期刊文献+
共找到758篇文章
< 1 2 38 >
每页显示 20 50 100
High-throughput screening system of citrus bacterial cankerassociated transcription factors and its application to the regulation of citrus canker resistance
1
作者 Jia Fu Jie Fan +8 位作者 Chenxi Zhang Yongyao Fu Baohang Xian Qiyuan Yu Xin Huang Wen Yang Shanchun Chen Yongrui He Qiang Li 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期155-165,共11页
One of the main diseases that adversely impacts the global citrus industry is citrus bacterial canker(CBC),caused by the bacteria Xanthomonas citri subsp.citri(Xcc).Response to CBC is a complex process,with both prote... One of the main diseases that adversely impacts the global citrus industry is citrus bacterial canker(CBC),caused by the bacteria Xanthomonas citri subsp.citri(Xcc).Response to CBC is a complex process,with both proteinDNA as well as protein–protein interactions for the regulatory network.To detect such interactions in CBC resistant regulation,a citrus high-throughput screening system with 203 CBC-inducible transcription factors(TFs),were developed.Screening the upstream regulators of target by yeast-one hybrid(Y1H)methods was also performed.A regulatory module of CBC resistance was identified based on this system.One TF(CsDOF5.8)was explored due to its interactions with the 1-kb promoter fragment of CsPrx25,a resistant gene of CBC involved in reactive oxygen species(ROS)homeostasis regulation.Electrophoretic mobility shift assay(EMSA),dual-LUC assays,as well as transient overexpression of CsDOF5.8,further validated the interactions and transcriptional regulation.The CsDOF5.8–CsPrx25 promoter interaction revealed a complex pathway that governs the regulation of CBC resistance via H2O2homeostasis.The high-throughput Y1H/Y2H screening system could be an efficient tool for studying regulatory pathways or network of CBC resistance regulation.In addition,it could highlight the potential of these candidate genes as targets for efforts to breed CBC-resistant citrus varieties. 展开更多
关键词 citrus bacterial canker(CBC) high-throughput screening system transcription factor(TF) yeast-one hybrid(Y1H) CsPrx25
下载PDF
Roles of NAC transcription factors in cotton
2
作者 XU Yuewei ZHAO Yunlei +3 位作者 CHEN Wei SANG Xiaohui ZHAO Pei WANG Hongmei 《Journal of Cotton Research》 CAS 2024年第3期289-301,共13页
Climate deterioration,water shortages,and abiotic stress are the main threats worldwide that seriously affect cotton growth,yield,and fiber quality.Therefore,research on improving cotton yield and tolerance to biotic ... Climate deterioration,water shortages,and abiotic stress are the main threats worldwide that seriously affect cotton growth,yield,and fiber quality.Therefore,research on improving cotton yield and tolerance to biotic and abiotic stresses is of great importance.The NAC proteins are crucial and plant-specific transcription factors(TFs)that are involved in cotton growth,development,and stress responses.The comprehensive utilization of cotton NAC TFs in the improvement of cotton varieties through novel biotechnological methods is feasible.Based on cotton genomic data,genome-wide identification and analyses have revealed potential functions of cotton NAC genes.Here,we comprehensively summarize the recent progress in understanding cotton NAC TFs roles in regulating responses to drought,salt,and Verticillium wilt-related stresses,as well as leaf senescence and the development of fibers,xylem,and glands.The detailed regulatory network of NAC proteins in cotton is also elucidated.Cotton NAC TFs directly bind to the promoters of genes associated with ABA biosynthesis and secondary cell-wall formation,participate in several biological processes by interacting with related proteins,and regulate the expression of downstream genes.Studies have shown that the overexpression of NAC TF genes in cotton and other model plants improve their drought or salt tolerance.This review elucidates the latest findings on the functions and regulation of cotton NAC proteins,broadens our understanding of cotton NAC TFs,and lays a fundamental foundation for further molecular breeding research in cotton. 展开更多
