone(P<0.05).Its specificity is 100.00%,and the accuracy data of the joint diagnosis in the degree were higher than those of the DIN test alone(P>0.05)and the HHIA-S alone(P<0.05).Conclusion:For patients with occupational noise-induced hearing loss,the joint evaluation of the DIN test and HHIA-S can significantly improve their diagnostic value with high sensitivity and accuracy.展开更多
BACKGROUND Noise-induced hearing loss(NIHL)is the second most common acquired hearing loss following presbycusis.Exposure to recreational noise and minimal use of hearing protection increase the prevalence of NIHL in ...BACKGROUND Noise-induced hearing loss(NIHL)is the second most common acquired hearing loss following presbycusis.Exposure to recreational noise and minimal use of hearing protection increase the prevalence of NIHL in young females.NIHL is irreversible.Identifying minor hearing pathologies before they progress to hearing problems that affect daily life is crucial.AIM To compare the advantages and disadvantages of extended high frequency(EHF)and otoacoustic emission and determine an indicator of hearing pathologies at the early sub-clinical stage.METHODS This cross-sectional study was implemented in West China Hospital of Sichuan University from May to September 2019.A total of 86 participants,aged 18-22 years,were recruited to establish normative thresholds for EHF.Another 159 adults,aged 18-25 years with normal hearing(0.25-8 kHz≤25 dBHL),were allocated to low noise and noise exposure groups.Distortion otoacoustic emission(DPOAE),transient evoked otoacoustic emissions(TEOAE),and EHF were assessed in the two groups to determine the superior technique for detecting early-stage noise-induced pathologies.The chi-square test was used to assess the noise and low noise exposure groups with respect to extended high-frequency audiometry(EHFA),DPOAE,and TEOAE.P≤0.05 was considered statistically significant.RESULTS A total of 86 participants(66 females and 20 males)aged between 18 and 22(average:20.58±1.13)years were recruited to establish normative thresholds for EHF.The normative thresholds for 9,10,11.2,12.5,14,16,18,and 20 kHz were 15,10,20,15,15,20,28,and 0 dBHL,respectively.A total of 201 participants were recruited and examined for eligibility.Among them,159 adults aged between 18 and 25 years were eligible in this study.No statistical difference was detected between the noise exposure and the low noise exposure groups using EHFA,DPOAE,and TEOAE(P>0.05)except in the right ear at 4 kHz using TEOAE(abnormal rate 20.4%vs 5.2%,respectively;P=0.05).CONCLUSION These results showed TEOAE as the earliest indicator of minor pathology compared to DPOAE and EHFA.However,a multicenter controlled study or prospective study is essential to verify these results.展开更多
The inflammasome is a multiprotein oligomer in the cell cytoplasm and is part of the innate immune system.It plays a crucial role in the pathological process of noise-induced hearing loss(NIHL).However,the mechanisms ...The inflammasome is a multiprotein oligomer in the cell cytoplasm and is part of the innate immune system.It plays a crucial role in the pathological process of noise-induced hearing loss(NIHL).However,the mechanisms of NLR family pyrin domain containing 3(NLRP3)inflammasome activation in NIHL have not been clearly demonstrated.In this study,miniature pigs were exposed to white noise at 120 dB(A)and auditory brainstem response measurements were used to measure their hearing function.Immunofluorescence staining,confocal laser scanning microscopy,western blot assay,and quantitative reverse transcription-polymerase chain reaction were used to analyze inflammasome-related protein distribution and expression.NLRP3,interleukin-1β,interleukin-18,and cleaved-caspase-1 were highly expressed in the cochlea after 120 dB(A)white noise exposure.Our findings suggest that NLRP3-inflammasomes in the cochlea may be activated after acoustic trauma,which may be an important mechanism of noise-induced hearing loss.展开更多
Objective To study effects of saturated hydrogen saline in preventing noise-induced hearing loss. Methods Fifteen guinea pigs were randomly divided into 3 groups (5 each), group one was for control, group two was tr...Objective To study effects of saturated hydrogen saline in preventing noise-induced hearing loss. Methods Fifteen guinea pigs were randomly divided into 3 groups (5 each), group one was for control, group two was treated with normal saline and group three was treated with saturated hydrogen saline, which was given intraperitoneally at 1 hour before noise exposure at 1 ml/100 g. One hundred rounds of impulse noise ( 157 dB SPL peak) were delivered as noise exposure. Immediately after exposure to impulse noise and on Days 1, 2, 4 and 8 following exposure, auditory brainstem response (ABR) thresholds were measured. Outer hair cell morphological changes and sueeinate dehydrogenase (SDH) activity were examined on Day 8 post-exposure. Results Immediately after noise exposure, ABR thresholds in saturated hydrogen saline treated animals were lower than the non-treated animals (P 〈 0.05 ). Microscopy showed little SDH staining, cell swelling and irregular cell arrangement in the non-treated or normal saline treated animals. Whereas in the saturated hydrogen saline treated animals, there was deep SDH staining with significantly reduced cell loss and more regular cellular arrangement compared to the other two groups. The surviving cells counts was 45.17 ±12.15 for non-treated animals, 44.50 ±10.02 for normal saline treated animals and,116.50±2.38 for animals treated with saturated hydrogen saline. While the count was similar between non-treated and normal saline treated animals, it was significantly higher in saturated sions Intraperitoneal injection of saturated hydrogen saline damage. hydrogen saline treated animals (P 〈 0.05). Concluappears to protect the cochlea against noise-induced damage.展开更多
