Panax notoginseng saponins(PNS)are a class of effective ingredients in Notoginseng Radix et Rhizoma,a well-known herbal medicine called San-Qi in Chinese.After oral administration,PNS inevitably interacts with gut mic...Panax notoginseng saponins(PNS)are a class of effective ingredients in Notoginseng Radix et Rhizoma,a well-known herbal medicine called San-Qi in Chinese.After oral administration,PNS inevitably interacts with gut microbiota,and thus affect the pharmacokinetic profiles and pharmacological effects.To date,studies concering gut microbiota-mediated metabolism of PNS have not been reviewed systematically.Herein,we outline the metabolic profiles of Panax notoginseng saponins mediated by gut microbiota,as well as its role in the pharmacokinetics and pharmacodynamics on the basis of reported data.The metabolic pathways of primary saponins are proposed,and step-by-step deglycosylation is found to be the primary degradation pathways of PNS mediated by gut microbiota.Specific microorganisms and enzymes involved in the metabolic processes were summarized.Gut microbiota is deeply involved in the metabolism of PNS,affects the pharmacokinetic profiles,and produces a series of active metabolites.These metabolites were documented to play an essential role in the efficacy of the parent compounds.Future studies should focus on strengthening the real-world evidence,defining the interaction between gut microbiota and PNS,and developing the strategy for modulating gut microbiota to enhance the bioavailability and efficacy of PNS.These information would be useful for further research and clinical application of PNS.展开更多
Background:Panax notoginseng(PNE)is a prominent traditional Chinese medicine with extensive beneficial effects on the immune system.However,the precise mechanism of PNE in treating inflammatory bowel disease(IBD)remai...Background:Panax notoginseng(PNE)is a prominent traditional Chinese medicine with extensive beneficial effects on the immune system.However,the precise mechanism of PNE in treating inflammatory bowel disease(IBD)remains unclear.Methods:We first used an extensive metabolomics approach utilizing UPLC-ESI-Q TRAP-MS/MS to identify the metabolite components of PNE aqueous extract.Moreover,the mechanism of PNE in treating IBD was investigated through in silico analysis including RNA-seq analysis,Network pharmacology and Molecular docking.Then a Drosophila toxin-induced intestinal inflammation model was employed to investigate further.Results:A total of 1,543 metabolites of PNE aqueous extract were characterized using UPLC-ESI-Q TRAP-MS/MS.In silico analyses showed that 97 IBD hub targets were targeted by 21 PNE ingredients.Kyoto Encyclopedia of Genes and Genomes results indicated that PNE may play an anti-IBD role through the Mitogen-activated protein kinase(MAPK)signaling pathway and other immune-related signaling pathways.Moreover,11 top hits compounds of PNE show a good affinity binding to IBD targets.The experimental results demonstrated that PNE can effectively improve the survival rate of adult Drosophila while also inhibit the excessive proliferation and differentiation of intestinal stem cells induced by sodium dodecyl sulfate.Furthermore,PNE notably lower the epithelial cell mortality,the accumulation of reactive oxygen species and the activation of oxidative stress-associated jun-Nterminal kinase(JNK)pathway.Conclusion:Our data suggests that PNE aqueous extract has a significant protective impact on the intestinal homeostasis of Drosophila.These findings establish a basis for utilizing PNE in clinical investigations and managing IBD.展开更多
Panax ginseng(PG)and Panax notoginseng(PN)are highly valuable Chinese medicines(CM).Although both CMs have similar active constituents,their clinical applications are clearly different.Over the past decade,RNA sequenc...Panax ginseng(PG)and Panax notoginseng(PN)are highly valuable Chinese medicines(CM).Although both CMs have similar active constituents,their clinical applications are clearly different.Over the past decade,RNA sequencing(RNA-seq)analysis has been employed to investigate the molecular mechanisms of extracts or monomers.However,owing to the limited number of samples in standard RNA-seq,few studies have systematically compared the effects of PG and PN spanning multiple conditions at the transcriptomic level.Here,we developed an approach that simultaneously profiles transcriptome changes for multiplexed samples using RNA-seq(TCM-seq),a high-throughput,low-cost workflow to molecularly evaluate CM perturbations.A species-mixing experiment was conducted to illustrate the accuracy of sample multiplexing in TCM-seq.Transcriptomes from repeated samples were used to verify the robustness of TCM-seq.We then focused on the primary active components,Panax notoginseng saponins(PNS)and Panax ginseng saponins(PGS)extracted from PN and PG,respectively.We also characterized the transcriptome changes of 10 cell lines,treated with four different doses of PNS and PGS,using TCM-seq to compare the differences in their perturbing effects on genes,functional pathways,gene modules,and molecular networks.The results of transcriptional data analysis showed that the transcriptional patterns of various cell lines were significantly distinct.PGS exhibited a stronger regulatory effect on genes involved in cardiovascular disease,whereas PNS resulted in a greater coagulation effect on vascular endothelial cells.This study proposes a paradigm to comprehensively explore the differences in mechanisms of action between CMs based on transcriptome readouts.展开更多
Objective] The aim of this study was to simultaneously isolate and identify the main pathogenic fungi of the root rot, black spot and round spot from the Panax notoginseng plants cultivated in Wenshan Eparchy of Yunna...Objective] The aim of this study was to simultaneously isolate and identify the main pathogenic fungi of the root rot, black spot and round spot from the Panax notoginseng plants cultivated in Wenshan Eparchy of Yunnan Province of China. [Method] The pathogenic fungi were isolated and purified by using potato dextrose agar (PDA) medium. The morphological identification was accomplished first according to the colony forms of the fungi when cultivated in vitro, then accord-ing to the symptom characteristics and colony forms of the re-isolated fungi in the reverse inoculation experiments. The molecular identification was performed accord-ing to the amplification and alignment of the internal transcribed space (ITS) se-quences of the fungi. The increases of the diameters and thickness of the colonies of the fungi cultivated in vitro were employed to indicate the growth rates of the fungi. [Results] The consistency of the colony forms and symptom characteristics and the 96%-99% similarities revealed in the ITS sequence alignments al proved that the main pathogenic fungi of the root rot, black spot and round spot of the P. notoginseng plants raised in Wenshan were Cylindrocarpon didymium, Alternaria panax and Mycocentrospora acerina, respectively. When cultivated in vitro in the same temperature, humidity and il umination, the increases of the colony diameters and thickness of C. didymium were the highest, fol owed by those of A. panax, then those of M. acerina. During different cultivation periods, the differences of the colony diameters and thickness of the three fungi al reached extremely significant level. However, at the same cultivation time, the differences of the diameters and thickness among the three fungi only reached significant level. [Conclusion] The main pathogenic fungi which result in the root rot, black spot and round spot of the P. notoginseng in Wenshan are C. didymium, A. panax and M. acerina, respec-tively. When these three diseases break out at the same time, the root rot wil spread fastest, fol owed orderly by the black spot and the round spot.展开更多
