对基于小波变换的自适应滤波技术中较为先进的D-LMS(Decomposition Least Mean Square)算法进行改进,推导出一种变步长D-LMS算法。通过建立非线性系统模型,在基于MATLAB的仿真实验中,分别得出原D-LMS算法和改进算法的系统辨识图形和数...对基于小波变换的自适应滤波技术中较为先进的D-LMS(Decomposition Least Mean Square)算法进行改进,推导出一种变步长D-LMS算法。通过建立非线性系统模型,在基于MATLAB的仿真实验中,分别得出原D-LMS算法和改进算法的系统辨识图形和数据。结果表明,两种小波分解自适应算法都能够很好的对非线性系统进行辨识,而改进的变步长D-LMS算法的收敛速度及跟踪速度更快,稳态误调噪声较小,即辨识结果更加精确。展开更多
针对爆破振动信号具有非线性、随机性较强的特点,提出利用局部波分解(Local Mean Decomposition,LMD)处理并分析爆破振动信号。结合露天铁矿逐孔起爆方式下爆破振动测试信号分析,研究信号的时频及能量分布特征。结果表明:LMD方法能完整...针对爆破振动信号具有非线性、随机性较强的特点,提出利用局部波分解(Local Mean Decomposition,LMD)处理并分析爆破振动信号。结合露天铁矿逐孔起爆方式下爆破振动测试信号分析,研究信号的时频及能量分布特征。结果表明:LMD方法能完整地分解重构爆破信号,有效减少模态混叠现象,更加真实反映信号的原始信息;相比经验模态分解方法(Empirical Mode Decomposition,EMD)、LMID方法的端点效应轻微,具有较高的解凋精度;LMID方法可以精确分析振动能量的分布规律,有利于进一步识别爆破本身的力学作用特征。展开更多
文摘对基于小波变换的自适应滤波技术中较为先进的D-LMS(Decomposition Least Mean Square)算法进行改进,推导出一种变步长D-LMS算法。通过建立非线性系统模型,在基于MATLAB的仿真实验中,分别得出原D-LMS算法和改进算法的系统辨识图形和数据。结果表明,两种小波分解自适应算法都能够很好的对非线性系统进行辨识,而改进的变步长D-LMS算法的收敛速度及跟踪速度更快,稳态误调噪声较小,即辨识结果更加精确。
文摘针对爆破振动信号具有非线性、随机性较强的特点,提出利用局部波分解(Local Mean Decomposition,LMD)处理并分析爆破振动信号。结合露天铁矿逐孔起爆方式下爆破振动测试信号分析,研究信号的时频及能量分布特征。结果表明:LMD方法能完整地分解重构爆破信号,有效减少模态混叠现象,更加真实反映信号的原始信息;相比经验模态分解方法(Empirical Mode Decomposition,EMD)、LMID方法的端点效应轻微,具有较高的解凋精度;LMID方法可以精确分析振动能量的分布规律,有利于进一步识别爆破本身的力学作用特征。