Objective The effects of interactions between genetic and environmental factors on the noise-induced hearing loss(NIHL)are still unclear.This study aimed to assess interactions among gene polymorphisms,noise metrics,a...Objective The effects of interactions between genetic and environmental factors on the noise-induced hearing loss(NIHL)are still unclear.This study aimed to assess interactions among gene polymorphisms,noise metrics,and lifestyles on the risk of NIHL.Methods A case-control study was conducted using 307 patients with NIHL and 307 matched healthy individuals from five manufacturing industries.General demographic data,lifestyle details,and noise exposure levels were recorded.The Kompetitive allele-specific polymerase chain reaction(KASP)was used to analyze the genotypes of 18 SNPs.Results GMDR model demonstrated a relevant interaction between NRN1 rs3805789 and CAT rs7943316(P=0.0107).Subjects with T allele of rs3805789 or T allele of rs7943316 had higher risks of NIHL than those with the SNP pair of rs3805789-CC and rs7943316-AA(P<0.05).There was an interaction among rs3805789,rs7943316,and kurtosis(P=0.0010).Subjects exposed to complex noise and carrying both rs3805789-CT and rs7943316-TT or rs3805789-CT/TT and rs7943316-AA had higher risks of NIHL than those exposed to steady noise and carrying both rs3805789-CC and rs7943316-AA(P<0.05).The best six-locus model involving NRN1 rs3805789,CAT rs7943316,smoking,video volume,physical exercise,and working pressure for the risk of NIHL was found to be the interaction(P=0.0010).An interaction was also found among smoking,video volume,physical exercise,working pressure,and kurtosis(P=0.0107).Conclusion Concurrence of NRN1 and CAT constitutes a genetic risk factor for NIHL.Complex noise exposure significantly increases the risk of NIHL in subjects with a high genetic risk score.Interactions between genes and lifestyles as well as noise metrics and lifestyles affect the risk of NIHL.展开更多
Millions of people worldwide are exposed to harmful levels of noise daily in their work and leisure environment. This makes noise-induced hearing loss(NIHL) a major occupational health risk globally. NIHL is the secon...Millions of people worldwide are exposed to harmful levels of noise daily in their work and leisure environment. This makes noise-induced hearing loss(NIHL) a major occupational health risk globally. NIHL is the second most common form of acquired hearing loss after agerelated hearing loss and is itself a major contributing factor to presbycusis. Temporary threshold shifts, once thought to be relatively harmless and recoverable, are now known to cause permanent cochlear injury leading to permanent loss of hearing sensitivity. This article reviews the current understanding of the cellular and molecular pathophysiology of NIHL with latest findings from animal models. Therapeutic approaches to protect against or to mitigate NIHL are discussed based on their proposed action against these known mechanisms of cochlear injury. Successes in identifying genes that predispose individuals to NIHL by candidate gene association studies are discussed with matched gene knockout animal models. This links to exciting developments in experimental gene therapy to replace and regenerate lost hair cells and post-noise otoprotective therapies currently being investigated in clinical trials. The aim is to provide new insights into current and projected future strategies to manage NIHL; bench to bedside treatment is foreseeable in the next 5 to 10 years.展开更多
Objective:This study aimed to explore andrographolide's mechanism of action and its protective effect on noise-induced hearing loss(NIHL).Materials and Methods:A mice animal model for NIHL was established through ...Objective:This study aimed to explore andrographolide's mechanism of action and its protective effect on noise-induced hearing loss(NIHL).Materials and Methods:A mice animal model for NIHL was established through exposure to broadband noise at 120 d B sound pressure level for 4 h.Transcriptomics analysis and pharmacodynamic experiments were carried out.Results:Andrographolide enters the inner ear and effectively prevents hearing damage following noise exposure in the mice model for permanent hearing loss.Moreover,treatment with andrographolide inhibited the excessive activation of inflammatory factors in the cochleae of noise-exposed mice.Conclusion:Andrographolide might be a promising candidate for auditory protective drug investigation.展开更多
Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as ...Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target.In addition,the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure.To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides,we used a C57BL/6J mouse model treated with kanamycin.We found that the mice exhibited auditory deficits following the acute loss of outer hair cells.Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time.Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response,particularly those related to the NLRP3 inflammasome.Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed,accompanied by infiltration of macrophages and the release of proinflammatory cytokines.Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model.These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration.Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.展开更多
This editorial critically evaluates the application of foot reflexology as a treatment for sensorineural hearing loss(SNHL)in infants,as proposed in a case report published in the World of Clinical Cases.SNHL is a con...This editorial critically evaluates the application of foot reflexology as a treatment for sensorineural hearing loss(SNHL)in infants,as proposed in a case report published in the World of Clinical Cases.SNHL is a condition characterized by damage to the cochlea or the neural pathways that transmit auditory information to the brain.The etiology of SNHL is often complex,involving genetic mutations,prenatal factors,or perinatal insults.Reflexology,an alternative therapy involving the application of pressure to specific points on the feet,is based on the hypothesis that these points correspond to different organs and systems in the body,including the auditory system.However,the biological plausibility and clinical efficacy of foot reflexology in addressing SNHL lack empirical support.This editorial examines the pathophysiology of SNHL,assesses the clinical claims of reflexology practitioners,and emphasizes the necessity of evidence-based approaches in treating infant hearing loss.While complementary therapies may provide ancillary benefits,they should not supplant validated medical treatments in managing SNHL in infants.Further research is needed to evaluate the safety and efficacy of foot reflexology and other alternative therapies in pediatric audiology.展开更多