[Objective] This study aimed to identify red pigment of Panax notoginseng fruits and explore the correlation between pigment content and total saponins of the fruits. [Method] The red pigment of Panax notoginseng frui...[Objective] This study aimed to identify red pigment of Panax notoginseng fruits and explore the correlation between pigment content and total saponins of the fruits. [Method] The red pigment of Panax notoginseng fruits was preliminarily identi- fied with specific color reactions and UV-vis spectra, and the contents of the pigment and total saponins were determined via spectrophotometry. [Result] The red hues of the fruits were contributed by anthocyanins and/or the anthocyanidins. The contents of anthocyanins and total saponins of the fruits both decreased along with thinning of the red hues. The content difference of the anthocyanins in fruits with different red hues reached extremely significant level, but that of total saponins just reached significant level. [Conclusion] The red pigment of P. notoginseng fruits is anthocyanins which are of extremely significant positive correlation with total saponins in contents.展开更多
[Objective] The aim of this study was to investigate the content changes and their correlations of the photosynthetic pigment,phenols,including total phenols,total flavonoids and anthocyanins,and total saponins of the...[Objective] The aim of this study was to investigate the content changes and their correlations of the photosynthetic pigment,phenols,including total phenols,total flavonoids and anthocyanins,and total saponins of the one-year-old P.notoginseng plants under supplemental UV-B stress in fields.[Method] The one-year-old plants were irradiated by UV-B in field for 1 min per day,and the plants under the UV-B lamp were regarded as a circle center,achieving an annular leaf-sampling.The photosynthetic pigment,phenols and total saponins of the leaves were determined spectrophotometrically.[Result] With the increase of sampling radius,the supplemental UV-B intensity decreased significantly,the contents of chlorophyll (Chl) a,Chl b,Chl (a+b),carotenoid (Car) and total photosynthetic pigment (Chl+Car) of the leaves increased extremely significantly,the Chl a/b and total phenol content (TPC) decreased extremely significantly,but the Chl (a+b)/Car changes were not significant.The contents of total flavonoids,anthocyanins and saponins all increased due to the increasing of UV-B,displaying dose effects.The UV-B intensity was positively correlated with the Chl a/b,and negatively with the Chl a,Chl b,Chl (a+ b),Car and (Chl+Car) contents; and the two of TPC,total flavonoid content (TFC),total anthocyanin content (TAC) and total saponin content (TSC) were positively correlated,all reaching extremely significant level.The UV-B intensity was positively and significantly correlated with the total flavonoid content (TFC),negatively and significantly with the Chl (a+b)/Car,and positively and insignificantly with the TPC,TAC and TSC.[Conclusion] For one-year-old plants of P.notoginseng,UV-B can decrease the contents of the Chl a,Chl b,Chl (a+b),Car and (Chl+Car) and increase the Chl a/b and TPC,and,furthermore,induce the increases of the TFC,TAC and TSC in a dose-dependent manner.However,UV-B can hardly change the Chl (a+b)/Car.The supplemental UV-B of well-suited dose might be one of the effective measures to improve the TSC of P.notoginseng.展开更多
Aim To quantitatively determine five nucleosides and nucleobases, including cytidine, uridine, guanosine, adenosine and uracil in different parts of Panax notoginseng. Methods Separation was performed on a Zorbax SB-A...Aim To quantitatively determine five nucleosides and nucleobases, including cytidine, uridine, guanosine, adenosine and uracil in different parts of Panax notoginseng. Methods Separation was performed on a Zorbax SB-Aq column using a gradient elution with mobile phase of 8 mmol^L-1 ammonium acetate aqueous solution (A) and methanol (B). The assay was carried out at a flow rate of 1 mL·min^-1 at 25 ℃ with the diode-array detection at 260 nm. Results Cytidine, uridine, guanosine, adenosine and uracil had good linearity in the ranges of 1.79 - 57.40 μg·mL^-1 (r^2 = 1.0000), 3.30 - 105.60 μg·mL^-1 (r^2 = 1.0000), 3.09 - 98.80 μg·mL^ -1(r^2 = 0.9999), 2.77 - 88.60 μg·mL^-1 (r^2 = 1.0000) and 0.38 - 12.30 μg·mL ^-1 (r^2 = 1.0000) with average recoveries of 93.9%, 96.5%, 92.7%, 93.2% and 98.8%, respectively. The content of cytidine, uridine, guanosine, adenosine and uracil in different parts of P. notogingeng were significantly different. Conclusion This is the first report on quantitative determination of nucleosides and nucleobases in P notoginseng.展开更多
The main active components extracted from Panax notoginseng are total saponins. They have been shown to inhibit platelet aggregation, increase cerebral blood flow, improve neurological behavior, decrease infarct volum...The main active components extracted from Panax notoginseng are total saponins. They have been shown to inhibit platelet aggregation, increase cerebral blood flow, improve neurological behavior, decrease infarct volume and promote proliferation and differentiation of neural stem cells in the hippocampus and lateral ventricles. However, there is a lack of studies on whether total saponins of Panax notoginsertg have potential benefits on immature neuroblasts in the olfactory bulb following ischemia and reperfusion. This study established a rat model of global cerebral ischemia and reperfusion using four-vessel occlusion. Rats were administered total sa- ponins of Panax notoginseng at 75 mg/kg intraperitoneally 30 minutes after ischemia then once a day, for either 7 or 14 days. Total saponins of Panax notoginseng enhanced the number of dou- blecortin (DCX)+ neural progenitor ceils and increased co-localization of DCX with neuronal nuclei and phosphorylated cAMP response element-binding/DCX+ neural progenitor cells in the olfactory bulb at 7 and 14 days post ischemia. These findings indicate that following global brain ischemia/reperfusion, total saponins of Panax notoginseng promote differentiation of DCX+ cells expressing immature neuroblasts in the olfactory bulb and the underlying mechanism is related to the activation of the signaling pathway of cyclic adenosine monophosphate response element binding protein.展开更多
The present study monitored the effect of 2, 10, and 50 mg/L of Panax notoginseng saponin exposure following hypoxia-reoxygenation injury in fetal rat cortical neurons. Results showed that varying doses of Panax notog...The present study monitored the effect of 2, 10, and 50 mg/L of Panax notoginseng saponin exposure following hypoxia-reoxygenation injury in fetal rat cortical neurons. Results showed that varying doses of Panax notoginseng saponin significantly enhanced the cell viability of neurons, reduced malondialdehyde content, increased superoxide dismutase activity, inhibited mRNA and protein expression of inducible and neuronal nitric oxide synthase, and decreased the release of nitric oxide in hypoxia/reoxygenation injured cells. In particular, 50 mg/L of Panax notoginseng saponin was the most effective dose. These findings suggest that Panax notoginseng saponin can attenuate neuronal oxidative stress injury caused by hypoxia/reoxygenation in a dose-dependent manner.展开更多
BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheime...BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheimer's disease. OBJECTIVE: Using the Morris water maze, immunohistochemistry, real-time PCR and RT-PCR, this study aimed to measure improvement in spatial learning, memory, expression of amyloid precursor protein (App) and β -amyloid (A β ), to investigate the mechanism of action of PNS in the treatment of AD in the senescence accelerated mouse-prone 8 (SAMP8) and compare the effects with huperzine A. DESIGN, TIME AND SETTING: A completely randomized grouping design, controlled animal experiment was performed in the Center for Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from July 2005 to April 2007. MATERIALS: Sixty male SAMP8 mice, aged 3 months, purchased from Tianjin Chinese Traditional Medical University of China, were divided into four groups: PNS high-dosage group, PNS low-dosage group, huperzine A group and control group. PNS was provided by Weihe Pharmaceutical Co., Ltd. (batch No.: Z53021485, Yuxi, Yunan Province, China). Huperzine A was provided by Zhenyuan Pharmaceutical Co., Ltd. (batch No.: 20040801, Zhejiang, China). METHODS: The high-dosage group and low-dosage group were treated with 93.50 and 23.38 mg/kg PNS respectively per day and the huperzine A group was treated with 0.038 6 mg/kg huperzine A per day, all by intragastric administration, for 8 consecutive weeks. The same volume of double distilled water was given to the control group. MAIN OUTCOME MEASURES: After drug administration, learning and memory abilities were assessed by place navigation and spatial probe tests. The recording indices consisted of escape latency (time-to-platform), and the percentage of swimming time spent in each quadrant. The number of A β 1-40, A β 1-42 and App immunopositive neurons in the brains of SAMP8 mice was analyzed by immunohistochemistry. The mRNA content ofApp, tau, acetylcholinesterase, and synaptophysin (Syp) was tested by real time PCR and RT-PCR. RESULTS: The PCR results show that PNS can downregulate the expression of the App gene and upregulate the expression of the Syp gene in the parietal cortex and hippocampus of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than those of the PNS low-dosage group and the huperzine A group (P 〈 0.05). The results of the Morris water maze and immunohistochemistry indicated that PNS can improve the capacity for spatial learning and memory in SAMP8 mice, and reduce the content of A β 1-40, A β 1-42 and expression of App in the brains of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than that of the PNS low-dosage group and the huperzine A group (P 〈 0.05). CONCLUSION: These results support the hypothesis that PNS plays a therapeutic and protective role on the pathological lesions and learning dysfunction of Alzheimer's disease. The therapeutic effects of PNS for Alzheimer's disease are possibly achieved through downregulating the expression of the App gene and upregulating the expression of the Syp gene. The therapeutic effects of PNS are dose-dependent and are greater than the effect of huperzine A.展开更多
Notoginsenoside R-111, a novel hexanordammarane glycoside was isolated from the roots of Panax nototginseng, as a minor constituent. Its structure was determined as 6-O-(beta -D-glucopyranosyl)-3 beta ,6 alpha ,12 bet...Notoginsenoside R-111, a novel hexanordammarane glycoside was isolated from the roots of Panax nototginseng, as a minor constituent. Its structure was determined as 6-O-(beta -D-glucopyranosyl)-3 beta ,6 alpha ,12 beta -trihydroxy-22,23,24,25,26,27-hexanordammaran-20-one(1), by means of spectroscopic methods.展开更多
BACKGROUND: Ischemia/reperfusion (I/R) injury is a major cause of primary graft dysfunction and renders an al- lograft more immunogenic in orthotopic liver transplanta- tion (OLT). Panax notoginseng saponins (PNS) has...BACKGROUND: Ischemia/reperfusion (I/R) injury is a major cause of primary graft dysfunction and renders an al- lograft more immunogenic in orthotopic liver transplanta- tion (OLT). Panax notoginseng saponins (PNS) has been re- ported to exert protective effects against I/R injury to vari- ous organs. The objective of this study is to investigate whether PNS preconditioning protects rat liver grafts from I/R injury via an antiapoptotic pathway. METHODS: Male Sprague-Dawley rats were used as donors and recipients of orthotopic liver transplantation ( OLT) and were divided into PNS preconditioning group (group P) and normal saline control group (group N) randomly according to whether PNS (50 mg/kg) was injected intra- venously 1 hour before liver grafts harvesting, and sham group (group S). The animals were separately killed 2, 6 and 24 hours after reperfusion. Plasma samples were collect- ed for test of alanine amino-transferase (ALT) and aspartate aminotransferase (AST). Liver tissues were collected to de- tect histological changes, apoptosis and the expression of TNF-α, Bcl-2 and Caspase-3 mRNA. RESULTS: The serum levels of ALT and AST and the apop- tosis index (AI) of liver tissue in group P were lower than in group N significantly 2, 6 and 24 hours after reperfusion. Compared with group N, the expression of TNF-a and Caspase-3 mRNA was reduced significantly in group P 2 and 6 hours after reperfusion and the expression of Bcl-2 mRNA was enhanced significantly in group P 6 and 24 hours after reperfusion. CONCLUSIONS: PNS preconditioning protects liver grafts from I/R injury effectively in rat OLT via an antiapoptotic pathway. The antiapoptotic mechanisms of PNS may in- clude inhibiting the expression of TNF-a and Caspase-3 and enhancing the expression of Bcl-2.展开更多
Panax notoginseng(Araliaceae)is an important ginseng herb with various health benefits and a history of cultivation in southwestern China over 400 years.In recent years?.notoginseng has faced serious continuous-croppi...Panax notoginseng(Araliaceae)is an important ginseng herb with various health benefits and a history of cultivation in southwestern China over 400 years.In recent years?.notoginseng has faced serious continuous-cropping obstacles due to its large-scale cultivation.In this study,we aim to explore the allelochemicals of P.notoginseng and their interactions with various plants and rhizosphere microor-ganisms.The chemical constituents of the soil cultivated with 3-year-old P.notoginseng were studied by column chromatography,spectroscopic and GC-MS analyses.We identified 13 volatile components and isolated six triterpenes(1-4,6-7)and one anthraquinone(5).Compounds 1-7 were tested for their effects on seed germination and root elongation in P.notoginseng,corn,wheat,turnip,water spinach and Arabidopsis thaliana.We also examined the effect of compounds 1-7on the growth of ten rhizosphere microorganisms of P.notoginseng.At a concentration of 1.0 ug mL',compounds 3 and 5-7 caused the death of P.notoginseng root cells and compounds 2,6 and 7 induced the death of root cells of A.thaliana.Compounds 1-5and 7 inhibited elongation of A.thaliana root tip cells at a concentration of 10.0μg mL^-1.Moreover,at a concentration of 0.1 mg mL^-1,compounds 3,4,6 and 7 inhibited the growth of probiotics and promoted the growth of pathogens of P.notoginseng.These results suggest that these isolated ursane-type triterpenoid acids and anthraquinone are potential allelochemicals that contribute to continuous-cropping obstacles of P.notoginseng.展开更多
