期刊文献+
共找到395篇文章
< 1 2 20 >
每页显示 20 50 100
Study of the reaction mechanism for preparing powdered activated coke with SO_(2)adsorption capability via one-step rapid activation method under flue gas atmosphere
1
作者 Binxuan Zhou Jingcai Chang +5 位作者 Jun Li Jinglan Hong Tao Wang Liqiang Zhang Ping Zhou Chunyuan Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期158-168,共11页
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m... In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation. 展开更多
关键词 reaction mechanism Powdered activated coke preparation SO_(2)adsorption One-step rapid activation Flue gas atmosphere
下载PDF
The reaction mechanism and interfacial crystallization of Al nanoparticle-embedded Ni under shock loading
2
作者 Yifan Xie Jian-Li Shao +1 位作者 Rui Liu Pengwan Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期114-124,共11页
The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nan... The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nanoparticle,interfacial crystallization and dissolution are the main characteristics.The reaction degree of Al particle first increases linearly and then logarithmically with time driven by rapid mechanical mixing and following dissolution.The reaction rate increases with the decrease of particle diameter,however,the reaction is seriously hindered by interfacial crystallization when the diameter is lower than 9 nm in our simulations.Meanwhile,we found a negative exponential growth in the fraction of crystallized Al atoms,and the crystallinity of B2-NiAl(up to 20%)is positively correlated with the specific surface area of Al particle.This can be attributed to the formation mechanism of B2-NiAl by structural evolution of finite mixing layer near the collapsed interface.For shock melting of both Al particle and Ni matrix,the liquid-liquid phase inter-diffusion is the main reaction mechanism that can be enhanced by the formation of internal jet.In addition,the enhanced diffusion is manifested in the logarithmic growth law of mean square displacement,which results in an almost constant reaction rate similar to the mechanical mixing process. 展开更多
关键词 Shock-induced reaction Molecular dynamics simulations Interfacial crystallization reaction mechanism
下载PDF
Reaction Mechanism,Synthesis and Characterization of Urea-glyoxal(UG) Resin 被引量:8
3
作者 DENG Shu-Duan LI Xiang-Hong +1 位作者 XIE Xiao-Guang DU Guan-Ben 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2013年第12期1773-1786,共14页
The reaction mechanism of glyoxal (G) with urea (U) under weak acid condition was theoretically investigated at PW91/DNP/COSMO of quantum chemistry using density functional theory (DFT) method. The results show ... The reaction mechanism of glyoxal (G) with urea (U) under weak acid condition was theoretically investigated at PW91/DNP/COSMO of quantum chemistry using density functional theory (DFT) method. The results show that the addition reaction of G with U under the conditions mainly involves the reactions of U with protonated glyoxal (p-G), protonated 2,2-dihy- droxyacetaldehyde (p-G 1) and protonated bis-hemdiol (p-G2) to form two important carbocation reactive intermediates of C-p-UG and C-p-UG1, and two important hydroxyl compounds of UG and UG1. These compounds play important roles in the formation of UG resin. According to the result of quantum chemical calculation, UG resin was synthesized successfully under weak acid conditions. The UG resin was characterized by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), ultraviolet and visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT1R) and nuclear magnetic resonance spectroscopy (13CNMR and 1HNMR). These instrumental analytical results agree with each other and further confirm the addition reaction pathway of glyoxal with urea proposed by quantum chemical calculation. 展开更多
关键词 urea-glyoxal (UG) resin reaction mechanism synthesis MALDI-TOF FTIR NMR UV-vis
下载PDF
Theoretical Studies on Reaction Mechanisms of HNCS with NH(X^3Σ) 被引量:8
4
作者 LIU Peng-jun ZHANG Lian-hua +2 位作者 SUN Hao CHANG Ying-fei WANG Rong-shun 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2006年第5期635-638,共4页