Hearing loss has caused serious social effects among people living with it. Those who relate to patients with hearing loss (PHL) also share some part of the negative effects. Some specifics are communication disabilit...Hearing loss has caused serious social effects among people living with it. Those who relate to patients with hearing loss (PHL) also share some part of the negative effects. Some specifics are communication disability, which impacts speech and language development, academic performance, and social or work life. In previous years, the problem was predicted to be aggravated as the expected life span of the population increased. The study was conducted among PHL and their family members in JUTH and Kazahyet Audiology Service in Jos. 150 PHL were purposively sampled. The study was guided by a Cross-sectional Survey Research Design, and the specific objectives were to (1) identify the social effects of hearing loss on the PHL, (2) determine the implication of social effects on PHL, and (3) determine the extent at which these social effects affect PHL. The outcome of the study shows that the social effects faced by PHL are poor relationships, no secrets, dependence on sign language, frustration, depression, and dependence on lip reading. Some stop schooling, and others feel laughed at and therefore choose the path of isolation. The implication is that hearing loss is expensive to manage. PHL always feel they are not contributing their quarter in life as usual;they feel stigmatized and are not easy to relate with. The study recommends that the government should come up with policies that will check man-made behaviors that exert negative social effects on PHL in our society, subsidize the cost of hearing aids and cochlear implants to be affordable for PHL, formulate a policy on mandatory newborn hearing screening before the infant is discharged from the hospital to help in the early identification of hearing loss. Finally, the early creation of awareness of the dangers or consequences of hearing loss will go a long way in preventing our society from involvement in high-risk behaviors that will cause hearing loss.展开更多
BACKGROUND Our study contributes to the further understanding of the mechanism of foot reflexology.Foot reflexology has been reported to affect hearing recovery,but no physiological evidence has been provided.This lac...BACKGROUND Our study contributes to the further understanding of the mechanism of foot reflexology.Foot reflexology has been reported to affect hearing recovery,but no physiological evidence has been provided.This lack of evidence hampers the acceptance of the technique in clinical practice.CASE SUMMARY A girl was taken to North Sichuan Medical University Affiliated Hospital for a hearing screen by her parents.Her parents reported that her hearing level was the same as when she was born.The girl was diagnosed with sensorineural hearing loss(SNHL)by a doctor in the otolaryngology department.After we introduced the foot reflexology project,the parents agreed to participate in the experiment.After 6 months of foot reflexology treatment,the hearing threshold of the girl recovered to a normal level,below 30 dB.CONCLUSION Foot reflexology should be encouraged in clinical practice and for families of infants with SNHL.展开更多
Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and e...Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.展开更多
Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototox...Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototoxic,and idiopathic sudden sensorineural are other less common types of acquired hearing loss.The etiology of these conditions is complex and multi-fa ctorial involving an interplay of genetic and environmental factors.Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss.Short non-coding RNA sequences known as microRNAs(miRNAs)have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response.Sensory hair cell death is a central histopathological finding in sensorineural hearing loss.As these cells do not regenerate in humans,it underlies the irreversibility of human age-related hearing loss.Ovid EMBASE,Ovid MEDLINE,Web of Science Core Collection,and ClinicalTrials.gov databases over the period August 1,2018 to July 31,2023 were searched with"hearing loss,""hypoxamiRs,""hypoxia,""microRNAs,""ischemia,"and"oxidative stress"text words for English language primary study publications or registered clinical trials.Registe red clinical trials known to the senior author we re also assessed.A total of 222studies were thus identified.After excluding duplicates,editorials,retra ctions,secondary research studies,and non-English language articles,39 primary studies and clinical trials underwent full-text screening.This resulted in 11 animal,in vitro,and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review.MiRNAs miR-34a and miR-29b levels increase with age in mice.These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferato r-activated receptor gamma coactivator-1-alpha(SIRT1/P GC-1α),SIRT1p53,and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis.Furthermore,hypoxia and oxidative stress had a similar adve rse apoptotic effect,which was inhibited by resve ratrol and a myocardial inhibitorassociated transcript,a miR-29b competing endogenous mRNA.Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice-an effect that was corrected by inner ear stem cell-derived exosomes.There is ongoing work seeking to determine if these findings can be effectively translated to humans.展开更多
Copper is a microelement with important physiological functions in the body.However,the excess copper ion(Cu^(2+))may cause severe health problems,such as hair cell apoptosis and the resultant hearing loss.Therefore,t...Copper is a microelement with important physiological functions in the body.However,the excess copper ion(Cu^(2+))may cause severe health problems,such as hair cell apoptosis and the resultant hearing loss.Therefore,the assay of Cu^(2+)is important.We integrate ionic imprinting technology(IIT)and structurally colored hydrogel beads to prepare chitosan-based ionically imprinted hydrogel beads(IIHBs)as a low-cost and high-specificity platform for Cu^(2+)detection.The IIHBs have a macroporous microstructure,uniform size,vivid structural color,and magnetic responsiveness.When incubated in solution,IIHBs recognize Cu^(2+)and exhibit a reflective peak change,thereby achieving label-free detection.In addition,benefiting from the IIT,the IIHBs display good specificity and selectivity and have an imprinting factor of 19.14 at 100μmol·L^(-1).These features indicated that the developed IIHBs are promising candidates for Cu^(2+)detection,particularly for the prevention of hearing loss.展开更多