BACKGROUND: Modem pharmacological studies have demonstrated that Panax notoginseng saponins (PNS) can ameliorate and protect from neuropathological impairment. Whether PNS can improve the abnormality in memory and ...BACKGROUND: Modem pharmacological studies have demonstrated that Panax notoginseng saponins (PNS) can ameliorate and protect from neuropathological impairment. Whether PNS can improve the abnormality in memory and behavior of rats with Alzheimer's disease (AD) remains unclear. OBJECTIVE: Based on a Morris water maze test, this study aimed to measure improvements of spatial learning and memory by PNS in a rat model of AD, and to compare effects with huperzine A. DESIGN: A completely randomized grouping design, controlled animal experiment. SETTING: Center of Research & Development of New Drugs, Guangxi Traditional Chinese Medical University. MATERIALS: Ninety healthy Wistar rats of both genders, 15-month-old (n =75) and 3-month-old rats as young controls (n =15), were used for this study. The study was performed in accordance with animal ethics guidelines for the use and care of animals. PNS was provided by Weihe Pharmaceutical Co., Ltd (permission No. Z53021485, Yuxi, Yunan Province, China). Morris water maze equipment was provided by the Institute of Physiology, Chinese Academy of Science. METHODS: This study was performed at the Center of Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from June 2003 to April 2005. Of the included rats, 15 healthy aged rats were randomly chosen as aged controls, and the remaining 60 aged rats were randomly divided into 4 groups with 15 rats in each: model group, PNS high- and low-dose groups, and an huperzine A group. Rats in the model group and the 3 treated groups were treated with intraperitoneal infusion of 9.6 g/L D-galactose (5 mL/kg) every day for 6 weeks successively to induce a subacute aging model. During week 7, animals received 1 μ L ibotenic acid (5 g/L) bilaterally into the nucleus basalis of Meynert to create a rat model of AD. The young and old rat controls received, in parallel, a corresponding volume of saline. Two weeks later, rats in the PNS high- and low-dose groups were gavaged with 200 and 100 mg/kg PNS suspension, respectively. Huperzine A suspension (0.3 mg/kg) was used in the huperzine A group. Rats in the other 3 groups were gavaged with a corresponding volume of normal saline. In each group, administration was carried out once per day for 4 consecutive weeks. MAIN OUTCOME MEASURES: After administration, learning and memory abilities were measured by place navigation and spatial probe tests. Recording indices consisted of escape latency (time-to-platform), number of times to find the platform within 2 minutes, number of times the animal crosses the original platform location, and the percent of swimming time in each quadrant. RESULTS: Several rats died due to inflammatory reactions following brain lesion or intragastric administration; therefore, 61 rats were included in the final analysis. Results of spatial navigation test: Escape latency of rats in the model group was significantly prolonged, and number of times to find the platform within 2 minutes were significantly reduced compared with other groups (both P 〈 0.05). No significant differences in these two indices were measured among the administration groups (all P 〉 0.05). Results of spatial probe test: Times for crossing the original platform location and percent of time spent in the quadrant of original platform location were significantly less in the model group than in the other groups (P 〈 0.05). There were no significant differences in these two indices among the administration groups (P 〉 0.05). CONCLUSION: PNS can remarkably improve spatial learning and memory abilities of rats with AD. The therapeutic effect of PNS is not dose-dependent and is equivalent to the effect of huperzine A.展开更多
BACKGROUND: Dopaminergic neurons differentiated from neural stem cells have been successfully used in the treatment of rat models of Parkinson's disease; however, the survival rate of transplanted cells has been low...BACKGROUND: Dopaminergic neurons differentiated from neural stem cells have been successfully used in the treatment of rat models of Parkinson's disease; however, the survival rate of transplanted cells has been low. Most cells die by apoptosis as a result of overloaded intracellular calcium and the formation of oxygen free radicals. OBJECTIVE: To observe whether survival of transplanted cells, transplantation efficacy, and dopaminergic differentiation from neural stem cells is altered by Panax notoginseng saponins (PNS) in a rat model of Parkinson's disease. DESIGN, TIME AND SETTING: Cellular and molecular biology experiments with randomized group design. The experiment was performed at the Animal Experimental Center, First Hospital of Sun Yat-sen University from April to October 2007. MATERIALS: Thirty-two adult, healthy, male Sprague Dawley rats, and four healthy Sprague Dawley rat embryos at gestational days 14-15 were selected. The right ventral mesencephalon was injected with 6-hydroxydopamine to establish a model of Parkinson's disease. 6-hydroxydopamine and apomorphine were purchased from Sigma, USA. METHODS: Neural stem cells derived from the mesencephalon of embryonic rats were cultivated and passaged in serum-free culture medium. Lesioned animals were randomly divided into four groups (n = 8): dopaminergic neuron, dopaminergic neuron + PNS, PNS, and control. The dopaminergic neuron group was injected with 3 μL cell suspension containing dopaminergic neurons differentiated from neural stem cells. The dopaminergic neurons + PNS group received 3 μ L dopaminergic cell suspension combined with PNS (250 mg/L). The PNS group received 3 μL PNS (250 mg/L), and the control group received 3 μL DMEM/F12 culture medium. MAIN OUTCOME MEASURES: The rats were transcardially perfused with 4% paraformaldehyde at 60 days post-grafting for immunohistochemistry. The rats were intraperitoneally injected with apomorphine (0.5 mg/kg) to induce rotational behavior. RESULTS: Cell counts of tyrosine hydroxylase-positive neurons in the dopaminergic neuron + PNS group were (732±82.6) cells/400-fold field. This was significantly greater than the dopaminergic neuron group [(326 ± 34.8) cells/400-fold field, P 〈 0.01]. Compared to the control group, the rotational asymmetry of rats that received dopaminergic neuron transplants was significantly decreased, beginning at 20 days after operation (P 〈 0.01). Rotational asymmetry was further reduced between 10-60 days post-surgery in the dopaminergic neuron + PNS group, compared to the dopaminergic neuron group (P 〈 0.01). CONCLUSION: Panax notoginseng saponins can increase survival and effectiveness of dopaminergic neurons differentiated from neural stem cells for transplantation in a rat model of Parkinson's disease.展开更多
基金supported by Guangdong Basic and Applied Basic Research Foundation(No.2022A1515012039)Guangzhou Science and Technology Plan Project(No.2024A03J0360).