关键词 COTTON NAC transcription factor STRESS Regulatory network
下载PDF
Characteristics and expression of the TCP transcription factors family in Allium senescens reveal its potential roles in drought stress responses 被引量:2
3
作者 XIAOHONG FU JIE ZHAO +5 位作者 DANDAN CAO CHENGXING HE ZIYI WANG YIBEI JIANG JIANFENG LIU GUIXIA LIU 《BIOCELL》 SCIE 2023年第4期905-917,共13页
Allium senescens,is an important economic and ecological grassland plant with drought-resistant characteristics.A TCP protein transcription factor is important in the regulation of plant development and adverse respon... Allium senescens,is an important economic and ecological grassland plant with drought-resistant characteristics.A TCP protein transcription factor is important in the regulation of plant development and adverse responses.However,the mechanism by which TCP transcription functions in drought resistance in Allium senescens is still not clear.Here,we obtained a total of 190,305 transcripts with 115,562 single gene clusters based on RNA-Seq sequencing of Allium senescens under drought stress.The total number of bases was 97,195,096 bp,and the average length was 841.06 bp.Furthermore,we found that there were eight genes of the TCP family that showed an upregulated expression trend under drought stress in Allium senescens.We carried out an investigation to determine the evolution and function of the AsTCP family and how they produce an effect in drought resistance.The 14 AsTCP genes were confirmed and divided into class I and class II containing CIN and CYC/TBI subfamilies,respectively.We also found that the expression of AsTCP17 was remarkably upregulated with drought treatment.Besides,the transformation of AsTCP17 in Arabidopsis revealed that the protective enzymes,namely polyphenol oxidase(POD)and superoxide dismutase(SOD),were increased by 0.4 and 0.8 times,respectively.Chlorophyll content was also increased,while the H2O2 and malondialdehyde(MDA)contents were decreased.Staining assays with 3,3′-diaminobenzidine(DAB)also suggested that the AsTCP17 downregulates reactive oxygen species(ROS)accumulation.In addition,overexpression of the AsTCP17 affected the accumulation of drought-related hormones in plants,and the synthesis of ABA.The expression of AtSVP and AtNCED3,related ABA synthesis pathway genes,indicated that the level of expression of AtSVP and AtNCED3 was obviously enhanced,with the overexpression of line 6 showing a 20.6-fold and 7.0-fold increase,respectively.Taken together,our findings systematically analyze the AsTCPs family at the transcriptome expression level in Allium senescens,and we also demonstrated that AsTCP17 protein,as a positive regulator,was involved in drought resistance of Allium senescens.In addition,our research contributes to the comprehensive understanding of the drought stress defense mechanism in herbaceous plants. 展开更多
关键词 Allium senescens Drought stress TCP transcription factor ABA synthesis pathway
下载PDF
Comparative transcriptome analysis of the climacteric of apple fruit uncovers the involvement of transcription factors affecting ethylene biosynthesis
4
作者 Tong Li Xiao Zhang +6 位作者 Yun Wei Yaxiu Xu Weiting Liu Hongjian Li Guangxin Yang Aide Wang Xiaoxue Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第4期659-669,共11页
Apple(Malus domestica)fruit generally undergoes a climacteric.During its ripening process,there is a peak in ethylene release and its firmness simultaneously decreases.Although more in-depth research into the mechanis... Apple(Malus domestica)fruit generally undergoes a climacteric.During its ripening process,there is a peak in ethylene release and its firmness simultaneously decreases.Although more in-depth research into the mechanism of climacteric-type fruit ripening is being carried out,some aspects remain unclear.In this study,we compared the transcriptomes of 0-Pre and 15-Post(pre-and post-climacteric fruit),and 