The reaction mechanisms of HNCS with NH(X^3∑ ) were theoretically investigated. The minimum energy paths (MEP) of the reaction were calculated by using the density functional theory(DFT) at the B3LYP/6-311 + ... The reaction mechanisms of HNCS with NH(X^3∑ ) were theoretically investigated. The minimum energy paths (MEP) of the reaction were calculated by using the density functional theory(DFT) at the B3LYP/6-311 + + G^** level. The equilibrium structural parameters, the harmonic vibrational frequencies, the total energies, and the zeropoint energies(ZPE) of all the species were calculated. The single-point energies along the MEP were further refined at the QCISD(T)/6-311 + + G^* * level. It was found that the mechanisms of the HNCS + NH(X^3∑) reaction involve two channels producing the HNC + HNS and the N2H2 + CS products. Channel 1 plays a dominant role and the HNC + HNS are the main preduets. The reaction is exothermie. 展开更多
关键词 HNCS NH(X^3∑) reaction mechanism Density functional theory(DFT)
下载PDF
In situ reaction mechanism of MgAlON in Al–Al2O3–MgO composites at 1700°C under flowing N2 被引量:3
5
作者 Shang-hao Tong Yong Li +3 位作者 Ming-wei Yan Peng Jiang Jia-jia Ma Dan-dan Yue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第9期1061-1066,共6页
The Al–AlO–MgO composites with added aluminum contents of approximately 0wt%, 5wt%, and 10wt%, named as M, M, and M, respectively, were prepared at 1700°C for 5 h under a flowing Natmosphere using the reaction ... The Al–AlO–MgO composites with added aluminum contents of approximately 0wt%, 5wt%, and 10wt%, named as M, M, and M, respectively, were prepared at 1700°C for 5 h under a flowing Natmosphere using the reaction sintering method. After sintering, the Al–AlO–MgO composites were characterized and analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results show that specimen Mwas composed of MgO and MgAlO. Compared with specimen M, specimens Mand Mpossessed MgAlON, and its production increased with increasing aluminum addition. Under an Natmosphere, MgO, AlO, and Al in the matrix of specimens Mand Mreacted to form MgAlON and AlN-polytypoids, which combined the particles and the matrix together and imparted the Al–AlO–MgO composites with a dense structure. The mechanism of MgAlON synthesis is described as follows. Under an Natmosphere, the partial pressure of oxygen is quite low; thus, when the Al–AlO–MgO composites were soaked at 580°C for an extended period, aluminum metal was transformed into AlN. With increasing temperature, AlOdiffused into AlN crystal lattices and formed AlN-polytypoids; however, MgO reacted with AlOto form MgAlO. When the temperature was greater than(1640 ± 10)°C, AlN diffused into AlOand formed spinel-structured AlON. In situ MgAlON was acquired through a solid-solution reaction between AlON and Mg AlOat high temperatures because of their similar spinel structures. 展开更多
关键词 COMPOSITES metal aluminum nitrogen atmosphere magnesium aluminum oxynitride reaction mechanism
下载PDF
Study on the Reaction Mechanism of Naphthalene with Oxalyl Chloride 被引量:3
6
作者 Wu Lin Qin Yi-min +4 位作者 Huang Bo Zong Zhi-ming Wei Xian-yong Chen Qing-ru Zou Guo-lin 《Wuhan University Journal of Natural Sciences》 EI CAS 2001年第4期854-858,共5页
The reaction of naphthalene with oxalyl chloride in the presence of anhydrous AlCl3 was investigated. The homolog of dinaphthyl methanone can be obtained mainly from this reaction. Naphthalene conversion does not have... The reaction of naphthalene with oxalyl chloride in the presence of anhydrous AlCl3 was investigated. The homolog of dinaphthyl methanone can be obtained mainly from this reaction. Naphthalene conversion does not have evident correlation with the amount of AlCl3. The results show that the reaction proceeds via carbon cation electrophilic substitution reaction-free radical substitution reaction pathway. 展开更多
关键词 NAPHTHALENE oxalyl chloride carboncation free radical reaction mechanism
下载PDF
Anode reaction mechanisms of Na|NaCl-CaCl2|Zn liquid metal battery 被引量:2
7
作者 Fang Zhang jingyun Jin +1 位作者 Junli xu Zhongning Shi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期81-87,I0003,共8页
