Linear alkyl benzene (LAB) will be used as the solvent in a liquid scintillator mixture for the JUNO antineutrino experiment. Its light absorption properties should therefore be understood prior to its effective use...Linear alkyl benzene (LAB) will be used as the solvent in a liquid scintillator mixture for the JUNO antineutrino experiment. Its light absorption properties should therefore be understood prior to its effective use in the experiment. Attenuation length measurements at a light wavelength of 430 nm have been performed on samples of LAB prepared for the JUNO experiment. Inorganic impurities in LAB have also been studied for their possibilities of light absorption in our wavelength of interest. In view of a tentative plan by the JUNO collaboration to utilize neutron capture with hydrogen in the detector, we also present in this work a preliminary study on the carbon-hydrogen ratio and the attenuation length of the samples.展开更多
Palm C16 methyl ester sulphonate (C16MES)is an anionic surfactant that has the potential as active ingredient in the production of laundry detergent powders. Although C16MES has been successfully applied in the prod...Palm C16 methyl ester sulphonate (C16MES)is an anionic surfactant that has the potential as active ingredient in the production of laundry detergent powders. Although C16MES has been successfully applied in the production of high-density laundry detergent powders (HDDP), it coulingd not be employed directly as it is in the spray drying process for the production of low-density laundry detergent powders (LDDP) without compromising the detergency and other significant properties. This research paper highlights the pilot-scale experimental study, which performed to produce phosphate-free laundry detergent (PFD) powders incorporated with binary anionic surfactants of C16MES and linear alkyl benzene sulphonic acid (LABSA). Past laboratory experiments revealed that PFD powders resulted from C16MES/LABSA of 50:50 ratio and of pH 7-8 have good detergency stability upon one-week of continuous heating in an oven at 50~C with 85% relative humidity. Based on these laboratory results, subsequent experiments were carded in a 5 kg/hr capacity co-current pilot spray dryer using PFD formulations comprising six different ratios of C16MES/LABSA (0:100, 20:80, 40:60, 80:20 and 100:0) under the same pH condition. Three PFD formulations were selected for further evaluation based on their characteristics in the spray drying process. The cleaning properties and particle properties of the resulting spray dried detergent powders from these selected formulations were analyzed. Based on the overall evaluation, C16MES/LABSA in 40:60 ratio was selected as the ideal PFD formulation. Further tests confirmed that spray dried detergent powder (SDDP) from the ideal formulation has high level of biodegradability (60% in 13 d), low eco-toxicity properties (LC50 of 11.3 mg/L) and moderate flowability charactedsUcs (Hausner ratio of 1.27 and Carr's index of 21.3).展开更多
Linear Alkyl Benzene (LAB) is a promising liquid scintillator solvent in neutrino experiments because it has many appealing properties. The timing properties of LAB-based liquid scintillator have been studied throug...Linear Alkyl Benzene (LAB) is a promising liquid scintillator solvent in neutrino experiments because it has many appealing properties. The timing properties of LAB-based liquid scintillator have been studied through ultraviolet and ionization excitation in this study. The decay time of LAB, PPO and bis-MSB is found to be 48.6 ns, 1.55 ns and 1.5 ns, respectively. A model can describe the absorption and re-emission process between PPO and bis-MSB perfectly. The energy transfer time between LAB and PPO with different concentrations can be obtained via another model. We also show that the LAB-based liquid scintillator has good (n, γ) and (α, γ) discrimination power.展开更多
We studied the temperature dependence of the light yield of linear alkyl benzene (LAB)-based and mesitylene-based liquid scintillators. The light yield increases by 23% for both liquid scintillators when the temper-...We studied the temperature dependence of the light yield of linear alkyl benzene (LAB)-based and mesitylene-based liquid scintillators. The light yield increases by 23% for both liquid scintillators when the temper- ature is lowered from 26 ℃ to -40 ℃, correcting for the temperature response of the photomultiplier tube. The measurements help to understand the energy response of liquid scintillator detectors. Especially, the next generation reactor neutrino experiments for neutrino mass hierarchy, such as the Jiangmen Underground Neutrino Observatory (JUNO), require very high energy resolution. As no apparent degradation on the liquid scintillator transparency was observed, lowering the operation temperature of the detector to ~4 ℃ will increase the photoelectron yield of the detector by 13%, combining the light yield increase of the liquid scintillator and the quantum efficiency increase of the photomultiplier tubes.展开更多
基金Supported by China Ministry of Science and Technology(2013CB834300)
文摘Linear alkyl benzene (LAB) will be used as the solvent in a liquid scintillator mixture for the JUNO antineutrino experiment. Its light absorption properties should therefore be understood prior to its effective use in the experiment. Attenuation length measurements at a light wavelength of 430 nm have been performed on samples of LAB prepared for the JUNO experiment. Inorganic impurities in LAB have also been studied for their possibilities of light absorption in our wavelength of interest. In view of a tentative plan by the JUNO collaboration to utilize neutron capture with hydrogen in the detector, we also present in this work a preliminary study on the carbon-hydrogen ratio and the attenuation length of the samples.
