Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles an...Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane. Rab5 has been reported to play an important role in the development of the zebrafish embryo;however, its role in axonal regeneration in the central nervous system remains unclear. In this study, we established a zebrafish Mauthner cell model of axonal injury using single-cell electroporation and two-photon axotomy techniques. We found that overexpression of Rab5 in single Mauthner cells promoted marked axonal regeneration and increased the number of intra-axonal transport vesicles. In contrast, treatment of zebrafish larvae with the Rab kinase inhibitor CID-1067700markedly inhibited axonal regeneration in Mauthner cells. We also found that Rab5 activated phosphatidylinositol 3-kinase(PI3K) during axonal repair of Mauthner cells and promoted the recovery of zebrafish locomotor function. Additionally, rapamycin, an inhibitor of the mechanistic target of rapamycin downstream of PI3K, markedly hindered axonal regeneration. These findings suggest that Rab5 promotes the axonal regeneration of injured zebrafish Mauthner cells by activating the PI3K signaling pathway.展开更多
Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and foun...Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury.展开更多
Anti-ganglioside antibodies are associated with delayed/poor clinical recovery in Guillain-Barrèsyndrome,mostly related to halted axon regeneration.Cross-linking of cell surface gangliosides by anti-ganglioside a...Anti-ganglioside antibodies are associated with delayed/poor clinical recovery in Guillain-Barrèsyndrome,mostly related to halted axon regeneration.Cross-linking of cell surface gangliosides by anti-ganglioside antibodies triggers inhibition of nerve repair in in vitro and in vivo paradigms of axon regeneration.These effects involve the activation of the small GTPase Rho A/ROCK signaling pathways,which negatively modulate growth cone cytoskeleton,similarly to well stablished inhibitors of axon regeneration described so far.The aim of this work was to perform a proof of concept study to demonstrate the effectiveness of Y-27632,a selective pharmacological inhibitor of ROCK,in a mouse model of axon regeneration of peripheral nerves,where the passive immunization with a monoclonal antibody targeting gangliosides GD1a and GT1b was previously reported to exert a potent inhibitory effect on regeneration of both myelinated and unmyelinated fibers.Our results demonstrate a differential sensitivity of myelinated and unmyelinated axons to the pro-regenerative effect of Y-27632.Treatment with a total dosage of 9 mg/kg of Y-27632 resulted in a complete prevention of anti-GD1a/GT1b monoclonal antibody-mediated inhibition of axon regeneration of unmyelinated fibers to skin and the functional recovery of mechanical cutaneous sensitivity.In contrast,the same dose showed toxic effects on the regeneration of myelinated fibers.Interestingly,scale down of the dosage of Y-27632 to 5 mg/kg resulted in a significant although not complete recovery of regenerated myelinated axons exposed to anti-GD1a/GT1b monoclonal antibody in the absence of toxicity in animals exposed to only Y-27632.Overall,these findings confirm the in vivo participation of Rho A/ROCK signaling pathways in the molecular mechanisms associated with the inhibition of axon regeneration induced by anti-GD1a/GT1b monoclonal antibody.Our findings open the possibility of therapeutic pharmacological intervention targeting Rho A/Rock pathway in immune neuropathies associated with the presence of anti-ganglioside antibodies and delayed or incomplete clinical recovery after injury in the peripheral nervous system.展开更多
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to p...Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.展开更多
Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries(PNIs).While most studies have focused only on the topographical features of the grafts,...Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries(PNIs).While most studies have focused only on the topographical features of the grafts,we have considered both the biophysical and biochemical manipulations in our applied nanoscaffold.To achieve this,we fabricated an electrospun nanofibrous scaffold(ENS)containing polylactide nanofibers loaded with lithium(Li)ions,a Wnt/β-catenin signaling activator.In addition,we seeded human adipose-derived mesenchymal stem cells(hADMSCs)onto this engineered scaffold to examine if their differentiation toward Schwann-like cells was induced.We further examined the efficacy of the scaffolds for nerve regeneration in vivo via grafting in a PNI rat model.Our results showed that Li-loaded ENSs gradually released Li within 11 d,at concentrations ranging from 0.02 to(3.64±0.10)mmol/L,and upregulated the expression of Wnt/β-catenin target genes(cyclinD1 and c-Myc)as well as those of Schwann cell markers(growth-associated protein 43(GAP43),S100 calcium binding protein B(S100B),glial fibrillary acidic protein(GFAP),and SRY-box transcription factor 10(SOX10))in differentiated hADMSCs.In the PNI rat model,implantation of Li-loaded ENSs with/without cells improved behavioral features such as sensory and motor functions as well as the electrophysiological characteristics of the injured nerve.This improved function was further validated by histological analysis of sciatic nerves grafted with Li-loaded ENSs,which showed no fibrous connective tissue but enhanced organized myelinated axons.The potential of Li-loaded ENSs in promoting Schwann cell differentiation of hADMSCs and axonal regeneration of injured sciatic nerves suggests their potential for application in peripheral nerve tissue engineering.展开更多
Extracellular vesicles from skin-derived precursor Schwann cells(SKP-SC-EVs)promote neurite outgrowth in culture and enhance peripheral nerve regeneration in rats.This study aimed at expanding the application of SKPSC...Extracellular vesicles from skin-derived precursor Schwann cells(SKP-SC-EVs)promote neurite outgrowth in culture and enhance peripheral nerve regeneration in rats.This study aimed at expanding the application of SKPSC-EVs in nerve grafting by creating a chitosan/PLGA-based,SKP-SC-EVs-containing tissue engineered nerve graft(TENG)to bridge a 40-mm long sciatic nerve defect in dogs.SKP-SC-EVs contained in TENGs significantly accelerated the recovery of hind limb motor and electrophysiological functions,supported the outgrowth and myelination of regenerated axons,and alleviated the denervation-induced atrophy of target muscles in dogs.To clarify the underlying molecular mechanism,we observed that SKP-SC-EVs were rich in a variety of miRNAs linked to the axon growth of neurons,and miR-30b-5p was the most important among others.We further noted that miR-30b-5p contained within SKP-SC-EVs exerted nerve regeneration-promoting effects by targeting the Sin3a/HDAC complex and activating the phosphorylation of ERK,STAT3 or CREB.Our findings suggested that SKP-SC-EVs-incorporating TENGs represent a novel type of bioactive material with potential application for peripheral nerve repair in the clinic.展开更多