Na|NaCl-CaCl_(2)|Zn liquid metal battery is regarded as a promising energy storage system for power grids.Despite intensive attempts to present a real mechanism of metal electrodes reaction, those for Na||Zn LMBs are ... Na|NaCl-CaCl_(2)|Zn liquid metal battery is regarded as a promising energy storage system for power grids.Despite intensive attempts to present a real mechanism of metal electrodes reaction, those for Na||Zn LMBs are not clear yet. Herein, the anode reactions for the multiple discharge potential plateaus were deduced by means of FactSage thermochemical software, which were subsequently validated by X-ray diffraction analysis and the modeling of phase transformation in the cooling process. A pre-treatment process was proposed for the analysis of anode product composition using the atomic absorption spectrometry method, and the anode states at working temperature(560 ℃) were obtained by the Na-CaZn ternary phase for the first time. The results indicate the discharge of Na and Ca led to the formation of Ca-Zn intermetallic compounds, whilst the extraction of Ca in Ca-Zn intermetallic compounds was responsible for the multiple discharge plateaus. Moreover, it was found that the charging product was in electrochemical double liquid metal layers, which are composed of Na and Ca with dissolved Zn respectively. 展开更多
关键词 Liquid metal battery Thermodynamic calculation Discharge plateaus reaction mechanisms Ca-Zn intermetallic compounds
下载PDF
Unraveling the reaction mechanism of low dose Mn dopant in Ni(OH)_(2) supercapacitor electrode 被引量:2
8
作者 Zhiguo Zhang Hua Huo +5 位作者 Zhenjiang Yu Lizhi Xiang Bingxing Xie Chunyu Du Jiajun Wang Geping Yin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期497-506,I0013,共11页
Mn doping is deemed as a promising strategy to improve the electrochemical performance of the a-Ni(OH)_(2)battery-type supercapacitor electrode.However,the internal structure evolution,the pathways and the dynamics of... Mn doping is deemed as a promising strategy to improve the electrochemical performance of the a-Ni(OH)_(2)battery-type supercapacitor electrode.However,the internal structure evolution,the pathways and the dynamics of the proton/intercalated anion migration,as well as the functioning mechanism of Mn dopant to stabilize the layered structure during cycles remain unclear.Here,we unveil that irreversible oxidization of Mn^(3+)at the initial CV cycles,which will remain as Mn^(4+)in the NiO_(2)slabs after the first oxidization to effectively suppress the phase transformation fromα-Ni(OH)_(2)/γ-NiOOH toβ-Ni(OH)_(2)/β-NiOOH and further maintain the structural integrity of electrode.With a synergistic combination of theoretical calculations and various structural probes including XRD and^(2)H MAS solid state NMR,we decode the structure evolution and dynamics in the initial CV(cyclic voltammetry)cycles,including the absorption/desorption of hydrogen containing species,migration of intercalated anions/water molecules and the change of interlayer space.This present work elucidates a close relationship between doping chemistry and structural reliability,paving a novel way of reengineering supercapacitor electrode materials. 展开更多
关键词 reaction mechanism Structure evolution ^(2)H MAS NMR Layered double hydroxides Local environments
下载PDF
Preparation of Polystyrenylphosphonous Acid of Low Polymerization Degree and Influence of Initiators upon the Free Radical Reaction Mechanism 被引量:2
9
作者 XiangKaiFU YanSUI 《Chinese Chemical Letters》 SCIE CAS CSCD 2002年第3期219-222,共4页
The polystyrenylphosphonous acid (PSPA) of low polymerization degree was prepared with one step reaction. The reaction mechanism was changed with different initiators. For the reaction with AIBN or BPO as the initia... The polystyrenylphosphonous acid (PSPA) of low polymerization degree was prepared with one step reaction. The reaction mechanism was changed with different initiators. For the reaction with AIBN or BPO as the initiator, there are 2 or 3 series of radical reaction chains and 5 or 9 series of polystyrenyl products. The main products are PSPA without or with the fragment of the initiator H[CH(C6H5)-CH2]n-PO2H2 and C6H5CO2-[CH2CH (C6H5)]n-PO2H2 respectively. 展开更多
关键词 Polystyrenylphosphonous acid (PSPA) low polymerization degree 2 2-azobisiso-butyronitrile (AIBN) benzoyl peroxide (BPO) reaction mechanism.