Background: Sudden sensorineural hearing loss(SSNHL) is a prevalent emergency in ear, nose, and throat practice. Previous studies have demonstrated that intratympanic steroid therapy(IST) can serve as a salvage treatm...Background: Sudden sensorineural hearing loss(SSNHL) is a prevalent emergency in ear, nose, and throat practice. Previous studies have demonstrated that intratympanic steroid therapy(IST) can serve as a salvage treatment for SSNHL after the failure of systemic steroid therapy(SST).Objective: This study aimed to analyze the efficacy of modified IST involving the insertion of a tympanic tube and gelfoam as a salvage treatment for patients with SSNHL, and to explore its associated factors.Methods: Totally, 74 patients who were aged 22–81 years with SSNHL were enrolled and allocated to either the control group(n = 25) or the treatment group(n = 49) based on their treatment modalities. All patients received SST lasting for at least 7 days. Subsequently, patients in the treatment group, after SST failure, underwent IST twice a week for 2–6 weeks, while the control group did not. Efficacy was assessed by the improvement in pure tone average at the affected frequency at the beginning and end of IST.Results: Hearing improvement in all patients after IST in the treatment group was 9.71 ± 14.84 dB, with significant improvement at affected frequencies(250-8000 Hz) compared with the control group(P < 0.05). The findings indicated the duration from the onset of SSNHL to the beginning of IST as an independent factor for pure tone average improvement after treatment(P = 0.002), whereas age, duration of SST, and time of IST were not(P > 0.05).Conclusion: The modified IST was demonstrated to be a safe and effective method as a salvage treatment for SSNHL. This study explored the efficacy of a modified IST approach, incorporating the utilization of tympanic tubes and gelfoam as key components. The findings underscore the advantages of gelfoam as a strategic drug carrier placed in the round window niche. By minimizing drug loss, extending action time, and increasing perilymph concentration, gelfoam enhances the therapeutic impact of IST, contributing to improved hearing outcomes in patients with SSNHL.展开更多
Currently,treatment options for infant sensorineural hearing loss(SNHL)are limited.This article describes a novel case of SNHL in an infant successfully treated with foot reflexology,along with observed brain activity...Currently,treatment options for infant sensorineural hearing loss(SNHL)are limited.This article describes a novel case of SNHL in an infant successfully treated with foot reflexology,along with observed brain activity changes before and after treatment,as indicated by functional magnetic resonance imaging.Hence,this commentary discusses the case and our viewpoints regarding foot reflexology for treating SNHL.展开更多
Foot reflexology is a non-invasive and safe complementary therapy that works by massaging the reflex zones of the feet and exerts systemic or whole-body regulation through meridian nerve conduction.This therapy is com...Foot reflexology is a non-invasive and safe complementary therapy that works by massaging the reflex zones of the feet and exerts systemic or whole-body regulation through meridian nerve conduction.This therapy is commonly used in the treatment of various conditions such as autism and Parkinson's disease.However,there is limited reporting on the use of foot reflexology therapy for infants with sensorineural hearing loss(SNHL).Currently,there is no definitive conclusion on how foot reflexology therapy can influence hearing.This editorial holds some guiding significance regarding this clinical issue.The aim is to present physiological evidence of how foot reflexology therapy can impact infants with SNHL,thereby enhancing clinician’s awareness of foot reflexology in treating infants with SNHL.展开更多
This narrative literature review delves into the multifaceted realm of parental involvement in the rehabilitation of children with permanent hearing loss. While existing research has made strides in elucidating parent...This narrative literature review delves into the multifaceted realm of parental involvement in the rehabilitation of children with permanent hearing loss. While existing research has made strides in elucidating parental roles in this context, critical gaps persist, necessitating a comprehensive exploration to inform future endeavors. Our review synthesizes a wide array of studies, identifying these gaps and emphasizing the significance of addressing them. Themes emerging from the literature include the varying degrees of parental engagement, the impact of cultural and socio-economic factors, and the challenges faced by families navigating rehabilitation processes. The synthesis of this literature not only highlights the current state of knowledge but also provides a roadmap for future research efforts. By addressing these gaps, we aim to contribute to a more nuanced understanding of parental involvement in the rehabilitation of children with permanent hearing loss, ultimately fostering improved support systems and holistic care for affected families.展开更多
基金supported by the National Key Research and Development Program of China,No.2022YFC2402701(to WC)Key International(Regional)Joint Research Program of the National Natural Science Foundation of China,No.81820108009(to SY)+5 种基金the National Natural Science Foundation of China,Nos.81970890(to WC)and 82371148(to WG)Fujian Provincial Healthcare Young and Middle-aged Backbone Talent Training Project,No.2023GGA035(to XC)Spring City Planthe High-level Talent Promotion and Training Project of Kunming,No.2022SCP001(to SY)the Natural Science Foundation of Hainan Province of China,No.824MS052(to XS)the Sixth Medical Center of Chinese PLA General Hospital Innovation Cultivation,No.CXPY202116(to LX)。
文摘Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Here,we present evidence suggesting that the lysine-specific demethylase 1 inhibitor–tranylcypromine is an otoprotective agent that could be used to treat noise-induced hearing loss,and elucidate its underlying regulatory mechanisms.We established a mouse model of permanent threshold shift hearing loss by exposing the mice to white broadband noise at a sound pressure level of 120 d B for 4 hours.We found that tranylcypromine treatment led to the upregulation of Sestrin2(SESN2)and activation of the autophagy markers light chain 3B and lysosome-associated membrane glycoprotein 1 in the cochleae of mice treated with tranylcypromine.The noise exposure group treated with tranylcypromine showed significantly lower average auditory brainstem response hearing thresholds at click,4,8,and 16 k Hz frequencies compared with the noise exposure group treated with saline.These findings indicate that tranylcypromine treatment resulted in increased SESN2,light chain 3B,and lysosome-associated membrane glycoprotein 1 expression after noise exposure,leading to a reduction in levels of 4-hydroxynonenal and cleaved caspase-3,thereby reducing noise-induced hair cell loss.Additionally,immunoblot analysis demonstrated that treatment with tranylcypromine upregulated SESN2 expression via the autophagy pathway.Tranylcypromine treatment also reduced the production of NOD-like receptor family pyrin domaincontaining 3(NLRP3)production.In conclusion,our results showed that tranylcypromine treatment ameliorated cochlear inflammation by promoting the expression of SESN2,which induced autophagy,thereby restricting NLRP3-related inflammasome signaling,alleviating cochlear hair cell loss,and protecting hearing function.These findings suggest that inhibiting lysine-specific demethylase 1 is a potential therapeutic strategy for preventing hair cell loss and noise-induced hearing loss.
