研究了n比特随机量子系统实时状态估计及其反馈控制的问题.对于连续弱测量(Continuous weak measurement, CWM)过程存在高斯噪声的情况,基于在线交替方向乘子法(Online alternating direction multiplier method,OADM)推导出一种适用于...研究了n比特随机量子系统实时状态估计及其反馈控制的问题.对于连续弱测量(Continuous weak measurement, CWM)过程存在高斯噪声的情况,基于在线交替方向乘子法(Online alternating direction multiplier method,OADM)推导出一种适用于n比特随机量子系统的实时量子状态估计算法,即QSE-OADM (Quantum state estimation based on OADM).运用李雅普诺夫方法设计控制律,实现基于实时量子状态估计的反馈控制,并证明所提控制律的收敛性.以2比特随机量子系统为例进行数值仿真实验,通过与基于QST-OADM (Quantum state tomography based on OADM)算法和OPG-ADMM (Online proximal gradient-based alternating direction method of multipliers)算法的量子反馈控制方案的性能对比,验证了所提控制方案的优越性.展开更多
This paper presents a design of optimal controllers with respect to a meaningful cost function to force an underactuated omni-directional intelligent navigator (ODIN) under unknown constant environmental loads to tr...This paper presents a design of optimal controllers with respect to a meaningful cost function to force an underactuated omni-directional intelligent navigator (ODIN) under unknown constant environmental loads to track a reference trajectory in two-dimensional space. Motivated by the vehicle's steering practice, the yaw angle regarded as a virtual control plus the surge thrust force are used to force the position of the vehicle to globally track its reference trajectory. The control design is based on several recent results developed for inverse optimal control and stability analysis of nonlinear systems, a new design of bounded disturbance observers, and backstepping and Lyapunov's direct methods. Both state- and output-feedback control designs are addressed. Simulations are included to illustrate the effectiveness of the proposed results.展开更多
As the proportion of converter-interfaced renewable energy resources in the power system is increasing,the strength of the power grid at the connection point of wind turbine generators(WTGs)is gradually weakening.Exis...As the proportion of converter-interfaced renewable energy resources in the power system is increasing,the strength of the power grid at the connection point of wind turbine generators(WTGs)is gradually weakening.Existing research has shown that when connected with the weak grid,the stability of the traditional grid-following controlled converters will deteriorate,and they are prone to unstable phenomena such as oscillation.Due to the limitations of linear analysis that cannot sufficiently capture the stability phenomena,transient stability must be investigated.So far,standalone time-domain simulations or analytical Lyapunov stability criteria have been used to investigate transient stability.However,the time-domain simulations have proven to be computationally too heavy,while analytical methods are difficult to formulate for larger systems,require many modelling assumptions,and are often conservative in estimating the stability boundary.This paper proposes and demonstrates an innovative approach to estimating the transient stability boundary via combining the linear Lyapunov function and the reverse-time trajectory technique.The proposed methodology eliminates the need of time-consuming simulations and the conservative nature of Lyapunov functions.This study brings out the clear distinction between the stability boundaries with different post-fault active current ramp rate controls.At the same time,it provides a new perspective on critical clearing time for wind turbine systems.The stability boundary is verified using time-domain simulation studies.展开更多
文摘研究了n比特随机量子系统实时状态估计及其反馈控制的问题.对于连续弱测量(Continuous weak measurement, CWM)过程存在高斯噪声的情况,基于在线交替方向乘子法(Online alternating direction multiplier method,OADM)推导出一种适用于n比特随机量子系统的实时量子状态估计算法,即QSE-OADM (Quantum state estimation based on OADM).运用李雅普诺夫方法设计控制律,实现基于实时量子状态估计的反馈控制,并证明所提控制律的收敛性.以2比特随机量子系统为例进行数值仿真实验,通过与基于QST-OADM (Quantum state tomography based on OADM)算法和OPG-ADMM (Online proximal gradient-based alternating direction method of multipliers)算法的量子反馈控制方案的性能对比,验证了所提控制方案的优越性.
基金Supported in Part by the Australian Research Council under Grant DP0988424
文摘This paper presents a design of optimal controllers with respect to a meaningful cost function to force an underactuated omni-directional intelligent navigator (ODIN) under unknown constant environmental loads to track a reference trajectory in two-dimensional space. Motivated by the vehicle's steering practice, the yaw angle regarded as a virtual control plus the surge thrust force are used to force the position of the vehicle to globally track its reference trajectory. The control design is based on several recent results developed for inverse optimal control and stability analysis of nonlinear systems, a new design of bounded disturbance observers, and backstepping and Lyapunov's direct methods. Both state- and output-feedback control designs are addressed. Simulations are included to illustrate the effectiveness of the proposed results.
文摘As the proportion of converter-interfaced renewable energy resources in the power system is increasing,the strength of the power grid at the connection point of wind turbine generators(WTGs)is gradually weakening.Existing research has shown that when connected with the weak grid,the stability of the traditional grid-following controlled converters will deteriorate,and they are prone to unstable phenomena such as oscillation.Due to the limitations of linear analysis that cannot sufficiently capture the stability phenomena,transient stability must be investigated.So far,standalone time-domain simulations or analytical Lyapunov stability criteria have been used to investigate transient stability.However,the time-domain simulations have proven to be computationally too heavy,while analytical methods are difficult to formulate for larger systems,require many modelling assumptions,and are often conservative in estimating the stability boundary.This paper proposes and demonstrates an innovative approach to estimating the transient stability boundary via combining the linear Lyapunov function and the reverse-time trajectory technique.The proposed methodology eliminates the need of time-consuming simulations and the conservative nature of Lyapunov functions.This study brings out the clear distinction between the stability boundaries with different post-fault active current ramp rate controls.At the same time,it provides a new perspective on critical clearing time for wind turbine systems.The stability boundary is verified using time-domain simulation studies.