下载PDF
Porous core–shell CoMn_2O_4 microspheres as anode of lithium ion battery with excellent performances and their conversion reaction mechanism investigated by XAFS 被引量:2
10
作者 Hang Su Yue-Feng Xu +4 位作者 Shou-Yu Shen Jian-Oiang wang Jun-Tao Li Ling Huang Shi-Gang Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1637-1643,共7页
Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electroch... Porous core-shell CoMn204 microspheres of ca. 3-5μm in diameter were synthesized and served as an-ode of lithium ion battery. Results demonstrate that the as-synthesized CoMn204 materials exhibit excel-lent electrochemical properties. The CoMn204 anode can deliver a large capacity of 1070 mAh g-1 in thefirst discharge, a reversible capacity of 500 mAh g^-1 after 100 cycles with a coulombic efficiency of 98.5% at a charge-discharge current density of 200 mA g^-l, and a specific capacity of 385 mAh g^-1 at a muchhigher charge-discharge current density of 1600mA g^-1. Synchrotron X-ray absorption fine structure(XAFS) techniques were applied to investigate the conversion reaction mechanism of the CoMn204 anode.The X-ray absorption near edge structure (XANES) spectra revealed that, in the first discharge-charge cy-cle, Co and Mn in CoMn204 were reduced to metallic Co and Mn when the electrode was discharged to0.01 V, while they were oxidized respectively to CoO and MnO when the electrode was charged to 3.0V.Experiments of both XANE5 and extended X-ray absorption fine structure (EXAFS) revealed that neithervalence evolution nor phase transition of the porous core-shell CoMn204 microspheres could happen inthe discharge plateau from 0.8 to 0.6V, which demonstrates the formation of solid electrolyte interface(SEI) on the anode. 展开更多
关键词 Lithium ion battery Porous core-shell CoMn2O4 anode Conversion reaction mechanism XAFS
下载PDF
Theoretical Study of the AlCl Disproportionation Reaction Mechanism on the Al(100) Surface 被引量:2
11
作者 陈秀敏 杨斌 +1 位作者 陶东平 戴永年 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2011年第7期931-942,共12页
The surface disproportionation reaction mechanism of aluminum subchloride on the aluminum (100) surfaces has been investigated by the plane-wave density functional theory (DFT). Three kinds of possible reaction me... The surface disproportionation reaction mechanism of aluminum subchloride on the aluminum (100) surfaces has been investigated by the plane-wave density functional theory (DFT). Three kinds of possible reaction mechanism of AlCl disproportionation reaction on the aluminum (100) surfaces have been taken into account. The structures of reactants and products have been optimized, transition states have been confirmed and activation energies have been calculated. The adsorption energy of reactants and desorption energy of products have been determined. All of these have been employed to confirm the reaction mechanism and the rate determining step ofAlCl disproportionation reaction on the aluminum (100) surfaces. 展开更多
关键词 AlCl disproportionation reaction density functional theory Al(100) surface reaction mechanism transition state
下载PDF
Reaction mechanism and kinetics of pressurized pyrolysis of Chinese oil shale in the presence of water 被引量:1
12
作者 FANG Chaohe LI Shuyuan +2 位作者 MA Guili WANG Hongyan HUANG Zhilong 《Petroleum Science》 SCIE CAS CSCD 2012年第4期532-534,共3页
A study of reaction mechanisms and chemical kinetics of pressurized pyrolysis of Chinese Liushuhe oil shale in the presence of water were conducted using an autoclave for simulating and modeling in-situ underground th... A study of reaction mechanisms and chemical kinetics of pressurized pyrolysis of Chinese Liushuhe oil shale in the presence of water were conducted using an autoclave for simulating and modeling in-situ underground thermal degradation.It was found that the oil shale was first pyrolyzed to form pyrobitumen,shale oil,shale gas and residue,then the pyrobitumen was further pyrolyzed to form more shale oil,shale gas,and residue.It means that there are two consecutive and parallel reactions.With increasing temperature,the pyrobitumen yield,as intermediate,first reached a maximum,then decreased to approximately zero.The kinetics results show that both these reactions are first order.The activation energy of pyrobitumen formation from oil shale is lower than that of shale oil formation from pyrobitumen. 展开更多