Studies have snown that serum response factor is beneficaial for axonar regeneration of peripheral herves.However,Its role after central nervous system injury remains unclear. In this study,we established a rat model ...Studies have snown that serum response factor is beneficaial for axonar regeneration of peripheral herves.However,Its role after central nervous system injury remains unclear. In this study,we established a rat model of T9-T10 spinal cord transection injury.We found that the expression of serum response factor in injured spinal cord gray matter neurons gradually increased with time,reached its peak on the 7^(th) day,and then gradually decreased.To investigate the role of serum response factor,we used lentivirus vecto rs to ove rexpress and silence serum response factor in spinal cord tissue.We found that overexpression of serum response factor promoted motor function recovery in rats with spinal cord injury.Qualitative observation of biotinylated dextran amine anterograde tra cing showed that ove rexpression of serum response factor increased nerve fibers in the injured spinal co rd.Additionally,transmission electron microscopy showed that axon and myelin sheath morphology was restored.Silencing serum response factor had the opposite effects of ove rexpression.These findings suggest that serum response factor plays a role in the recovery of motor function after spinal cord injury.The underlying mechanism may be related to the regulation of axonal regeneration.展开更多
Axon regeneration of central neurons is a complex process that is tightly regulated by multiple extrinsic and intrinsic factors.The expression levels of distinct genes are changed after central neural system(CNS)injur...Axon regeneration of central neurons is a complex process that is tightly regulated by multiple extrinsic and intrinsic factors.The expression levels of distinct genes are changed after central neural system(CNS)injury and affect axon regeneration.A previous study identified dusp2 as an upregulated gene in zebrafish with spinal cord injury.Here,we found that dual specificity phosphatase 2(DUSP2)is a negative regulator of axon regeneration of the Mauthner cell(M-cell).DUSP2 is a phosphatase that mediates the dephosphorylation of JNK.In this study,we knocked out dusp2 by CRISPR/Cas9 and found that M-cell axons of dusp2(-/-)zebrafish had a better regeneration at the early stage after birth(within 8 days after birth),while those of dusp2^(+/-)zebrafish did not.Overexpression of DUSP2 in Tg(Tol 056)zebrafish by single-cell electroporation retarded the regeneration of M-cell axons.Western blotting results showed that DUSP2 knockout slightly increased the levels of phosphorylated JNK.These findings suggest that knocking out DUSP2 promoted the regeneration of zebrafish M-cell axons,possibly through enhancing JNK phosphorylation.展开更多
Ras homolog enriched in brain(Rheb) is a small GTPase that activates mammalian target of rapamycin complex 1(mTORC1).Previous studies have shown that constitutively active Rheb can enhance the regeneration of sensory ...Ras homolog enriched in brain(Rheb) is a small GTPase that activates mammalian target of rapamycin complex 1(mTORC1).Previous studies have shown that constitutively active Rheb can enhance the regeneration of sensory axons after spinal cord injury by activating downstream effectors of mTOR.S6K1 and4E-BP1 are important downstream effectors of mTORC1.In this study,we investigated the role of Rheb/mTOR and its downstream effectors S6K1 and 4E-BP1in the protection of retinal ganglion cells.We transfected an optic nerve crush mouse model with adeno-associated viral 2-mediated constitutively active Rheb and observed the effects on retinal ganglion cell survival and axon regeneration.We found that overexpression of constitutively active Rheb promoted survival of retinal ganglion cells in the acute(14 days) and chronic(21 and 42 days) stages of injury.We also found that either co-expression of the dominant-negative S6K1mutant or the constitutively active 4E-BP1 mutant together with constitutively active Rheb markedly inhibited axon regeneration of retinal ganglion cells.This suggests that mTORC1-mediated S6K1 activation and 4E-BP1 inhibition were necessary components for constitutively active Rheb-induced axon regeneration.However,only S6K1 activation,but not 4E-BP1 knockdown,induced axon regeneration when applied alone.Furthermore,S6K1 activation promoted the survival of retinal ganglion cells at 14 days post-injury,whereas 4E-BP1 knockdown unexpectedly slightly decreased the survival of retinal ganglion cells at 14 days postinjury.Ove rexpression of constitutively active 4E-BP1 increased the survival of retinal ganglion cells at 14 days post-injury.Likewise,co-expressing constitutively active Rheb and constitutively active 4E-BP1 markedly increased the survival of retinal ganglion cells compared with overexpression of constitutively active Rheb alone at 14 days post-injury.These findings indicate that functional 4E-BP1 and S6K1 are neuroprotective and that 4E-BP1 may exert protective effects through a pathway at least partially independent of Rhe b/mTOR.Together,our results show that constitutively active Rheb promotes the survival of retinal ganglion cells and axon regeneration through modulating S6K1 and 4E-BP1 activity.Phosphorylated S6K1 and 4E-BP1 promote axon regeneration but play an antagonistic role in the survival of retinal ganglion cells.展开更多
The Rho/Rho-associated coiled-coil containing protein kinase(Rho/ROCK) pathway is a major signaling pathway in the central nervous system, transducing inhibitory signals to block regeneration. After central nervous ...The Rho/Rho-associated coiled-coil containing protein kinase(Rho/ROCK) pathway is a major signaling pathway in the central nervous system, transducing inhibitory signals to block regeneration. After central nervous system damage, the main cause of impaired regeneration is the presence of factors that strongly inhibit regeneration in the surrounding microenvironment. These factors signal through the Rho/ROCK signaling pathway to inhibit regeneration. Therefore, a thorough understanding of the Rho/ROCK signaling pathway is crucial for advancing studies on regeneration and repair of the injured central nervous system.展开更多
Houshiheisan,a classic prescription in traditional Chinese medicine,contains Flos Chrysanthemi,Radix Saposhnikoviae,Ramulus Cinnamomi,Rhizoma Chuanxiong,Radix et Rhizoma Asari,Radix Platycodonis,Rhizoma Atractylodis m...Houshiheisan,a classic prescription in traditional Chinese medicine,contains Flos Chrysanthemi,Radix Saposhnikoviae,Ramulus Cinnamomi,Rhizoma Chuanxiong,Radix et Rhizoma Asari,Radix Platycodonis,Rhizoma Atractylodis macrocephalae,Poria,Rhizoma Zingiberis,Radix Angelicae sinensis,Radix et Rhizoma Ginseng,Radix Scutellariae and Concha Ostreae.According to traditional Chinese medicine theory,Flos Chrysanthemi,Radix Saposhnikoviae,Ramulus Cinnamomi,Rhizoma Chuanxiong,Radix et Rhizoma Asari and Radix Platycodonis are wind-dispelling drugs;Rhizoma Atractylodis macrocephalae,Poria,Rhizoma Zingiberis,Radix Angelicae sinensis and Radix et Rhizoma Ginseng are deficiency-nourishing drugs.A large number of randomized controlled trials have shown that Houshiheisan is effective in treating stroke,but its mechanism of action is unknown.Axonal remodeling is an important mechanism in neural protection and regeneration.Therefore,this study explored the effect and mechanism of action of Houshiheisan on the repair