15-Post and 15-MCP[fruit treated with 1-MCP(1-methylcyclopropene)].Various transcription factors,such as MADS-box,ERF,NAC,Dof and SHF were identified among the DEGs(differential gene expressions).Furthermore,these transcription factors were selected for further validation analysis by qRT-PCR.Moreover,yeast one hybrid(Y1H),β-glucuronidase(GUS)transactivation assay and dual-luciferase reporter assay showed that MdAGL30,MdAGL104,MdERF008,MdNAC71,MdDof1.2,MdHSFB2a and MdHSFB3 bound to MdACS1 promoter and directly regulated its transcription,thereby regulating ethylene biosynthesis in apple fruit.Our results provide useful information and new insights for research on apple fruit ripening. 展开更多
关键词 Apple RNA-SEQ Fruit ripening ETHYLENE transcription factor
下载PDF
Identification of the target genes of AhTWRKY24 and AhTWRKY106 transcription factors reveals their regulatory network in Arachis hypogaea cv.Tifrunner using DAP-seq
5
作者 Meiran Li Mingwei Chen +3 位作者 Yongli Zhang Longgang Zhao Jiancheng Zhang Hui Song 《Oil Crop Science》 CSCD 2023年第2期89-96,共8页
WRKY transcription factors(TFs)have been identified as important core regulators in the responses of plants to biotic and abiotic stresses.Cultivated peanut(Arachis hypogaea)is an important oil and protein crop.Previo... WRKY transcription factors(TFs)have been identified as important core regulators in the responses of plants to biotic and abiotic stresses.Cultivated peanut(Arachis hypogaea)is an important oil and protein crop.Previous studies have identified hundreds of WRKY TFs in peanut.However,their functions and regulatory networks remain unclear.Simultaneously,the AdWRKY40 TF is involved in drought tolerance in Arachis duranensis and has an orthologous relationship with the AhTWRKY24 TF,which has a homoeologous relationship with AhTWRKY106 TF in A.hypogaea cv.Tifrunner.To reveal how the homoeologous AhTWRKY24 and AhTWRKY106 TFs regulate the downstream genes,DNA affinity purification sequencing(DAP-seq)was performed to detect the binding sites of TFs at the genome-wide level.A total of 3486 downstream genes were identified that were collectively regulated by the AhTWRKY24 and AhTWRKY106 TFs.The results revealed that W-box elements were the binding sites for regulation of the downstream genes by AhTWRKY24 and AhTWRKY106 TFs.A gene ontology enrichment analysis indicated that these downstream genes were enriched in protein modification and reproduction in the biological process.In addition,RNA-seq data showed that the AhTWRKY24 and AhTWRKY106 TFs regulate differentially expressed genes involved in the response to drought stress.The AhTWRKY24 and AhTWRKY106 TFs can specifically regulate downstream genes,and they nearly equal the numbers of downstream genes from the two A.hypogaea cv.Tifrunner subgenomes.These results provide a theoretical basis to study the functions and regulatory networks of AhTWRKY24 and AhTWRKY106 TFs. 展开更多
关键词 DAP-Seq Homoeolog PEANUT Regulatory network WRKY transcription Factor
下载PDF
Important Roles of Transcription Factors in Regulating Seed Oil Biosynthesis to Increase Plant Storage Lipid Content 被引量:1
6
作者 沈奇 韩宏仕 +6 位作者 秦信蓉 向阳 王仙萍 赵跃 赵云 喻时周 杜才富 《Agricultural Science & Technology》 CAS 2013年第1期30-34,共5页
In this article, the biosynthetic pathways of storage oil accumulation in oilseed plants were briefly introduced, and the transcription factors, such as B3 do- main supeffamily genes, lecl gene, wril gene etc., and th... In this article, the biosynthetic pathways of storage oil accumulation in oilseed plants were briefly introduced, and the transcription factors, such as B3 do- main supeffamily genes, lecl gene, wril gene etc., and their important role in oil accumulation regulation was mainly elucidated. Overexpession of transcription factors as feasible ways of genetic manipulation to increase oJl content in oilseed crops are promising in a long-term perspective. 展开更多
关键词 Oil accumulation transcription factors B3 domain superfamily Leafy cotyledon 1 (LEC1) Wrinkled1 (ERI1)
下载PDF