关键词 Oil shale PYROBITUMEN pressurized pyrolysis in-situ underground retorting reaction mechanism chemical kinetics
下载PDF
Reaction mechanism of self-propagating magnesiothermic reduction of ZrB_2 powders 被引量:1
13
作者 Yong-Ting Zheng Hong-Bo Li +2 位作者 Zhong-Hai Xu Jing Zhao Pan Yang 《Rare Metals》 SCIE EI CAS CSCD 2013年第4期408-413,共6页
Fine zirconium diboride (ZrB2) powders with high purity were successfully prepared by combustion synthesis through magnesiothermic reduction process in Mg-B2O3-ZrO2 system. The reaction mechanism was investigated by... Fine zirconium diboride (ZrB2) powders with high purity were successfully prepared by combustion synthesis through magnesiothermic reduction process in Mg-B2O3-ZrO2 system. The reaction mechanism was investigated by differential thermal analysis and quenching experiment. The results show that the whole magnesio-thermic reduction process includes three stages: first, molten B2O3 and Mg formed above the temperature of 650 ℃, and glassy B2O3 and solid ZrO2 particles were coated on the surface of the molten Mg; thus, the hollow balls can be formed when the molten Mg was exuded under capillary function. Second, ZrO2 particles reacted with molten Mg to form Zr and MgO with dissolution-precip-itation mechanism, which released a large amount of heat to induce the diffusion reaction between B203 and Mg to form B and MgO. Last, Zr reacted with B to form ZrB2 grains. The preparation of ZrB2 by self-propagating syn-thesis in Mg-B2O3-ZrO2 system is a solid-liquid-liquid reaction. 展开更多
关键词 reaction mechanism Magnesiothermicreduction Zirconium boride Self-propagating synthesis
下载PDF
Preparation and Reaction Mechanism of Red Mud based Ceramic Simple Bricks 被引量:1
14
作者 吴建锋 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第6期1001-1005,共5页
In order to utilize solid wastes,ceramic simple bricks with high performances were made from industrial solid wastes such as red mud,fly ash and poor clay shale as main raw materials in this paper.The phase compositio... In order to utilize solid wastes,ceramic simple bricks with high performances were made from industrial solid wastes such as red mud,fly ash and poor clay shale as main raw materials in this paper.The phase compositions and microstructures were tested by XRD,SEM and EPMA.The experimental results show that the water absorption is 45.64%,the porosity is 58.91%,bulk density is 1.29 g·cm-3,compressive strength is 54.91 MPa,bending strength is 29.52 MPa,freeze-thaw resistance is 29.28 MPa,specific heat capacity at constant pressure is 1.31 J·g-1·K-1,thermal diffusivity is 5.89×10-3 cm2·s-1,and thermal conductivity is 1.15×10-2 W·cm-1·K-1.These effects of additives and preparation process to the properties and microstructures were discussed in detail.The reaction mechanism was also discussed.The results of the reaction mechanism show that there has wollastonite and feldspar generated during the process of firing while Ca gathered around the feldspar,and then Ca would displace K and generated cacoclasite. 展开更多
关键词 red mud ceramic simple bricks addictives properties and microstructures reaction mechanism
下载PDF
Epoxidation of Styrene-Isoprene-Styrene Block Copolymer and Research on Its Reaction Mechanism 被引量:1
15
作者 李红强 曾幸荣 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第3期403-407,共5页