of axons after cerebral ischemia.Rat models of focal cerebral ischemia were established by ligating the right middle cerebral artery.At 6 hours after model establishment,rats were intragastrically administered 10.5 g/kg Houshiheisan or 7.7 g/kg wind-dispelling drug or 2.59 g/kg deficiency-nourishing drug.These medicines were intragastrically administered as above every 24 hours for 7 consecutive days.Houshiheisan,and its wind-dispelling and deficiency-nourishing components reduced the neurological deficit score and ameliorated axon and neuron lesions after cerebral ischemia.Furthermore,Houshiheisan,and its wind-dispelling and deficiency-nourishing components decreased the expression of proteins that inhibit axonal remodeling:amyloid precursor protein,neurite outgrowth inhibitor protein A(Nogo-A),Rho family small GTPase A(Rho A) and Rho-associated kinase 2(Rock2),and increased the expression of growth associated protein-43,microtubule-associated protein-2,netrin-1,Ras-related C3 botulinum toxin substrate 1(Rac1) and cell division cycle 42(Cdc42).The effect of Houshiheisan was stronger than wind-dispelling drugs or deficiency-nourishing drugs alone.In conclusion,Houshiheisan,and wind-dispelling and deficiency-nourishing drugs promote the repair of axons and nerve regeneration after cerebral ischemia through Nogo-A/Rho A/Rock2 and Netrin-1/Rac1/Cdc42 signaling pathways.These effects are strongest with Houshiheisan.展开更多
Spinal cord injury (SCI) at the cervical level compromises the function of both upper and lower extremities, thereby impeding an individual’s ability to complete daily tasks required for independent living and profou...Spinal cord injury (SCI) at the cervical level compromises the function of both upper and lower extremities, thereby impeding an individual’s ability to complete daily tasks required for independent living and profoundly affecting the overall quality of life among individuals afflicted by SCI and their families. Recovery of spinal cord functions may be attained by promoting the sprouting of non-injured axons and/or the regeneration of damaged axons.展开更多
Human umbilical mesenchymal stem cells from Wharton's jelly of the umbilical cord were induced to differentiate into oligodendrocyte precursor-like cells in vitro. Oligodendrocyte precursor cells were transplanted in...Human umbilical mesenchymal stem cells from Wharton's jelly of the umbilical cord were induced to differentiate into oligodendrocyte precursor-like cells in vitro. Oligodendrocyte precursor cells were transplanted into contused rat spinal cords. Immunofluorescence double staining indicated that transplanted cells survived in injured spinal cord, and differentiated into mature and immature oligodendrocyte precursor cells. Biotinylated dextran amine tracing results showed that cell transplantation promoted a higher density of the corticospinal tract in the central and caudal parts of the injured spinal cord. Luxol fast blue and toluidine blue staining showed that the volume of residual myelin was significantly increased at 1 and 2 mm rostral and caudal to the lesion epicenter after cell transplantation. Furthermore, immunofluorescence staining verified that the newly regenerated myelin sheath was derived from the central nervous system. Basso, Beattie and Bresnahan testing showed an evident behavioral recovery. These results suggest that human umbilical mesenchymal stem cell-derived oligodendrocyte precursor cells promote the regeneration of spinal axons and myelin sheaths.展开更多
It has been well established that the recovery ability of central nervous system (CNS) is very poor in adult mammals. As a result, CNS trauma generally leads to severe and persistent functional deficits. Thus, the i...It has been well established that the recovery ability of central nervous system (CNS) is very poor in adult mammals. As a result, CNS trauma generally leads to severe and persistent functional deficits. Thus, the investigation in this field becomes a "hot spot". Up to date, accumulating evidence supports the hypothesis that the failure of CNS neurons to regenerate is not due to their intrinsic inability to grow new axons, but due to their growth state and due to lack of a permissive growth environment. Therefore, any successful approaches to facilitate the regeneration of injured CNS axons will likely include multiple steps: keeping neurons alive in a certain growth-state, preventing the formation of a glial scar, overcoming inhibitory molecules present in the myelin debris, and giving direction to the growing axons. This brief review focused on the recent progress in the neuron regeneration of CNS in adult mammals.展开更多
Axon regeneration and remyelination of the damaged region is the most common repair strategy for spinal cord injury.However,achieving good outcome remains difficult.Our previous study showed that porcine decellularize...Axon regeneration and remyelination of the damaged region is the most common repair strategy for spinal cord injury.However,achieving good outcome remains difficult.Our previous study showed that porcine decellularized optic nerve better mimics the extracellular matrix of the embryonic porcine optic nerve and promotes the directional growth of dorsal root ganglion neurites.However,it has not been reported whether this material promotes axonal regeneration in vivo.In the present study,a porcine decellularized optic nerve was seeded with neurotrophin-3-overexpressing Schwann cells.This functional scaffold promoted the directional growth and remyelination of regenerating axons.In vitro,the porcine decellularized optic nerve contained many straight,longitudinal channels with a uniform distribution,and microscopic pores were present in the channel wall.The spatial micro topological structure and extracellular matrix were conducive to the adhesion,survival and migration of neural stem cells.The scaffold promoted the directional growth of dorsal root ganglion neurites,and showed strong potential for myelin regeneration.Furthermore,we transplanted the porcine decellularized optic nerve containing neurotrophin-3-overexpressing Schwann cells in a rat model of T10 spinal cord defect in vivo.Four weeks later,the regenerating axons grew straight,the myelin sheath in the injured/transplanted area recovered its structure,and simultaneously,the number of inflammatory cells and the expression of chondroitin sulfate proteoglycans were reduced.Together,these findings suggest that porcine decellularized optic nerve loaded with Schwann cells overexpressing neurotrophin-3 promotes the directional growth of regenerating spinal cord axons as well as myelin regeneration.All procedures involving animals were conducted in accordance with the ethical standards of the Institutional Animal Care and Use Committee of Sun Yat-sen University(approval No.SYSU-IACUC-2019-B034)on February 28,2019.展开更多