文摘Introduction: Noise is the second leading cause of hearing loss in adults after presbycusis. The objective of this work was to study hearing loss induced by the noise of mills in the markets of Parakou. Methods: This was a descriptive and analytical cross-sectional study, conducted from February 3 to June 3, 2021 in the markets of Parakou. It concerned millers and sellers located within a 5 meter radius around the mills and among whom pure-tone audiometry was performed to detect a hearing loss. Subjects with no particular medical health history, under 55 years of age and having been working in these markets since more than 12 months, were included. Results: In this study, 103 subjects were selected, including 43 millers and 61 sellers. Their average age was 29 ± 13 years. The sex ratio was 0.49. The average length of service in the profession was 8 years with the extremes of 3 months and 47 years. They were exposed to noise on average 10 hours per day and 6 days a week. The average duration of weekly noise exposure was 23 h 28 min ± 13 h 32 min with the extremes of 5 h 00 min and 52 h 30 min. The average level of noise exposure was 90 dB with the extremes of 72 and 110 dB. 24 subjects reported symptoms related to noise such as headache, tinnitus, and hearing loss, with respective proportions of 22.33%, 20.39% and 06.80%. The prevalence of noise-related hearing loss was 26.21% (n = 27/103). Subjects with a notch at 4000 Hz and normal Average Hearing Loss (AHL) (20.39%) had a seven-time greater risk of developing noise-induced hearing loss (OR = 6.58;95% CI [2.54 - 18.8], p Conclusion: Hearing loss related to the noise of mills affected both millers and sellers near the mills in markets, hence the importance of regulating mills.
文摘Objective:To explore the clinical evaluation role of the Digits-in-Noise(DIN)test and Hearing Handicap Inventory for Adults Screening(HHIA-S)for patients with occupational noise-induced hearing loss and to observe and analyze their application values.Methods:Fifty patients with suspected occupational noise-induced hearing loss were randomly selected from the Department of Otolaryngology at the hospital as the research target.The collection period for the research cases spanned from January 2022 to November 2023,and all patients had a history of noise exposure.The DIN test and HHIA-S were used for hearing examinations,with clinical,comprehensive diagnosis serving as the gold standard to study their diagnostic performance.Results:The compliance rate of the DIN test was 88.00%,the HHIA-S’s compliance rate was 80.00%,and the combined compliance rate was 94.00%.The compliance rate of the DIN test and the combined compliance rates of the patients were statistically significant compared to the clinical gold standard data(P<0.05),while there was no difference between the compliance rate of the HHIA-S and the gold standard(P>0.05).The data shows that the sensitivity of the combined diagnosis is significantly higher than the sensitivity data of the DIN test and HHIA-S examination alone(P<0.05).Its specificity is 100.00%,and the accuracy data of the joint diagnosis in the degree were higher than those of the DIN test alone(P>0.05)and the HHIA-S alone(P<0.05).Conclusion:For patients with occupational noise-induced hearing loss,the joint evaluation of the DIN test and HHIA-S can significantly improve their diagnostic value with high sensitivity and accuracy.
文摘BACKGROUND Noise-induced hearing loss(NIHL)is the second most common acquired hearing loss following presbycusis.Exposure to recreational noise and minimal use of hearing protection increase the prevalence of NIHL in young females.NIHL is irreversible.Identifying minor hearing pathologies before they progress to hearing problems that affect daily life is crucial.AIM To compare the advantages and disadvantages of extended high frequency(EHF)and otoacoustic emission and determine an indicator of hearing pathologies at the early sub-clinical stage.METHODS This cross-sectional study was implemented in West China Hospital of Sichuan University from May to September 2019.A total of 86 participants,aged 18-22 years,were recruited to establish normative thresholds for EHF.Another 159 adults,aged 18-25 years with normal hearing(0.25-8 kHz≤25 dBHL),were allocated to low noise and noise exposure groups.Distortion otoacoustic emission(DPOAE),transient evoked otoacoustic emissions(TEOAE),and EHF were assessed in the two groups to determine the superior technique for detecting early-stage noise-induced pathologies.The chi-square test was used to assess the noise and low noise exposure groups with respect to extended high-frequency audiometry(EHFA),DPOAE,and TEOAE.P≤0.05 was considered statistically significant.RESULTS A total of 86 participants(66 females and 20 males)aged between 18 and 22(average:20.58±1.13)years were recruited to establish normative thresholds for EHF.The normative thresholds for 9,10,11.2,12.5,14,16,18,and 20 kHz were 15,10,20,15,15,20,28,and 0 dBHL,respectively.A total of 201 participants were recruited and examined for eligibility.Among them,159 adults aged between 18 and 25 years were eligible in this study.No statistical difference was detected between the noise exposure and the low noise exposure groups using EHFA,DPOAE,and TEOAE(P>0.05)except in the right ear at 4 kHz using TEOAE(abnormal rate 20.4%vs 5.2%,respectively;P=0.05).CONCLUSION These results showed TEOAE as the earliest indicator of minor pathology compared to DPOAE and EHFA.However,a multicenter controlled study or prospective study is essential to verify these results.
基金supported by the National Key Research and Development Program of China, No.2020YFC2005200(to WWG and WJH)the National Nature Science Foundation of China, Nos.81770992(to NS and WJH), 81970897(to WWG)+1 种基金Health and Family Planning System Research Project of Shenzhen Municipality, No.SZXJ2018079(to YYY)Shenzhen Sanming Project, No.SZSM201612076(to YYY)
文摘The inflammasome is a multiprotein oligomer in the cell cytoplasm and is part of the innate immune system.It plays a crucial role in the pathological process of noise-induced hearing loss(NIHL).However,the mechanisms of NLR family pyrin domain containing 3(NLRP3)inflammasome activation in NIHL have not been clearly demonstrated.In this study,miniature pigs were exposed to white noise at 120 dB(A)and auditory brainstem response measurements were used to measure their hearing function.Immunofluorescence staining,confocal laser scanning microscopy,western blot assay,and quantitative reverse transcription-polymerase chain reaction were used to analyze inflammasome-related protein distribution and expression.NLRP3,interleukin-1β,interleukin-18,and cleaved-caspase-1 were highly expressed in the cochlea after 120 dB(A)white noise exposure.Our findings suggest that NLRP3-inflammasomes in the cochlea may be activated after acoustic trauma,which may be an important mechanism of noise-induced hearing loss.