Styrene-isoprene-styrene(SIS) block copolymer was modified into epoxidized styrene-isoprene-styrene(ESIS) block copolymer with performic acid generated in situ from hydrogen peroxide and formic acid.The structure ... Styrene-isoprene-styrene(SIS) block copolymer was modified into epoxidized styrene-isoprene-styrene(ESIS) block copolymer with performic acid generated in situ from hydrogen peroxide and formic acid.The structure and property of ESIS were characterized by Fourier transform infrared(FT-IR) spectroscopy,gel permeation chromatography(GPC),thermogravimetric/differential thermogravimetric(TG/DTG),melt flow rate(MFR) and dynamic mechanical analysis(DMA),and the reaction mechanism in the process of epoxidation was analyzed.The results showed that C=C double bonds of 1,4-structure were more active than that of 3,4-structure in polyisoprene chains.With epoxidation reaction proceeding,the whole tendency of molecular weight increased and molecular weight distribution widened,and MFR firstly increased and latterly decreased.The heat resistance of ESIS was superior to that of SIS.When SIS was changed into ESIS with 15.3% of mass fraction of epoxide groups,Tg of polyisoprene chains increased from-45.3 ℃ to 10.9 ℃.In the earlier period of epoxidation,some molecular chains ruptured and new substances with low molecular weight formed.However,in the latter period,crosslinking reaction between molecular chains which was initiated by epoxide groups or C=C double bonds occurred and crosslinked insoluble substances came into being. 展开更多
关键词 styrene-isoprene-styrene block copolymer EPOXIDATION ring-open reaction mechanism
下载PDF
Reaction Mechanism and Kinetics for HCCO Radical with NO 被引量:1
16
作者 LIUPeng-jun PANXiu-mei +2 位作者 CHANGYing-fei SUZhong-min WANGRong-shun 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第1期92-95,共4页
The mechanism and dynamical properties for the reaction of HCCO radicals with NO were investigated theoretically. The minimum energy paths(MEP) of the reaction were calculated by using the density functional theory(DF... The mechanism and dynamical properties for the reaction of HCCO radicals with NO were investigated theoretically. The minimum energy paths(MEP) of the reaction were calculated by using the density functional theory(DFT) at the B3LYP/6-311+G ** level, and the energies along the MEP were further refined at the QCISD(T)/6-311+G ** level. It is found that the reaction mechanism of the title reaction involves three channels, producing HCNO+CO, HONC+CO and HCN+CO 2 products, respectively. Channel 1 is the most favorable path. The rate constant for channel 1 were calculated over a temperature range of 800—2500 K by using the canonical variational transition-state theory(CVT). The rate constant for the main path is negatively dependent on temperature, which is a characteristic of radical reactions with negative activation energy, and the variational effect for the rate constant calculation is small in the whole temperature range. 展开更多
关键词 Ketenyl radical(HCCO) NO reaction mechanism Density functional theory(DFT) Variational transition state
下载PDF
Theoretical Studies on the Reaction Mechanism of 1-Chloroethane with Hydroxyl Radical 被引量:1
17
作者 王丙星 王利 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2007年第6期695-702,共8页
The reaction mechanism of 1-chloroethane with hydroxyl radical has been investigated by using density functional theory (DFT) B3LYP/6-31G (d, p) method. All bond dissociation enthalpies were computed at the same t... The reaction mechanism of 1-chloroethane with hydroxyl radical has been investigated by using density functional theory (DFT) B3LYP/6-31G (d, p) method. All bond dissociation enthalpies were computed at the same theoretical level. It was found that hydrogen abstraction pathway is the most favorable. There are two hydrogen abstraction pathways with activation barriers of 0.630 and 4.988 kJ/mol, respectively, while chlorine abstraction pathway was not found. It was observed that activation energies have a more reasonable correlation with the reaction enthalpy changes (ΔHr) than with bond dissociation enthalpies (BDE). 展开更多