The lack of axonal regeneration is the major cause of vision loss after optic nerve injury in adult mammals. Activating the PI3K/AKT/mTOR signaling pathway has been shown to enhance the intrinsic growth capacity of ne...The lack of axonal regeneration is the major cause of vision loss after optic nerve injury in adult mammals. Activating the PI3K/AKT/mTOR signaling pathway has been shown to enhance the intrinsic growth capacity of neurons and to facilitate axonal regeneration in the central nervous system after injury. The deletion of the mTOR negative regulator phosphatase and tensin homolog (PTEN) enhances regeneration of adult corticospinal neurons and ganglion cells. In the present study, we used a tyrosine-mutated (Y444F) AAV2 vector to efficiently express a short hairpin RNA (shRNA) for silencing PTEN expression in retinal ganglion cells. We evaluated cell survival and axonal regeneration in a rat model of optic nerve axotomy. The rats received an intravitreal injection of wildtype AAV2 or Y444F mutant AAV2 (both carrying shRNA to PTEN) 4 weeks before optic nerve axotomy. Compared with the wildtype AAV2 vector, the Y444F mutant AAV2 vector enhanced retinal ganglia cell survival and stimulated axonal regeneration to a greater extent 6 weeks after axotomy. Moreover,post-axotomy injection of the Y444F AAV2 vector expressing the shRNA to PTEN rescued ~19% of retinal ganglion cells and induced axons to regenerate near to the optic chiasm. Taken together, our results demonstrate that PTEN knockdown with the Y444F AAV2 vector promotes retinal ganglion cell survival and stimulates long-distance axonal regeneration after optic nerve axotomy. Therefore, the Y444F AAV2 vector might be a promising gene therapy tool for treating optic nerve injury.展开更多
Objective Combine olfactory ensheathing glia (OEG) implantation with ex vivo non-viral vector-based neurotrophin- 3 (NT-3) gene therapy in attempting to enhance regeneration after thoracic spinal cord injury (SCI...Objective Combine olfactory ensheathing glia (OEG) implantation with ex vivo non-viral vector-based neurotrophin- 3 (NT-3) gene therapy in attempting to enhance regeneration after thoracic spinal cord injury (SCI). Methods Primary OEG were transfected with cationic liposome-mediated recombinant plasmid pcDNA3.1 (+)-NT3 and subsequently implanted into adult Wistar rats directly after the thoracic spinal cord (T9) contusion by the New York University impactor. The animals in 3 different groups received 4x 1050EG transfected with pcDNA3.1 (+)-NT3 or pcDNA3.1 (+) plasmids, or the OEGs without any plasmid transfection, respectively; the fourth group was untreated group, in which no OEG was implanted. Results NT-3 production was seen increased both ex vivo and in vivo in pcDNA3.1 (+)-NT3 transfected OEGs. Three months after implantation of NT-3-transfected OEGs, behavioral analysis revealed that the hindlimb function of SCI rats was improved. All spinal cords were filled with regenerated neurofilament-positive axons. Retrograde tracing revealed enhanced regenerative axonal sprouting. Conclusion Non-viral vector-mediated genetic engineering of OEG was safe and more effective in producing NT- 3 and promoting axonal outgrowth followed by enhancing SCI recovery in rats.展开更多
Spinal cord injury(SCI)causes disturbances in motor and sensory functions leading to paralysis,the severity of which depends on the spinal level of the injury.Traumatic lesions of spinal cord axon projection tracts ...Spinal cord injury(SCI)causes disturbances in motor and sensory functions leading to paralysis,the severity of which depends on the spinal level of the injury.Traumatic lesions of spinal cord axon projection tracts are untreatable in human patients,although numerous research groupsworldwide are studying putative treatment strategies.展开更多
Axons in central nervous system (CNS) do not regenerate spontaneously after injuries such as stroke and traumatic spinal cord iniury. Both intrinsic and extrinsic factors are responsible for the regeneration fail- u...Axons in central nervous system (CNS) do not regenerate spontaneously after injuries such as stroke and traumatic spinal cord iniury. Both intrinsic and extrinsic factors are responsible for the regeneration fail- ure, Although intensive research efforts have been invested on extrinsic regeneration inhibitors, the extent to which glial inhibitors contribute to the regeneration failure in viva still remains elusive. Recent exper- imental evidence has rekindled interests in intrinsic factors for the regulation of regeneration capacity in adult mammals. In this review, we propose that activating macrophages with pro-regenerative molecular signatures could be a novel approach for boosting intrinsic regenerative capacity of CNS neurons. Using a conditioning injury model in which regeneration of central branches of dorsal root ganglia sensory neu- rons is enhanced by a preceding injury to the peripheral branches, we have demonstrated that perineuronal macrophages surrounding dorsal root ganglia neurons are critically involved in the maintenance of en- hanced regeneration capacity. Neuron-derived chemokine (C-C motif) ligand 2 (CCL2) seems to mediate neuron-macrophage interactions conveying injury signals to perineuronal macrophages taking on a soley pro-regenerative phenotype, which we designate as regeneration-associated macrophages (RAMs). Ma- nipulation of the CCL2 signaling could boost regeneration potential mimicking the conditioning injury, suggesting that the chemokine-mediated RAM activation could be utilized as a regenerative therapeutic strategy for CNS injuries.展开更多
This study sought to assess the potential of brain-derived neurotrophic factor (BDNF) to promote neuronal repair and regeneration in rats with diffuse axonal injury, and to examine the accompanying neurobiological c...This study sought to assess the potential of brain-derived neurotrophic factor (BDNF) to promote neuronal repair and regeneration in rats with diffuse axonal injury, and to examine the accompanying neurobiological changes. BDNF gene transfection reduced the severity of the pathological changes associated with diffuse axonal injury in cortical neurons of the frontal lobe and increased neurofilament protein expression. These findings demonstrate that BDNF can effectively promote neuronal repair and neurite regeneration after diffuse axonal injury.展开更多
基金supported by the Research Funds of the Center for Advanced Interdisciplinary Science and Biomedicine of IHM,No.QYZD20220002the National Natural Science Foundation of China,No.82071357a grant from the Ministry of Science and Technology of China,No.2019YFA0405600 (all to BH)。
文摘Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane. Rab5 has been reported to play an important role in the development of the zebrafish embryo;however, its role in axonal regeneration in the central nervous system remains unclear. In this study, we established a zebrafish Mauthner cell model of axonal injury using single-cell electroporation and two-photon axotomy techniques. We found that overexpression of Rab5 in single Mauthner cells promoted marked axonal regeneration and increased the number of intra-axonal transport vesicles. In contrast, treatment of zebrafish larvae with the Rab kinase inhibitor CID-1067700markedly inhibited axonal regeneration in Mauthner cells. We also found that Rab5 activated phosphatidylinositol 3-kinase(PI3K) during axonal repair of Mauthner cells and promoted the recovery of zebrafish locomotor function. Additionally, rapamycin, an inhibitor of the mechanistic target of rapamycin downstream of PI3K, markedly hindered axonal regeneration. These findings suggest that Rab5 promotes the axonal regeneration of injured zebrafish Mauthner cells by activating the PI3K signaling pathway.