文摘Palm C16 methyl ester sulphonate (C16MES)is an anionic surfactant that has the potential as active ingredient in the production of laundry detergent powders. Although C16MES has been successfully applied in the production of high-density laundry detergent powders (HDDP), it coulingd not be employed directly as it is in the spray drying process for the production of low-density laundry detergent powders (LDDP) without compromising the detergency and other significant properties. This research paper highlights the pilot-scale experimental study, which performed to produce phosphate-free laundry detergent (PFD) powders incorporated with binary anionic surfactants of C16MES and linear alkyl benzene sulphonic acid (LABSA). Past laboratory experiments revealed that PFD powders resulted from C16MES/LABSA of 50:50 ratio and of pH 7-8 have good detergency stability upon one-week of continuous heating in an oven at 50~C with 85% relative humidity. Based on these laboratory results, subsequent experiments were carded in a 5 kg/hr capacity co-current pilot spray dryer using PFD formulations comprising six different ratios of C16MES/LABSA (0:100, 20:80, 40:60, 80:20 and 100:0) under the same pH condition. Three PFD formulations were selected for further evaluation based on their characteristics in the spray drying process. The cleaning properties and particle properties of the resulting spray dried detergent powders from these selected formulations were analyzed. Based on the overall evaluation, C16MES/LABSA in 40:60 ratio was selected as the ideal PFD formulation. Further tests confirmed that spray dried detergent powder (SDDP) from the ideal formulation has high level of biodegradability (60% in 13 d), low eco-toxicity properties (LC50 of 11.3 mg/L) and moderate flowability charactedsUcs (Hausner ratio of 1.27 and Carr's index of 21.3).
基金Supported by National Natural Science Foundation of China (10890094, 11011120080)
文摘Linear Alkyl Benzene (LAB) is a promising liquid scintillator solvent in neutrino experiments because it has many appealing properties. The timing properties of LAB-based liquid scintillator have been studied through ultraviolet and ionization excitation in this study. The decay time of LAB, PPO and bis-MSB is found to be 48.6 ns, 1.55 ns and 1.5 ns, respectively. A model can describe the absorption and re-emission process between PPO and bis-MSB perfectly. The energy transfer time between LAB and PPO with different concentrations can be obtained via another model. We also show that the LAB-based liquid scintillator has good (n, γ) and (α, γ) discrimination power.
基金Supported by National Science Foundation of China(11205183,11005117,11225525,11390384)
文摘We studied the temperature dependence of the light yield of linear alkyl benzene (LAB)-based and mesitylene-based liquid scintillators. The light yield increases by 23% for both liquid scintillators when the temper- ature is lowered from 26 ℃ to -40 ℃, correcting for the temperature response of the photomultiplier tube. The measurements help to understand the energy response of liquid scintillator detectors. Especially, the next generation reactor neutrino experiments for neutrino mass hierarchy, such as the Jiangmen Underground Neutrino Observatory (JUNO), require very high energy resolution. As no apparent degradation on the liquid scintillator transparency was observed, lowering the operation temperature of the detector to ~4 ℃ will increase the photoelectron yield of the detector by 13%, combining the light yield increase of the liquid scintillator and the quantum efficiency increase of the photomultiplier tubes.