基金Supported by NFSC grant(30600700,30772413)Chinese PLA 12th five medical research grant
文摘Objective To study effects of saturated hydrogen saline in preventing noise-induced hearing loss. Methods Fifteen guinea pigs were randomly divided into 3 groups (5 each), group one was for control, group two was treated with normal saline and group three was treated with saturated hydrogen saline, which was given intraperitoneally at 1 hour before noise exposure at 1 ml/100 g. One hundred rounds of impulse noise ( 157 dB SPL peak) were delivered as noise exposure. Immediately after exposure to impulse noise and on Days 1, 2, 4 and 8 following exposure, auditory brainstem response (ABR) thresholds were measured. Outer hair cell morphological changes and sueeinate dehydrogenase (SDH) activity were examined on Day 8 post-exposure. Results Immediately after noise exposure, ABR thresholds in saturated hydrogen saline treated animals were lower than the non-treated animals (P 〈 0.05 ). Microscopy showed little SDH staining, cell swelling and irregular cell arrangement in the non-treated or normal saline treated animals. Whereas in the saturated hydrogen saline treated animals, there was deep SDH staining with significantly reduced cell loss and more regular cellular arrangement compared to the other two groups. The surviving cells counts was 45.17 ±12.15 for non-treated animals, 44.50 ±10.02 for normal saline treated animals and,116.50±2.38 for animals treated with saturated hydrogen saline. While the count was similar between non-treated and normal saline treated animals, it was significantly higher in saturated sions Intraperitoneal injection of saturated hydrogen saline damage. hydrogen saline treated animals (P 〈 0.05). Concluappears to protect the cochlea against noise-induced damage.
基金supported by Zhejiang Key Research and Development Program of China[No.2015C03039,No.20152013A01]Zhejiang Provincial Program for the Cultivation of High-level Innovative Health Talents,China+2 种基金Zhejiang Health Innovative Talent Training Project of Chinageneral scientific research project of Zhejiang Science and Technology Department of China[No.Y201941671]Natural Science Foundation of Zhejiang Provincial,China[LY18H260002]。
文摘Objective The effects of interactions between genetic and environmental factors on the noise-induced hearing loss(NIHL)are still unclear.This study aimed to assess interactions among gene polymorphisms,noise metrics,and lifestyles on the risk of NIHL.Methods A case-control study was conducted using 307 patients with NIHL and 307 matched healthy individuals from five manufacturing industries.General demographic data,lifestyle details,and noise exposure levels were recorded.The Kompetitive allele-specific polymerase chain reaction(KASP)was used to analyze the genotypes of 18 SNPs.Results GMDR model demonstrated a relevant interaction between NRN1 rs3805789 and CAT rs7943316(P=0.0107).Subjects with T allele of rs3805789 or T allele of rs7943316 had higher risks of NIHL than those with the SNP pair of rs3805789-CC and rs7943316-AA(P<0.05).There was an interaction among rs3805789,rs7943316,and kurtosis(P=0.0010).Subjects exposed to complex noise and carrying both rs3805789-CT and rs7943316-TT or rs3805789-CT/TT and rs7943316-AA had higher risks of NIHL than those exposed to steady noise and carrying both rs3805789-CC and rs7943316-AA(P<0.05).The best six-locus model involving NRN1 rs3805789,CAT rs7943316,smoking,video volume,physical exercise,and working pressure for the risk of NIHL was found to be the interaction(P=0.0010).An interaction was also found among smoking,video volume,physical exercise,working pressure,and kurtosis(P=0.0107).Conclusion Concurrence of NRN1 and CAT constitutes a genetic risk factor for NIHL.Complex noise exposure significantly increases the risk of NIHL in subjects with a high genetic risk score.Interactions between genes and lifestyles as well as noise metrics and lifestyles affect the risk of NIHL.
文摘Millions of people worldwide are exposed to harmful levels of noise daily in their work and leisure environment. This makes noise-induced hearing loss(NIHL) a major occupational health risk globally. NIHL is the second most common form of acquired hearing loss after agerelated hearing loss and is itself a major contributing factor to presbycusis. Temporary threshold shifts, once thought to be relatively harmless and recoverable, are now known to cause permanent cochlear injury leading to permanent loss of hearing sensitivity. This article reviews the current understanding of the cellular and molecular pathophysiology of NIHL with latest findings from animal models. Therapeutic approaches to protect against or to mitigate NIHL are discussed based on their proposed action against these known mechanisms of cochlear injury. Successes in identifying genes that predispose individuals to NIHL by candidate gene association studies are discussed with matched gene knockout animal models. This links to exciting developments in experimental gene therapy to replace and regenerate lost hair cells and post-noise otoprotective therapies currently being investigated in clinical trials. The aim is to provide new insights into current and projected future strategies to manage NIHL; bench to bedside treatment is foreseeable in the next 5 to 10 years.