基金supported by the National Natural Science Foundation of China,Nos.31730031,32130060the National Natural Science Foundation of China,No.31971276(to JH)+1 种基金the Natural Science Foundation of Jiangsu Province,No.BK20202013(to XG)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Major Program),No.19KJA320005(to JH)。
文摘Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury.
基金supported by Fondo para la Investigación Cientifica y Tecnológica(FONCy T),Argentina,grant#PICT 2015-2473(to PHHL)supported by grants from National Institute of Health/National Institute of Neurological Disorders and Stroke(NIH/NINDS,USA)(NS121621)+2 种基金Department of Defense,USA(Do D-CL1)(PR200530)partially financed with a fellowship for Research in Medicine from Fundación Florencio Fiorinisupported with a PhD fellowship from CONICET。
文摘Anti-ganglioside antibodies are associated with delayed/poor clinical recovery in Guillain-Barrèsyndrome,mostly related to halted axon regeneration.Cross-linking of cell surface gangliosides by anti-ganglioside antibodies triggers inhibition of nerve repair in in vitro and in vivo paradigms of axon regeneration.These effects involve the activation of the small GTPase Rho A/ROCK signaling pathways,which negatively modulate growth cone cytoskeleton,similarly to well stablished inhibitors of axon regeneration described so far.The aim of this work was to perform a proof of concept study to demonstrate the effectiveness of Y-27632,a selective pharmacological inhibitor of ROCK,in a mouse model of axon regeneration of peripheral nerves,where the passive immunization with a monoclonal antibody targeting gangliosides GD1a and GT1b was previously reported to exert a potent inhibitory effect on regeneration of both myelinated and unmyelinated fibers.Our results demonstrate a differential sensitivity of myelinated and unmyelinated axons to the pro-regenerative effect of Y-27632.Treatment with a total dosage of 9 mg/kg of Y-27632 resulted in a complete prevention of anti-GD1a/GT1b monoclonal antibody-mediated inhibition of axon regeneration of unmyelinated fibers to skin and the functional recovery of mechanical cutaneous sensitivity.In contrast,the same dose showed toxic effects on the regeneration of myelinated fibers.Interestingly,scale down of the dosage of Y-27632 to 5 mg/kg resulted in a significant although not complete recovery of regenerated myelinated axons exposed to anti-GD1a/GT1b monoclonal antibody in the absence of toxicity in animals exposed to only Y-27632.Overall,these findings confirm the in vivo participation of Rho A/ROCK signaling pathways in the molecular mechanisms associated with the inhibition of axon regeneration induced by anti-GD1a/GT1b monoclonal antibody.Our findings open the possibility of therapeutic pharmacological intervention targeting Rho A/Rock pathway in immune neuropathies associated with the presence of anti-ganglioside antibodies and delayed or incomplete clinical recovery after injury in the peripheral nervous system.
基金supported by the Natio`nal Natural Science Foundation of China,No. 81801241a grant from Sichuan Science and Technology Program,No. 2023NSFSC1578Scientific Research Projects of Southwest Medical University,No. 2022ZD002 (all to JX)。
文摘Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.
基金support from the University of Tehran and the Iran National Science Foundation(INSF No.97,012,418).
文摘Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries(PNIs).While most studies have focused only on the topographical features of the grafts,we have considered both the biophysical and biochemical manipulations in our applied nanoscaffold.To achieve this,we fabricated an electrospun nanofibrous scaffold(ENS)containing polylactide nanofibers loaded with lithium(Li)ions,a Wnt/β-catenin signaling activator.In addition,we seeded human adipose-derived mesenchymal stem cells(hADMSCs)onto this engineered scaffold to examine if their differentiation toward Schwann-like cells was induced.We further examined the efficacy of the scaffolds for nerve regeneration in vivo via grafting in a PNI rat model.Our results showed that Li-loaded ENSs gradually released Li within 11 d,at concentrations ranging from 0.02 to(3.64±0.10)mmol/L,and upregulated the expression of Wnt/β-catenin target genes(cyclinD1 and c-Myc)as well as those of Schwann cell markers(growth-associated protein 43(GAP43),S100 calcium binding protein B(S100B),glial fibrillary acidic protein(GFAP),and SRY-box transcription factor 10(SOX10))in differentiated hADMSCs.In the PNI rat model,implantation of Li-loaded ENSs with/without cells improved behavioral features such as sensory and motor functions as well as the electrophysiological characteristics of the injured nerve.This improved function was further validated by histological analysis of sciatic nerves grafted with Li-loaded ENSs,which showed no fibrous connective tissue but enhanced organized myelinated axons.The potential of Li-loaded ENSs in promoting Schwann cell differentiation of hADMSCs and axonal regeneration of injured sciatic nerves suggests their potential for application in peripheral nerve tissue engineering.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(92068112)the National Key Research and Development Program of China(2017YFA0104700)+1 种基金the National Natural Science Foundation of China(82201509)the National Major Project of Research and Development(2022YFA1105500).