文摘Panax notoginseng saponins(PNS)are a class of effective ingredients in Notoginseng Radix et Rhizoma,a well-known herbal medicine called San-Qi in Chinese.After oral administration,PNS inevitably interacts with gut microbiota,and thus affect the pharmacokinetic profiles and pharmacological effects.To date,studies concering gut microbiota-mediated metabolism of PNS have not been reviewed systematically.Herein,we outline the metabolic profiles of Panax notoginseng saponins mediated by gut microbiota,as well as its role in the pharmacokinetics and pharmacodynamics on the basis of reported data.The metabolic pathways of primary saponins are proposed,and step-by-step deglycosylation is found to be the primary degradation pathways of PNS mediated by gut microbiota.Specific microorganisms and enzymes involved in the metabolic processes were summarized.Gut microbiota is deeply involved in the metabolism of PNS,affects the pharmacokinetic profiles,and produces a series of active metabolites.These metabolites were documented to play an essential role in the efficacy of the parent compounds.Future studies should focus on strengthening the real-world evidence,defining the interaction between gut microbiota and PNS,and developing the strategy for modulating gut microbiota to enhance the bioavailability and efficacy of PNS.These information would be useful for further research and clinical application of PNS.
基金supported by the National Natural Science Foundation of China(31900366)atural Science Foundation of Liaoning Province(2023-MSLH-295)+2 种基金atural Science Foundation Initiation fund of Shenyang Medical College(20201001)Liaoning University Student Innovation and Entrepreneurship Research Fund Orders(20229033)sponsored by the Key Laboratory of Research on Pathogenesis of Allergen provoked Allergic Disease,Liaoning Province(2018-30).
文摘Background:Panax notoginseng(PNE)is a prominent traditional Chinese medicine with extensive beneficial effects on the immune system.However,the precise mechanism of PNE in treating inflammatory bowel disease(IBD)remains unclear.Methods:We first used an extensive metabolomics approach utilizing UPLC-ESI-Q TRAP-MS/MS to identify the metabolite components of PNE aqueous extract.Moreover,the mechanism of PNE in treating IBD was investigated through in silico analysis including RNA-seq analysis,Network pharmacology and Molecular docking.Then a Drosophila toxin-induced intestinal inflammation model was employed to investigate further.Results:A total of 1,543 metabolites of PNE aqueous extract were characterized using UPLC-ESI-Q TRAP-MS/MS.In silico analyses showed that 97 IBD hub targets were targeted by 21 PNE ingredients.Kyoto Encyclopedia of Genes and Genomes results indicated that PNE may play an anti-IBD role through the Mitogen-activated protein kinase(MAPK)signaling pathway and other immune-related signaling pathways.Moreover,11 top hits compounds of PNE show a good affinity binding to IBD targets.The experimental results demonstrated that PNE can effectively improve the survival rate of adult Drosophila while also inhibit the excessive proliferation and differentiation of intestinal stem cells induced by sodium dodecyl sulfate.Furthermore,PNE notably lower the epithelial cell mortality,the accumulation of reactive oxygen species and the activation of oxidative stress-associated jun-Nterminal kinase(JNK)pathway.Conclusion:Our data suggests that PNE aqueous extract has a significant protective impact on the intestinal homeostasis of Drosophila.These findings establish a basis for utilizing PNE in clinical investigations and managing IBD.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.:81973701 and 81903767)the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(Grant No.:ZYYCXTD-D-202002)the Natural Science Foundation of Zhejiang Province(Grant No.:LZ20H290002).
文摘Panax ginseng(PG)and Panax notoginseng(PN)are highly valuable Chinese medicines(CM).Although both CMs have similar active constituents,their clinical applications are clearly different.Over the past decade,RNA sequencing(RNA-seq)analysis has been employed to investigate the molecular mechanisms of extracts or monomers.However,owing to the limited number of samples in standard RNA-seq,few studies have systematically compared the effects of PG and PN spanning multiple conditions at the transcriptomic level.Here,we developed an approach that simultaneously profiles transcriptome changes for multiplexed samples using RNA-seq(TCM-seq),a high-throughput,low-cost workflow to molecularly evaluate CM perturbations.A species-mixing experiment was conducted to illustrate the accuracy of sample multiplexing in TCM-seq.Transcriptomes from repeated samples were used to verify the robustness of TCM-seq.We then focused on the primary active components,Panax notoginseng saponins(PNS)and Panax ginseng saponins(PGS)extracted from PN and PG,respectively.We also characterized the transcriptome changes of 10 cell lines,treated with four different doses of PNS and PGS,using TCM-seq to compare the differences in their perturbing effects on genes,functional pathways,gene modules,and molecular networks.The results of transcriptional data analysis showed that the transcriptional patterns of various cell lines were significantly distinct.PGS exhibited a stronger regulatory effect on genes involved in cardiovascular disease,whereas PNS resulted in a greater coagulation effect on vascular endothelial cells.This study proposes a paradigm to comprehensively explore the differences in mechanisms of action between CMs based on transcriptome readouts.
基金Supported by the National Natural Science Foundation of China(31060045,31260091,31460065)~~
文摘Objective] The aim of this study was to simultaneously isolate and identify the main pathogenic fungi of the root rot, black spot and round spot from the Panax notoginseng plants cultivated in Wenshan Eparchy of Yunnan Province of China. [Method] The pathogenic fungi were isolated and purified by using potato dextrose agar (PDA) medium. The morphological identification was accomplished first according to the colony forms of the fungi when cultivated in vitro, then accord-ing to the symptom characteristics and colony forms of the re-isolated fungi in the reverse inoculation experiments. The molecular identification was performed accord-ing to the amplification and alignment of the internal transcribed space (ITS) se-quences of the fungi. The increases of the diameters and thickness of the colonies of the fungi cultivated in vitro were employed to indicate the growth rates of the fungi. [Results] The consistency of the colony forms and symptom characteristics and the 96%-99% similarities revealed in the ITS sequence alignments al proved that the main pathogenic fungi of the root rot, black spot and round spot of the P. notoginseng plants raised in Wenshan were Cylindrocarpon didymium, Alternaria panax and Mycocentrospora acerina, respectively. When cultivated in vitro in the same temperature, humidity and il umination, the increases of the colony diameters and thickness of C. didymium were the highest, fol owed by those of A. panax, then those of M. acerina. During different cultivation periods, the differences of the colony diameters and thickness of the three fungi al reached extremely significant level. However, at the same cultivation time, the differences of the diameters and thickness among the three fungi only reached significant level. [Conclusion] The main pathogenic fungi which result in the root rot, black spot and round spot of the P. notoginseng in Wenshan are C. didymium, A. panax and M. acerina, respec-tively. When these three diseases break out at the same time, the root rot wil spread fastest, fol owed orderly by the black spot and the round spot.