基金supported by the Science and Technology Development Aid Project of Xuzhou Science and Technology Bureau(KC21249)the Science and Technology Development Project of Chongqing(CSTB2022NSCQ-M SX1598)+2 种基金Hainan Provincial Natural Science Foundation of China(824MS052)TASLY Special Funding 2023the Scientific Research Startup Foundation of Hainan University。
文摘Objective:This study aimed to explore andrographolide's mechanism of action and its protective effect on noise-induced hearing loss(NIHL).Materials and Methods:A mice animal model for NIHL was established through exposure to broadband noise at 120 d B sound pressure level for 4 h.Transcriptomics analysis and pharmacodynamic experiments were carried out.Results:Andrographolide enters the inner ear and effectively prevents hearing damage following noise exposure in the mice model for permanent hearing loss.Moreover,treatment with andrographolide inhibited the excessive activation of inflammatory factors in the cochleae of noise-exposed mice.Conclusion:Andrographolide might be a promising candidate for auditory protective drug investigation.
基金supported by the National Natural Science Foundation of China,Nos.81800919(to YX),82171140(to PW)the International Cooperation and Exchange of the National Natural Science Foundation of China,Nos.82020108008(to HS),81720108010(to SY).
文摘Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target.In addition,the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure.To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides,we used a C57BL/6J mouse model treated with kanamycin.We found that the mice exhibited auditory deficits following the acute loss of outer hair cells.Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time.Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response,particularly those related to the NLRP3 inflammasome.Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed,accompanied by infiltration of macrophages and the release of proinflammatory cytokines.Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model.These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration.Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.
文摘This editorial critically evaluates the application of foot reflexology as a treatment for sensorineural hearing loss(SNHL)in infants,as proposed in a case report published in the World of Clinical Cases.SNHL is a condition characterized by damage to the cochlea or the neural pathways that transmit auditory information to the brain.The etiology of SNHL is often complex,involving genetic mutations,prenatal factors,or perinatal insults.Reflexology,an alternative therapy involving the application of pressure to specific points on the feet,is based on the hypothesis that these points correspond to different organs and systems in the body,including the auditory system.However,the biological plausibility and clinical efficacy of foot reflexology in addressing SNHL lack empirical support.This editorial examines the pathophysiology of SNHL,assesses the clinical claims of reflexology practitioners,and emphasizes the necessity of evidence-based approaches in treating infant hearing loss.While complementary therapies may provide ancillary benefits,they should not supplant validated medical treatments in managing SNHL in infants.Further research is needed to evaluate the safety and efficacy of foot reflexology and other alternative therapies in pediatric audiology.
文摘Hearing loss has caused serious social effects among people living with it. Those who relate to patients with hearing loss (PHL) also share some part of the negative effects. Some specifics are communication disability, which impacts speech and language development, academic performance, and social or work life. In previous years, the problem was predicted to be aggravated as the expected life span of the population increased. The study was conducted among PHL and their family members in JUTH and Kazahyet Audiology Service in Jos. 150 PHL were purposively sampled. The study was guided by a Cross-sectional Survey Research Design, and the specific objectives were to (1) identify the social effects of hearing loss on the PHL, (2) determine the implication of social effects on PHL, and (3) determine the extent at which these social effects affect PHL. The outcome of the study shows that the social effects faced by PHL are poor relationships, no secrets, dependence on sign language, frustration, depression, and dependence on lip reading. Some stop schooling, and others feel laughed at and therefore choose the path of isolation. The implication is that hearing loss is expensive to manage. PHL always feel they are not contributing their quarter in life as usual;they feel stigmatized and are not easy to relate with. The study recommends that the government should come up with policies that will check man-made behaviors that exert negative social effects on PHL in our society, subsidize the cost of hearing aids and cochlear implants to be affordable for PHL, formulate a policy on mandatory newborn hearing screening before the infant is discharged from the hospital to help in the early identification of hearing loss. Finally, the early creation of awareness of the dangers or consequences of hearing loss will go a long way in preventing our society from involvement in high-risk behaviors that will cause hearing loss.
基金Graduate Student Project of Xi’an International Studies University,No.2021BS012Nanchong City-Universities Project,No.22SXCXTD0004.
文摘BACKGROUND Our study contributes to the further understanding of the mechanism of foot reflexology.Foot reflexology has been reported to affect hearing recovery,but no physiological evidence has been provided.This lack of evidence hampers the acceptance of the technique in clinical practice.CASE SUMMARY A girl was taken to North Sichuan Medical University Affiliated Hospital for a hearing screen by her parents.Her parents reported that her hearing level was the same as when she was born.The girl was diagnosed with sensorineural hearing loss(SNHL)by a doctor in the otolaryngology department.After we introduced the foot reflexology project,the parents agreed to participate in the experiment.After 6 months of foot reflexology treatment,the hearing threshold of the girl recovered to a normal level,below 30 dB.CONCLUSION Foot reflexology should be encouraged in clinical practice and for families of infants with SNHL.
基金supported by the National Key Research and Development Program of China (2021YFA0805902,2022YFF0710703)National Natural Science Foundation of China (32201257)+1 种基金Science and Technology Innovation Project of Xiongan New Area (2022XAGG0121)Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (2019QNRC001)。
文摘Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.
文摘Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototoxic,and idiopathic sudden sensorineural are other less common types of acquired hearing loss.The etiology of these conditions is complex and multi-fa ctorial involving an interplay of genetic and environmental factors.Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss.Short non-coding RNA sequences known as microRNAs(miRNAs)have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response.Sensory hair cell death is a central histopathological finding in sensorineural hearing loss.As these cells do not regenerate in humans,it underlies the irreversibility of human age-related hearing loss.Ovid EMBASE,Ovid MEDLINE,Web of Science Core Collection,and ClinicalTrials.gov databases over the period August 1,2018 to July 31,2023 were searched with"hearing loss,""hypoxamiRs,""hypoxia,""microRNAs,""ischemia,"and"oxidative stress"text words for English language primary study publications or registered clinical trials.Registe red clinical trials known to the senior author we re also assessed.A total of 222studies were thus identified.After excluding duplicates,editorials,retra ctions,secondary research studies,and non-English language articles,39 primary studies and clinical trials underwent full-text screening.This resulted in 11 animal,in vitro,and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review.MiRNAs miR-34a and miR-29b levels increase with age in mice.These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferato r-activated receptor gamma coactivator-1-alpha(SIRT1/P GC-1α),SIRT1p53,and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis.Furthermore,hypoxia and oxidative stress had a similar adve rse apoptotic effect,which was inhibited by resve ratrol and a myocardial inhibitorassociated transcript,a miR-29b competing endogenous mRNA.Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice-an effect that was corrected by inner ear stem cell-derived exosomes.There is ongoing work seeking to determine if these findings can be effectively translated to humans.