文摘Extracellular vesicles from skin-derived precursor Schwann cells(SKP-SC-EVs)promote neurite outgrowth in culture and enhance peripheral nerve regeneration in rats.This study aimed at expanding the application of SKPSC-EVs in nerve grafting by creating a chitosan/PLGA-based,SKP-SC-EVs-containing tissue engineered nerve graft(TENG)to bridge a 40-mm long sciatic nerve defect in dogs.SKP-SC-EVs contained in TENGs significantly accelerated the recovery of hind limb motor and electrophysiological functions,supported the outgrowth and myelination of regenerated axons,and alleviated the denervation-induced atrophy of target muscles in dogs.To clarify the underlying molecular mechanism,we observed that SKP-SC-EVs were rich in a variety of miRNAs linked to the axon growth of neurons,and miR-30b-5p was the most important among others.We further noted that miR-30b-5p contained within SKP-SC-EVs exerted nerve regeneration-promoting effects by targeting the Sin3a/HDAC complex and activating the phosphorylation of ERK,STAT3 or CREB.Our findings suggested that SKP-SC-EVs-incorporating TENGs represent a novel type of bioactive material with potential application for peripheral nerve repair in the clinic.
基金supported by the National Natural Science Foundation of China,No.81 8 70985 (to FH)Project of Shandong Province Higher Education Science and Technology Program,No.J18KA258 (to NLZ)+1 种基金Xu Rongxiang Regenerative Medicine Science and Technology Program of Binzhou Medical University,No.BY2020XRX06 (to NLZ)the Natural Science Foundation of Shandong Province,No.BS2015SW021 (to NLZ)。
文摘Studies have snown that serum response factor is beneficaial for axonar regeneration of peripheral herves.However,Its role after central nervous system injury remains unclear. In this study,we established a rat model of T9-T10 spinal cord transection injury.We found that the expression of serum response factor in injured spinal cord gray matter neurons gradually increased with time,reached its peak on the 7^(th) day,and then gradually decreased.To investigate the role of serum response factor,we used lentivirus vecto rs to ove rexpress and silence serum response factor in spinal cord tissue.We found that overexpression of serum response factor promoted motor function recovery in rats with spinal cord injury.Qualitative observation of biotinylated dextran amine anterograde tra cing showed that ove rexpression of serum response factor increased nerve fibers in the injured spinal co rd.Additionally,transmission electron microscopy showed that axon and myelin sheath morphology was restored.Silencing serum response factor had the opposite effects of ove rexpression.These findings suggest that serum response factor plays a role in the recovery of motor function after spinal cord injury.The underlying mechanism may be related to the regulation of axonal regeneration.
基金granted by the National Natural Science Foundation of China,No.82071357Ministry of Science and Technology of China,No.2019YFA0405600(both to BH).
文摘Axon regeneration of central neurons is a complex process that is tightly regulated by multiple extrinsic and intrinsic factors.The expression levels of distinct genes are changed after central neural system(CNS)injury and affect axon regeneration.A previous study identified dusp2 as an upregulated gene in zebrafish with spinal cord injury.Here,we found that dual specificity phosphatase 2(DUSP2)is a negative regulator of axon regeneration of the Mauthner cell(M-cell).DUSP2 is a phosphatase that mediates the dephosphorylation of JNK.In this study,we knocked out dusp2 by CRISPR/Cas9 and found that M-cell axons of dusp2(-/-)zebrafish had a better regeneration at the early stage after birth(within 8 days after birth),while those of dusp2^(+/-)zebrafish did not.Overexpression of DUSP2 in Tg(Tol 056)zebrafish by single-cell electroporation retarded the regeneration of M-cell axons.Western blotting results showed that DUSP2 knockout slightly increased the levels of phosphorylated JNK.These findings suggest that knocking out DUSP2 promoted the regeneration of zebrafish M-cell axons,possibly through enhancing JNK phosphorylation.
基金National Natural Science Foundation of China,Nos.82070967,81770930the Natural Science Foundation of Hunan Province,No.2020jj4788 (all to BJ)。
文摘Ras homolog enriched in brain(Rheb) is a small GTPase that activates mammalian target of rapamycin complex 1(mTORC1).Previous studies have shown that constitutively active Rheb can enhance the regeneration of sensory axons after spinal cord injury by activating downstream effectors of mTOR.S6K1 and4E-BP1 are important downstream effectors of mTORC1.In this study,we investigated the role of Rheb/mTOR and its downstream effectors S6K1 and 4E-BP1in the protection of retinal ganglion cells.We transfected an optic nerve crush mouse model with adeno-associated viral 2-mediated constitutively active Rheb and observed the effects on retinal ganglion cell survival and axon regeneration.We found that overexpression of constitutively active Rheb promoted survival of retinal ganglion cells in the acute(14 days) and chronic(21 and 42 days) stages of injury.We also found that either co-expression of the dominant-negative S6K1mutant or the constitutively active 4E-BP1 mutant together with constitutively active Rheb markedly inhibited axon regeneration of retinal ganglion cells.This suggests that mTORC1-mediated S6K1 activation and 4E-BP1 inhibition were necessary components for constitutively active Rheb-induced axon regeneration.However,only S6K1 activation,but not 4E-BP1 knockdown,induced axon regeneration when applied alone.Furthermore,S6K1 activation promoted the survival of retinal ganglion cells at 14 days post-injury,whereas 4E-BP1 knockdown unexpectedly slightly decreased the survival of retinal ganglion cells at 14 days postinjury.Ove rexpression of constitutively active 4E-BP1 increased the survival of retinal ganglion cells at 14 days post-injury.Likewise,co-expressing constitutively active Rheb and constitutively active 4E-BP1 markedly increased the survival of retinal ganglion cells compared with overexpression of constitutively active Rheb alone at 14 days post-injury.These findings indicate that functional 4E-BP1 and S6K1 are neuroprotective and that 4E-BP1 may exert protective effects through a pathway at least partially independent of Rhe b/mTOR.Together,our results show that constitutively active Rheb promotes the survival of retinal ganglion cells and axon regeneration through modulating S6K1 and 4E-BP1 activity.Phosphorylated S6K1 and 4E-BP1 promote axon regeneration but play an antagonistic role in the survival of retinal ganglion cells.
基金supported by a grant from the National Natural Science Foundation of ChinaNo.8147108781170577
文摘The Rho/Rho-associated coiled-coil containing protein kinase(Rho/ROCK) pathway is a major signaling pathway in the central nervous system, transducing inhibitory signals to block regeneration. After central nervous system damage, the main cause of impaired regeneration is the presence of factors that strongly inhibit regeneration in the surrounding microenvironment. These factors signal through the Rho/ROCK signaling pathway to inhibit regeneration. Therefore, a thorough understanding of the Rho/ROCK signaling pathway is crucial for advancing studies on regeneration and repair of the injured central nervous system.