基金Supported by the National Natural Science Foundation of China(No.31060045,31260091)~~
文摘[Objective] This study aimed to identify red pigment of Panax notoginseng fruits and explore the correlation between pigment content and total saponins of the fruits. [Method] The red pigment of Panax notoginseng fruits was preliminarily identi- fied with specific color reactions and UV-vis spectra, and the contents of the pigment and total saponins were determined via spectrophotometry. [Result] The red hues of the fruits were contributed by anthocyanins and/or the anthocyanidins. The contents of anthocyanins and total saponins of the fruits both decreased along with thinning of the red hues. The content difference of the anthocyanins in fruits with different red hues reached extremely significant level, but that of total saponins just reached significant level. [Conclusion] The red pigment of P. notoginseng fruits is anthocyanins which are of extremely significant positive correlation with total saponins in contents.
基金Supported by the National Natural Science Foundation of China(31060045,31260091)~~
文摘[Objective] The aim of this study was to investigate the content changes and their correlations of the photosynthetic pigment,phenols,including total phenols,total flavonoids and anthocyanins,and total saponins of the one-year-old P.notoginseng plants under supplemental UV-B stress in fields.[Method] The one-year-old plants were irradiated by UV-B in field for 1 min per day,and the plants under the UV-B lamp were regarded as a circle center,achieving an annular leaf-sampling.The photosynthetic pigment,phenols and total saponins of the leaves were determined spectrophotometrically.[Result] With the increase of sampling radius,the supplemental UV-B intensity decreased significantly,the contents of chlorophyll (Chl) a,Chl b,Chl (a+b),carotenoid (Car) and total photosynthetic pigment (Chl+Car) of the leaves increased extremely significantly,the Chl a/b and total phenol content (TPC) decreased extremely significantly,but the Chl (a+b)/Car changes were not significant.The contents of total flavonoids,anthocyanins and saponins all increased due to the increasing of UV-B,displaying dose effects.The UV-B intensity was positively correlated with the Chl a/b,and negatively with the Chl a,Chl b,Chl (a+ b),Car and (Chl+Car) contents; and the two of TPC,total flavonoid content (TFC),total anthocyanin content (TAC) and total saponin content (TSC) were positively correlated,all reaching extremely significant level.The UV-B intensity was positively and significantly correlated with the total flavonoid content (TFC),negatively and significantly with the Chl (a+b)/Car,and positively and insignificantly with the TPC,TAC and TSC.[Conclusion] For one-year-old plants of P.notoginseng,UV-B can decrease the contents of the Chl a,Chl b,Chl (a+b),Car and (Chl+Car) and increase the Chl a/b and TPC,and,furthermore,induce the increases of the TFC,TAC and TSC in a dose-dependent manner.However,UV-B can hardly change the Chl (a+b)/Car.The supplemental UV-B of well-suited dose might be one of the effective measures to improve the TSC of P.notoginseng.
文摘Aim To quantitatively determine five nucleosides and nucleobases, including cytidine, uridine, guanosine, adenosine and uracil in different parts of Panax notoginseng. Methods Separation was performed on a Zorbax SB-Aq column using a gradient elution with mobile phase of 8 mmol^L-1 ammonium acetate aqueous solution (A) and methanol (B). The assay was carried out at a flow rate of 1 mL·min^-1 at 25 ℃ with the diode-array detection at 260 nm. Results Cytidine, uridine, guanosine, adenosine and uracil had good linearity in the ranges of 1.79 - 57.40 μg·mL^-1 (r^2 = 1.0000), 3.30 - 105.60 μg·mL^-1 (r^2 = 1.0000), 3.09 - 98.80 μg·mL^ -1(r^2 = 0.9999), 2.77 - 88.60 μg·mL^-1 (r^2 = 1.0000) and 0.38 - 12.30 μg·mL ^-1 (r^2 = 1.0000) with average recoveries of 93.9%, 96.5%, 92.7%, 93.2% and 98.8%, respectively. The content of cytidine, uridine, guanosine, adenosine and uracil in different parts of P. notogingeng were significantly different. Conclusion This is the first report on quantitative determination of nucleosides and nucleobases in P notoginseng.
基金supported by the Hunan Provincial Innovation Foundation for Postgraduate in China,No.CX2014B099(to XH)the Science Foundation of Hunan Provincial Education Department of China,No.11C1264(to FJD),13C958(to XH)
文摘The main active components extracted from Panax notoginseng are total saponins. They have been shown to inhibit platelet aggregation, increase cerebral blood flow, improve neurological behavior, decrease infarct volume and promote proliferation and differentiation of neural stem cells in the hippocampus and lateral ventricles. However, there is a lack of studies on whether total saponins of Panax notoginsertg have potential benefits on immature neuroblasts in the olfactory bulb following ischemia and reperfusion. This study established a rat model of global cerebral ischemia and reperfusion using four-vessel occlusion. Rats were administered total sa- ponins of Panax notoginseng at 75 mg/kg intraperitoneally 30 minutes after ischemia then once a day, for either 7 or 14 days. Total saponins of Panax notoginseng enhanced the number of dou- blecortin (DCX)+ neural progenitor ceils and increased co-localization of DCX with neuronal nuclei and phosphorylated cAMP response element-binding/DCX+ neural progenitor cells in the olfactory bulb at 7 and 14 days post ischemia. These findings indicate that following global brain ischemia/reperfusion, total saponins of Panax notoginseng promote differentiation of DCX+ cells expressing immature neuroblasts in the olfactory bulb and the underlying mechanism is related to the activation of the signaling pathway of cyclic adenosine monophosphate response element binding protein.
基金supported by the National Basic Research Program of China (973 Program),No.2005CB523404the National Natural Science Foundation, No.30901922Science and Technology Development Fund forUniversities in Tianjin,No.2006305
文摘The present study monitored the effect of 2, 10, and 50 mg/L of Panax notoginseng saponin exposure following hypoxia-reoxygenation injury in fetal rat cortical neurons. Results showed that varying doses of Panax notoginseng saponin significantly enhanced the cell viability of neurons, reduced malondialdehyde content, increased superoxide dismutase activity, inhibited mRNA and protein expression of inducible and neuronal nitric oxide synthase, and decreased the release of nitric oxide in hypoxia/reoxygenation injured cells. In particular, 50 mg/L of Panax notoginseng saponin was the most effective dose. These findings suggest that Panax notoginseng saponin can attenuate neuronal oxidative stress injury caused by hypoxia/reoxygenation in a dose-dependent manner.