关键词 bond dissociation enthalpies B3LYP 1-chloroethane hydroxyl radical reaction mechanism
下载PDF
Theoretical Study on the Reaction Mechanism of SiCl_4 with H in the Gas Phase 被引量:1
18
作者 孙仁安 李钠 +1 位作者 艾纯芝 张宏 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2006年第4期491-496,共6页
The reaction mechanism of SiCl4 with H2 has been studied theoretically using Gaussian 98 program at B3LYP/6-311G^* level. Three different reaction paths (a, b, c) in the gas phase were obtained. The geometries, vib... The reaction mechanism of SiCl4 with H2 has been studied theoretically using Gaussian 98 program at B3LYP/6-311G^* level. Three different reaction paths (a, b, c) in the gas phase were obtained. The geometries, vibrational frequencies and energies of every stagnation point in the reaction channel were calculated and the mechanisms have been confirmed. The results show that path a has an activation energy of 79.12 kcal/mol, which was considered as the main reaction path. Comparably, paths b and c have the energy barriers of 125.07 and 136.25 kcal/mol, respectively. The reaction rate constant was calculated by TST method over a wide temperature range of 900~1600 K, which further confirmed that path a was the main reaction channel 展开更多
关键词 density functional theory transition state reaction mechanism rate constant
下载PDF
Reaction Mechanism of the Multi-channel Decomposition Reactions of C_(10)H_(14)^+· 被引量:1
19
作者 程学礼 赵燕云 +2 位作者 李丽清 丁静 李峰 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2009年第3期370-376,共7页
n-Butylbenzene cations C10H14^+ serve as a model compound to investigate the reaction mechanisms of alkylbenzene cations. The reactions of C10H14^+. decomposition reaction system have been studied extensively at the... n-Butylbenzene cations C10H14^+ serve as a model compound to investigate the reaction mechanisms of alkylbenzene cations. The reactions of C10H14^+. decomposition reaction system have been studied extensively at the B3LYP/6-311++G^** level with Gaussion98 package. The chain reaction of C10H14^+ dissociation was initiated by C-H bond rupture. All reaction channels initiated by C-H rupture were fully investigated with the vibrational mode analvsis to confirm the transition states and to reveal the reaction mechanism. A theoretical investigation on the reactions of this positive ion free radical can help us fully understand the decomposition processes. 展开更多
关键词 reaction mechanism C10H14^+ vibrational analysis
下载PDF
Density Functional Theory Investigation on the Reaction Mechanisms of Ti(^3F)with CH2Cl2 and CHCl3 to CH2=TiCl2 and HC÷TiCl3 被引量:1
20
作者 CHENG Xue-Li 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第2期193-198,共6页
The reaction mechanisms of Ti(~3F) + CH2C12→CH2=TiCl2 and Ti(~3F) + CHC13→HC÷TiCl3 were investigated with Gaussian 03 program package at the B3PW91/6-311++G(d,p)level.The computational results reveale... The reaction mechanisms of Ti(~3F) + CH2C12→CH2=TiCl2 and Ti(~3F) + CHC13→HC÷TiCl3 were investigated with Gaussian 03 program package at the B3PW91/6-311++G(d,p)level.The computational results revealed that:1) Both reaction systems are initiated by Ti(~3F) atom attacking the C atom of CH2C12 and CHCl3 to activate a C-Cl bond;2) Both reaction systems were carried out via triplet reaction channels;3) CH2=TiCl2 has singlet and triplet isomers,and the singlet one is more stable;4) The HOMO of CH2=TiCl2(S) illustrates a π-bonding interaction between C and Ti;5) Only singlet HC÷TiCl3 was located,and the Mulliken atomic spin densities show that the two single electrons are mostly on the C atom. 展开更多
关键词 B3PW91 reaction mechanism Ti(~3F) CH2=TiCl2 HOTiCl3
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部