基金supported by the National Natural Science Foundation of China,No.81373526
文摘Houshiheisan,a classic prescription in traditional Chinese medicine,contains Flos Chrysanthemi,Radix Saposhnikoviae,Ramulus Cinnamomi,Rhizoma Chuanxiong,Radix et Rhizoma Asari,Radix Platycodonis,Rhizoma Atractylodis macrocephalae,Poria,Rhizoma Zingiberis,Radix Angelicae sinensis,Radix et Rhizoma Ginseng,Radix Scutellariae and Concha Ostreae.According to traditional Chinese medicine theory,Flos Chrysanthemi,Radix Saposhnikoviae,Ramulus Cinnamomi,Rhizoma Chuanxiong,Radix et Rhizoma Asari and Radix Platycodonis are wind-dispelling drugs;Rhizoma Atractylodis macrocephalae,Poria,Rhizoma Zingiberis,Radix Angelicae sinensis and Radix et Rhizoma Ginseng are deficiency-nourishing drugs.A large number of randomized controlled trials have shown that Houshiheisan is effective in treating stroke,but its mechanism of action is unknown.Axonal remodeling is an important mechanism in neural protection and regeneration.Therefore,this study explored the effect and mechanism of action of Houshiheisan on the repair of axons after cerebral ischemia.Rat models of focal cerebral ischemia were established by ligating the right middle cerebral artery.At 6 hours after model establishment,rats were intragastrically administered 10.5 g/kg Houshiheisan or 7.7 g/kg wind-dispelling drug or 2.59 g/kg deficiency-nourishing drug.These medicines were intragastrically administered as above every 24 hours for 7 consecutive days.Houshiheisan,and its wind-dispelling and deficiency-nourishing components reduced the neurological deficit score and ameliorated axon and neuron lesions after cerebral ischemia.Furthermore,Houshiheisan,and its wind-dispelling and deficiency-nourishing components decreased the expression of proteins that inhibit axonal remodeling:amyloid precursor protein,neurite outgrowth inhibitor protein A(Nogo-A),Rho family small GTPase A(Rho A) and Rho-associated kinase 2(Rock2),and increased the expression of growth associated protein-43,microtubule-associated protein-2,netrin-1,Ras-related C3 botulinum toxin substrate 1(Rac1) and cell division cycle 42(Cdc42).The effect of Houshiheisan was stronger than wind-dispelling drugs or deficiency-nourishing drugs alone.In conclusion,Houshiheisan,and wind-dispelling and deficiency-nourishing drugs promote the repair of axons and nerve regeneration after cerebral ischemia through Nogo-A/Rho A/Rock2 and Netrin-1/Rac1/Cdc42 signaling pathways.These effects are strongest with Houshiheisan.
基金supported by the National Institute of Neurological Disorders (R01NS110681 and R21NS109787 (to AT))the Chronic Brain Injury Program (to AT)The Ohio State University/ Wexner Medical Center。
文摘Spinal cord injury (SCI) at the cervical level compromises the function of both upper and lower extremities, thereby impeding an individual’s ability to complete daily tasks required for independent living and profoundly affecting the overall quality of life among individuals afflicted by SCI and their families. Recovery of spinal cord functions may be attained by promoting the sprouting of non-injured axons and/or the regeneration of damaged axons.
基金supported by the National Natural Science Foundation of China, No. 81100916, 30400464,81271316the Postdoctoral Science Foundation of China,No. 201104901907
文摘Human umbilical mesenchymal stem cells from Wharton's jelly of the umbilical cord were induced to differentiate into oligodendrocyte precursor-like cells in vitro. Oligodendrocyte precursor cells were transplanted into contused rat spinal cords. Immunofluorescence double staining indicated that transplanted cells survived in injured spinal cord, and differentiated into mature and immature oligodendrocyte precursor cells. Biotinylated dextran amine tracing results showed that cell transplantation promoted a higher density of the corticospinal tract in the central and caudal parts of the injured spinal cord. Luxol fast blue and toluidine blue staining showed that the volume of residual myelin was significantly increased at 1 and 2 mm rostral and caudal to the lesion epicenter after cell transplantation. Furthermore, immunofluorescence staining verified that the newly regenerated myelin sheath was derived from the central nervous system. Basso, Beattie and Bresnahan testing showed an evident behavioral recovery. These results suggest that human umbilical mesenchymal stem cell-derived oligodendrocyte precursor cells promote the regeneration of spinal axons and myelin sheaths.
基金supported by the National Natural Science Foundation of China(No.30571909,No.30872666)the Youth Teacher Foundation of Jiangsu Pro-vince(No.BU134701)China,and the Medical Development Foundation of Soochow University(No.EE134615)
文摘It has been well established that the recovery ability of central nervous system (CNS) is very poor in adult mammals. As a result, CNS trauma generally leads to severe and persistent functional deficits. Thus, the investigation in this field becomes a "hot spot". Up to date, accumulating evidence supports the hypothesis that the failure of CNS neurons to regenerate is not due to their intrinsic inability to grow new axons, but due to their growth state and due to lack of a permissive growth environment. Therefore, any successful approaches to facilitate the regeneration of injured CNS axons will likely include multiple steps: keeping neurons alive in a certain growth-state, preventing the formation of a glial scar, overcoming inhibitory molecules present in the myelin debris, and giving direction to the growing axons. This brief review focused on the recent progress in the neuron regeneration of CNS in adult mammals.
基金supported by grants from the National Key R&D Program of China,No.2017YFA0104704(to BQL)the Young Elite Scientist Sponsorship Program(YESS)by China Association for Science and Technology(CAST),No.2018QNRC001(to BQL)+1 种基金the Fundamental Research Funds for the Central Universities,China,No.18ykpy38(to BQL)the National Natural Science Foundation of China,Nos.81971157(to BQL),81891003(to YSZ).