基金the National Natural Science Foundation of China, No: 30560189
文摘BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheimer's disease. OBJECTIVE: Using the Morris water maze, immunohistochemistry, real-time PCR and RT-PCR, this study aimed to measure improvement in spatial learning, memory, expression of amyloid precursor protein (App) and β -amyloid (A β ), to investigate the mechanism of action of PNS in the treatment of AD in the senescence accelerated mouse-prone 8 (SAMP8) and compare the effects with huperzine A. DESIGN, TIME AND SETTING: A completely randomized grouping design, controlled animal experiment was performed in the Center for Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from July 2005 to April 2007. MATERIALS: Sixty male SAMP8 mice, aged 3 months, purchased from Tianjin Chinese Traditional Medical University of China, were divided into four groups: PNS high-dosage group, PNS low-dosage group, huperzine A group and control group. PNS was provided by Weihe Pharmaceutical Co., Ltd. (batch No.: Z53021485, Yuxi, Yunan Province, China). Huperzine A was provided by Zhenyuan Pharmaceutical Co., Ltd. (batch No.: 20040801, Zhejiang, China). METHODS: The high-dosage group and low-dosage group were treated with 93.50 and 23.38 mg/kg PNS respectively per day and the huperzine A group was treated with 0.038 6 mg/kg huperzine A per day, all by intragastric administration, for 8 consecutive weeks. The same volume of double distilled water was given to the control group. MAIN OUTCOME MEASURES: After drug administration, learning and memory abilities were assessed by place navigation and spatial probe tests. The recording indices consisted of escape latency (time-to-platform), and the percentage of swimming time spent in each quadrant. The number of A β 1-40, A β 1-42 and App immunopositive neurons in the brains of SAMP8 mice was analyzed by immunohistochemistry. The mRNA content ofApp, tau, acetylcholinesterase, and synaptophysin (Syp) was tested by real time PCR and RT-PCR. RESULTS: The PCR results show that PNS can downregulate the expression of the App gene and upregulate the expression of the Syp gene in the parietal cortex and hippocampus of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than those of the PNS low-dosage group and the huperzine A group (P 〈 0.05). The results of the Morris water maze and immunohistochemistry indicated that PNS can improve the capacity for spatial learning and memory in SAMP8 mice, and reduce the content of A β 1-40, A β 1-42 and expression of App in the brains of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than that of the PNS low-dosage group and the huperzine A group (P 〈 0.05). CONCLUSION: These results support the hypothesis that PNS plays a therapeutic and protective role on the pathological lesions and learning dysfunction of Alzheimer's disease. The therapeutic effects of PNS for Alzheimer's disease are possibly achieved through downregulating the expression of the App gene and upregulating the expression of the Syp gene. The therapeutic effects of PNS are dose-dependent and are greater than the effect of huperzine A.
文摘Notoginsenoside R-111, a novel hexanordammarane glycoside was isolated from the roots of Panax nototginseng, as a minor constituent. Its structure was determined as 6-O-(beta -D-glucopyranosyl)-3 beta ,6 alpha ,12 beta -trihydroxy-22,23,24,25,26,27-hexanordammaran-20-one(1), by means of spectroscopic methods.
文摘BACKGROUND: Ischemia/reperfusion (I/R) injury is a major cause of primary graft dysfunction and renders an al- lograft more immunogenic in orthotopic liver transplanta- tion (OLT). Panax notoginseng saponins (PNS) has been re- ported to exert protective effects against I/R injury to vari- ous organs. The objective of this study is to investigate whether PNS preconditioning protects rat liver grafts from I/R injury via an antiapoptotic pathway. METHODS: Male Sprague-Dawley rats were used as donors and recipients of orthotopic liver transplantation ( OLT) and were divided into PNS preconditioning group (group P) and normal saline control group (group N) randomly according to whether PNS (50 mg/kg) was injected intra- venously 1 hour before liver grafts harvesting, and sham group (group S). The animals were separately killed 2, 6 and 24 hours after reperfusion. Plasma samples were collect- ed for test of alanine amino-transferase (ALT) and aspartate aminotransferase (AST). Liver tissues were collected to de- tect histological changes, apoptosis and the expression of TNF-α, Bcl-2 and Caspase-3 mRNA. RESULTS: The serum levels of ALT and AST and the apop- tosis index (AI) of liver tissue in group P were lower than in group N significantly 2, 6 and 24 hours after reperfusion. Compared with group N, the expression of TNF-a and Caspase-3 mRNA was reduced significantly in group P 2 and 6 hours after reperfusion and the expression of Bcl-2 mRNA was enhanced significantly in group P 6 and 24 hours after reperfusion. CONCLUSIONS: PNS preconditioning protects liver grafts from I/R injury effectively in rat OLT via an antiapoptotic pathway. The antiapoptotic mechanisms of PNS may in- clude inhibiting the expression of TNF-a and Caspase-3 and enhancing the expression of Bcl-2.
基金Acknowledgments The authors are grateful to the members of the Analytical Group in State Key Laboratory of Phytochemistry and Plant Resources in West China,Kunming Institute of Botany,for measuring all the spectra.We also appreciate Prof.Wei-Qi Li,Dr.Yan-Xia Jia and Dr.Xing Huang for providing materials and technical support on plant bioassays.This work is supported by the Science and Technology Planning Project(2013FC008)the Major Science and Technique Programs(2016ZF001-001)Yunnan Province,China,and Yung-Chi Cheng academician workstation of Yunnan provincial academy of science and technology(2015IC017).
文摘Panax notoginseng(Araliaceae)is an important ginseng herb with various health benefits and a history of cultivation in southwestern China over 400 years.In recent years?.notoginseng has faced serious continuous-cropping obstacles due to its large-scale cultivation.In this study,we aim to explore the allelochemicals of P.notoginseng and their interactions with various plants and rhizosphere microor-ganisms.The chemical constituents of the soil cultivated with 3-year-old P.notoginseng were studied by column chromatography,spectroscopic and GC-MS analyses.We identified 13 volatile components and isolated six triterpenes(1-4,6-7)and one anthraquinone(5).Compounds 1-7 were tested for their effects on seed germination and root elongation in P.notoginseng,corn,wheat,turnip,water spinach and Arabidopsis thaliana.We also examined the effect of compounds 1-7on the growth of ten rhizosphere microorganisms of P.notoginseng.At a concentration of 1.0 ug mL',compounds 3 and 5-7 caused the death of P.notoginseng root cells and compounds 2,6 and 7 induced the death of root cells of A.thaliana.Compounds 1-5and 7 inhibited elongation of A.thaliana root tip cells at a concentration of 10.0μg mL^-1.Moreover,at a concentration of 0.1 mg mL^-1,compounds 3,4,6 and 7 inhibited the growth of probiotics and promoted the growth of pathogens of P.notoginseng.These results suggest that these isolated ursane-type triterpenoid acids and anthraquinone are potential allelochemicals that contribute to continuous-cropping obstacles of P.notoginseng.