基金supported by grants from the National Key Research and Development Program of China(2021YFA1101300,2021YFA1101800,and 2020YFA0112503)the National Natural Science Foundation of China(82030029,81970882,92149304,and 22302231)+5 种基金the Science and Technology Department of Sichuan Province(2021YFS0371)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011986)the Shenzhen Fundamental Research Program(JCYJ20190814093401920,JCYJ20210324125608022,JCYJ20190813152616459,and JCYJ20190808120405672)the Futian Healthcare Research Project(FTWS2022013 and FTWS2023080)the Open Research Fund of State Key Laboratory of Genetic Engineering,Fudan University(SKLGE-2104)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(23qnpy153)。
文摘Copper is a microelement with important physiological functions in the body.However,the excess copper ion(Cu^(2+))may cause severe health problems,such as hair cell apoptosis and the resultant hearing loss.Therefore,the assay of Cu^(2+)is important.We integrate ionic imprinting technology(IIT)and structurally colored hydrogel beads to prepare chitosan-based ionically imprinted hydrogel beads(IIHBs)as a low-cost and high-specificity platform for Cu^(2+)detection.The IIHBs have a macroporous microstructure,uniform size,vivid structural color,and magnetic responsiveness.When incubated in solution,IIHBs recognize Cu^(2+)and exhibit a reflective peak change,thereby achieving label-free detection.In addition,benefiting from the IIT,the IIHBs display good specificity and selectivity and have an imprinting factor of 19.14 at 100μmol·L^(-1).These features indicated that the developed IIHBs are promising candidates for Cu^(2+)detection,particularly for the prevention of hearing loss.
文摘Background: Sudden sensorineural hearing loss(SSNHL) is a prevalent emergency in ear, nose, and throat practice. Previous studies have demonstrated that intratympanic steroid therapy(IST) can serve as a salvage treatment for SSNHL after the failure of systemic steroid therapy(SST).Objective: This study aimed to analyze the efficacy of modified IST involving the insertion of a tympanic tube and gelfoam as a salvage treatment for patients with SSNHL, and to explore its associated factors.Methods: Totally, 74 patients who were aged 22–81 years with SSNHL were enrolled and allocated to either the control group(n = 25) or the treatment group(n = 49) based on their treatment modalities. All patients received SST lasting for at least 7 days. Subsequently, patients in the treatment group, after SST failure, underwent IST twice a week for 2–6 weeks, while the control group did not. Efficacy was assessed by the improvement in pure tone average at the affected frequency at the beginning and end of IST.Results: Hearing improvement in all patients after IST in the treatment group was 9.71 ± 14.84 dB, with significant improvement at affected frequencies(250-8000 Hz) compared with the control group(P < 0.05). The findings indicated the duration from the onset of SSNHL to the beginning of IST as an independent factor for pure tone average improvement after treatment(P = 0.002), whereas age, duration of SST, and time of IST were not(P > 0.05).Conclusion: The modified IST was demonstrated to be a safe and effective method as a salvage treatment for SSNHL. This study explored the efficacy of a modified IST approach, incorporating the utilization of tympanic tubes and gelfoam as key components. The findings underscore the advantages of gelfoam as a strategic drug carrier placed in the round window niche. By minimizing drug loss, extending action time, and increasing perilymph concentration, gelfoam enhances the therapeutic impact of IST, contributing to improved hearing outcomes in patients with SSNHL.
文摘Currently,treatment options for infant sensorineural hearing loss(SNHL)are limited.This article describes a novel case of SNHL in an infant successfully treated with foot reflexology,along with observed brain activity changes before and after treatment,as indicated by functional magnetic resonance imaging.Hence,this commentary discusses the case and our viewpoints regarding foot reflexology for treating SNHL.
基金Supported by the Fundamental Research Funds for the Central Universities,No.2022CDJYGRH-004.
文摘Foot reflexology is a non-invasive and safe complementary therapy that works by massaging the reflex zones of the feet and exerts systemic or whole-body regulation through meridian nerve conduction.This therapy is commonly used in the treatment of various conditions such as autism and Parkinson's disease.However,there is limited reporting on the use of foot reflexology therapy for infants with sensorineural hearing loss(SNHL).Currently,there is no definitive conclusion on how foot reflexology therapy can influence hearing.This editorial holds some guiding significance regarding this clinical issue.The aim is to present physiological evidence of how foot reflexology therapy can impact infants with SNHL,thereby enhancing clinician’s awareness of foot reflexology in treating infants with SNHL.
文摘This narrative literature review delves into the multifaceted realm of parental involvement in the rehabilitation of children with permanent hearing loss. While existing research has made strides in elucidating parental roles in this context, critical gaps persist, necessitating a comprehensive exploration to inform future endeavors. Our review synthesizes a wide array of studies, identifying these gaps and emphasizing the significance of addressing them. Themes emerging from the literature include the varying degrees of parental engagement, the impact of cultural and socio-economic factors, and the challenges faced by families navigating rehabilitation processes. The synthesis of this literature not only highlights the current state of knowledge but also provides a roadmap for future research efforts. By addressing these gaps, we aim to contribute to a more nuanced understanding of parental involvement in the rehabilitation of children with permanent hearing loss, ultimately fostering improved support systems and holistic care for affected families.