文摘Axon regeneration and remyelination of the damaged region is the most common repair strategy for spinal cord injury.However,achieving good outcome remains difficult.Our previous study showed that porcine decellularized optic nerve better mimics the extracellular matrix of the embryonic porcine optic nerve and promotes the directional growth of dorsal root ganglion neurites.However,it has not been reported whether this material promotes axonal regeneration in vivo.In the present study,a porcine decellularized optic nerve was seeded with neurotrophin-3-overexpressing Schwann cells.This functional scaffold promoted the directional growth and remyelination of regenerating axons.In vitro,the porcine decellularized optic nerve contained many straight,longitudinal channels with a uniform distribution,and microscopic pores were present in the channel wall.The spatial micro topological structure and extracellular matrix were conducive to the adhesion,survival and migration of neural stem cells.The scaffold promoted the directional growth of dorsal root ganglion neurites,and showed strong potential for myelin regeneration.Furthermore,we transplanted the porcine decellularized optic nerve containing neurotrophin-3-overexpressing Schwann cells in a rat model of T10 spinal cord defect in vivo.Four weeks later,the regenerating axons grew straight,the myelin sheath in the injured/transplanted area recovered its structure,and simultaneously,the number of inflammatory cells and the expression of chondroitin sulfate proteoglycans were reduced.Together,these findings suggest that porcine decellularized optic nerve loaded with Schwann cells overexpressing neurotrophin-3 promotes the directional growth of regenerating spinal cord axons as well as myelin regeneration.All procedures involving animals were conducted in accordance with the ethical standards of the Institutional Animal Care and Use Committee of Sun Yat-sen University(approval No.SYSU-IACUC-2019-B034)on February 28,2019.
基金supported by the Research Foundation of Jiangsu Provincial Commission of Health and Family Planning of China,No.H201653the Research Foundation of Changshu Science and Technology Bureau of China,No.CS201616
文摘The lack of axonal regeneration is the major cause of vision loss after optic nerve injury in adult mammals. Activating the PI3K/AKT/mTOR signaling pathway has been shown to enhance the intrinsic growth capacity of neurons and to facilitate axonal regeneration in the central nervous system after injury. The deletion of the mTOR negative regulator phosphatase and tensin homolog (PTEN) enhances regeneration of adult corticospinal neurons and ganglion cells. In the present study, we used a tyrosine-mutated (Y444F) AAV2 vector to efficiently express a short hairpin RNA (shRNA) for silencing PTEN expression in retinal ganglion cells. We evaluated cell survival and axonal regeneration in a rat model of optic nerve axotomy. The rats received an intravitreal injection of wildtype AAV2 or Y444F mutant AAV2 (both carrying shRNA to PTEN) 4 weeks before optic nerve axotomy. Compared with the wildtype AAV2 vector, the Y444F mutant AAV2 vector enhanced retinal ganglia cell survival and stimulated axonal regeneration to a greater extent 6 weeks after axotomy. Moreover,post-axotomy injection of the Y444F AAV2 vector expressing the shRNA to PTEN rescued ~19% of retinal ganglion cells and induced axons to regenerate near to the optic chiasm. Taken together, our results demonstrate that PTEN knockdown with the Y444F AAV2 vector promotes retinal ganglion cell survival and stimulates long-distance axonal regeneration after optic nerve axotomy. Therefore, the Y444F AAV2 vector might be a promising gene therapy tool for treating optic nerve injury.
文摘Objective Combine olfactory ensheathing glia (OEG) implantation with ex vivo non-viral vector-based neurotrophin- 3 (NT-3) gene therapy in attempting to enhance regeneration after thoracic spinal cord injury (SCI). Methods Primary OEG were transfected with cationic liposome-mediated recombinant plasmid pcDNA3.1 (+)-NT3 and subsequently implanted into adult Wistar rats directly after the thoracic spinal cord (T9) contusion by the New York University impactor. The animals in 3 different groups received 4x 1050EG transfected with pcDNA3.1 (+)-NT3 or pcDNA3.1 (+) plasmids, or the OEGs without any plasmid transfection, respectively; the fourth group was untreated group, in which no OEG was implanted. Results NT-3 production was seen increased both ex vivo and in vivo in pcDNA3.1 (+)-NT3 transfected OEGs. Three months after implantation of NT-3-transfected OEGs, behavioral analysis revealed that the hindlimb function of SCI rats was improved. All spinal cords were filled with regenerated neurofilament-positive axons. Retrograde tracing revealed enhanced regenerative axonal sprouting. Conclusion Non-viral vector-mediated genetic engineering of OEG was safe and more effective in producing NT- 3 and promoting axonal outgrowth followed by enhancing SCI recovery in rats.
文摘Spinal cord injury(SCI)causes disturbances in motor and sensory functions leading to paralysis,the severity of which depends on the spinal level of the injury.Traumatic lesions of spinal cord axon projection tracts are untreatable in human patients,although numerous research groupsworldwide are studying putative treatment strategies.
文摘Axons in central nervous system (CNS) do not regenerate spontaneously after injuries such as stroke and traumatic spinal cord iniury. Both intrinsic and extrinsic factors are responsible for the regeneration fail- ure, Although intensive research efforts have been invested on extrinsic regeneration inhibitors, the extent to which glial inhibitors contribute to the regeneration failure in viva still remains elusive. Recent exper- imental evidence has rekindled interests in intrinsic factors for the regulation of regeneration capacity in adult mammals. In this review, we propose that activating macrophages with pro-regenerative molecular signatures could be a novel approach for boosting intrinsic regenerative capacity of CNS neurons. Using a conditioning injury model in which regeneration of central branches of dorsal root ganglia sensory neu- rons is enhanced by a preceding injury to the peripheral branches, we have demonstrated that perineuronal macrophages surrounding dorsal root ganglia neurons are critically involved in the maintenance of en- hanced regeneration capacity. Neuron-derived chemokine (C-C motif) ligand 2 (CCL2) seems to mediate neuron-macrophage interactions conveying injury signals to perineuronal macrophages taking on a soley pro-regenerative phenotype, which we designate as regeneration-associated macrophages (RAMs). Ma- nipulation of the CCL2 signaling could boost regeneration potential mimicking the conditioning injury, suggesting that the chemokine-mediated RAM activation could be utilized as a regenerative therapeutic strategy for CNS injuries.
基金the National Natural Science Foundation of China (Key Program and General Program), No. 10832012 10872078
文摘This study sought to assess the potential of brain-derived neurotrophic factor (BDNF) to promote neuronal repair and regeneration in rats with diffuse axonal injury, and to examine the accompanying neurobiological changes. BDNF gene transfection reduced the severity of the pathological changes associated with diffuse axonal injury in cortical neurons of the frontal lobe and increased neurofilament protein expression. These findings demonstrate that BDNF can effectively promote neuronal repair and neurite regeneration after diffuse axonal injury.