基金Supported by: the National Natural Science Foundation of China, No. 30560189the Grant from Innovation Groupfor Developing Chinese HerbsNew Drugsamong University Talents in Guangxi
文摘BACKGROUND: Modem pharmacological studies have demonstrated that Panax notoginseng saponins (PNS) can ameliorate and protect from neuropathological impairment. Whether PNS can improve the abnormality in memory and behavior of rats with Alzheimer's disease (AD) remains unclear. OBJECTIVE: Based on a Morris water maze test, this study aimed to measure improvements of spatial learning and memory by PNS in a rat model of AD, and to compare effects with huperzine A. DESIGN: A completely randomized grouping design, controlled animal experiment. SETTING: Center of Research & Development of New Drugs, Guangxi Traditional Chinese Medical University. MATERIALS: Ninety healthy Wistar rats of both genders, 15-month-old (n =75) and 3-month-old rats as young controls (n =15), were used for this study. The study was performed in accordance with animal ethics guidelines for the use and care of animals. PNS was provided by Weihe Pharmaceutical Co., Ltd (permission No. Z53021485, Yuxi, Yunan Province, China). Morris water maze equipment was provided by the Institute of Physiology, Chinese Academy of Science. METHODS: This study was performed at the Center of Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from June 2003 to April 2005. Of the included rats, 15 healthy aged rats were randomly chosen as aged controls, and the remaining 60 aged rats were randomly divided into 4 groups with 15 rats in each: model group, PNS high- and low-dose groups, and an huperzine A group. Rats in the model group and the 3 treated groups were treated with intraperitoneal infusion of 9.6 g/L D-galactose (5 mL/kg) every day for 6 weeks successively to induce a subacute aging model. During week 7, animals received 1 μ L ibotenic acid (5 g/L) bilaterally into the nucleus basalis of Meynert to create a rat model of AD. The young and old rat controls received, in parallel, a corresponding volume of saline. Two weeks later, rats in the PNS high- and low-dose groups were gavaged with 200 and 100 mg/kg PNS suspension, respectively. Huperzine A suspension (0.3 mg/kg) was used in the huperzine A group. Rats in the other 3 groups were gavaged with a corresponding volume of normal saline. In each group, administration was carried out once per day for 4 consecutive weeks. MAIN OUTCOME MEASURES: After administration, learning and memory abilities were measured by place navigation and spatial probe tests. Recording indices consisted of escape latency (time-to-platform), number of times to find the platform within 2 minutes, number of times the animal crosses the original platform location, and the percent of swimming time in each quadrant. RESULTS: Several rats died due to inflammatory reactions following brain lesion or intragastric administration; therefore, 61 rats were included in the final analysis. Results of spatial navigation test: Escape latency of rats in the model group was significantly prolonged, and number of times to find the platform within 2 minutes were significantly reduced compared with other groups (both P 〈 0.05). No significant differences in these two indices were measured among the administration groups (all P 〉 0.05). Results of spatial probe test: Times for crossing the original platform location and percent of time spent in the quadrant of original platform location were significantly less in the model group than in the other groups (P 〈 0.05). There were no significant differences in these two indices among the administration groups (P 〉 0.05). CONCLUSION: PNS can remarkably improve spatial learning and memory abilities of rats with AD. The therapeutic effect of PNS is not dose-dependent and is equivalent to the effect of huperzine A.
基金the National Natural Science Foundation of China, No.30300115
文摘BACKGROUND: Dopaminergic neurons differentiated from neural stem cells have been successfully used in the treatment of rat models of Parkinson's disease; however, the survival rate of transplanted cells has been low. Most cells die by apoptosis as a result of overloaded intracellular calcium and the formation of oxygen free radicals. OBJECTIVE: To observe whether survival of transplanted cells, transplantation efficacy, and dopaminergic differentiation from neural stem cells is altered by Panax notoginseng saponins (PNS) in a rat model of Parkinson's disease. DESIGN, TIME AND SETTING: Cellular and molecular biology experiments with randomized group design. The experiment was performed at the Animal Experimental Center, First Hospital of Sun Yat-sen University from April to October 2007. MATERIALS: Thirty-two adult, healthy, male Sprague Dawley rats, and four healthy Sprague Dawley rat embryos at gestational days 14-15 were selected. The right ventral mesencephalon was injected with 6-hydroxydopamine to establish a model of Parkinson's disease. 6-hydroxydopamine and apomorphine were purchased from Sigma, USA. METHODS: Neural stem cells derived from the mesencephalon of embryonic rats were cultivated and passaged in serum-free culture medium. Lesioned animals were randomly divided into four groups (n = 8): dopaminergic neuron, dopaminergic neuron + PNS, PNS, and control. The dopaminergic neuron group was injected with 3 μL cell suspension containing dopaminergic neurons differentiated from neural stem cells. The dopaminergic neurons + PNS group received 3 μ L dopaminergic cell suspension combined with PNS (250 mg/L). The PNS group received 3 μL PNS (250 mg/L), and the control group received 3 μL DMEM/F12 culture medium. MAIN OUTCOME MEASURES: The rats were transcardially perfused with 4% paraformaldehyde at 60 days post-grafting for immunohistochemistry. The rats were intraperitoneally injected with apomorphine (0.5 mg/kg) to induce rotational behavior. RESULTS: Cell counts of tyrosine hydroxylase-positive neurons in the dopaminergic neuron + PNS group were (732±82.6) cells/400-fold field. This was significantly greater than the dopaminergic neuron group [(326 ± 34.8) cells/400-fold field, P 〈 0.01]. Compared to the control group, the rotational asymmetry of rats that received dopaminergic neuron transplants was significantly decreased, beginning at 20 days after operation (P 〈 0.01). Rotational asymmetry was further reduced between 10-60 days post-surgery in the dopaminergic neuron + PNS group, compared to the dopaminergic neuron group (P 〈 0.01). CONCLUSION: Panax notoginseng saponins can increase survival and effectiveness of dopaminergic neurons differentiated from neural stem cells for transplantation in a rat model of Parkinson's disease.