Molecular mechanisms of the suppression of axon regeneration by KLF transcription factors 被引量:9
7
作者 Akintomide Apara Jeffrey L.Goldberg 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第15期1418-1421,共4页
Molecular mechanisms of the Kruppel-like family of transcription factors (KLFs) have been studied more in proliferating cells than in post-mitotic cells such as neurons. We recently found that KLFs regulate intrinsi... Molecular mechanisms of the Kruppel-like family of transcription factors (KLFs) have been studied more in proliferating cells than in post-mitotic cells such as neurons. We recently found that KLFs regulate intrinsic axon growth ability in central nervous system (CNS) neurons in- cluding retinal ganglion cells, and hippocampal and cortical neurons. With at least 15 of 17 KLF family members expressed in neurons and at least 5 structurally unique subfamilies, it is import- ant to determine how this complex family functions in neurons to regulate the intricate genetic programs of axon growth and regeneration. By characterizing the molecular mechanisms of the KLF family in the nervous system, including binding partners and gene targets, and comparing them to defined mechanisms defined outside the nervous system, we may better understand how KLFs regulate neurite growth and axon regeneration. 展开更多
关键词 optic nerve REGENERATION axon growth RETINA retinal ganglion cells spinal cord transcription factors
下载PDF
Polyploidy events shaped the expansion of transcription factors in Cucurbitaceae and exploitation of genes for tendril development 被引量:5
8
作者 Yu Zhang Yingchao Zhang +9 位作者 Bing Li Xiao Tan Changping Zhu Tong Wu Shuyan Feng Qihang Yang Shaoqin Shen Tong Yu Zhuo Liu Xiaoming Song 《Horticultural Plant Journal》 SCIE CAS CSCD 2022年第5期562-574,共13页
Cucurbitaceae is one of the most important plant families distributed worldwide.Transcription factors(TFs)regulate plant growth at the transcription level.Here,we performed a systematic analysis of 42641 TFs from 63 f... Cucurbitaceae is one of the most important plant families distributed worldwide.Transcription factors(TFs)regulate plant growth at the transcription level.Here,we performed a systematic analysis of 42641 TFs from 63 families in 14 Cucurbitaceae and 10 non-cucurbit species.Whole-genome duplication(WGD)was the dominant event type in almost all Cucurbitaceae plants.The TF families were divided into 1210 orthogroups(OGs),of which,112 were unique to Cucurbitaceae.Although the loss of several gene families was detected in Cucurbitaceae,the gene families expanded in five species that experienced a WGD event comparing with grape.Our findings revealed that the recent WGD events that had occurred in Cucurbitaceae played important roles in the expansion of most TF families.The functional enrichment analysis of the genes that significantly expanded or contracted uncovered five gene families,AUX/IAA,NAC,NBS,HB,and NF-YB.Finally,we conducted a comprehensive analysis of the TCP gene family and identified 16 tendril-related(TEN)genes in 11 Cucurbitaceae species.Interestingly,the characteristic sequence changed from CNNFYFP to CNNFYLP in the TEN gene(Bhi06M000087)of Benincasa hispida.Furthermore,we identified a new characteristic sequence,YNN,which could be used for TEN gene exploitation in Cucurbitaceae.In conclusion,this study will serve as a reference for studying the relationship between gene family evolution and genome duplication.Moreover,it will provide rich genetic resources for functional Cucurbitaceae studies in the future. 展开更多
关键词 CUCURBITACEAE transcription factors(TFs) Whole-genome duplication(WGD) Expansion and contraction TCP gene family Tendrilrelated genes(TEN)
下载PDF
Activation of transcription factors NF-kappaB and AP-1 and their relations with apoptosis-associated proteins in hepatocellular carcinoma 被引量:4
9
作者 Lin-LangGuo ShaXiao YingGuo 《World Journal of Gastroenterology》 SCIE CAS CSCD 2005年第25期3860-3865,共6页
AIM: To study the distribution pattern of transcription factors NF-kB and AP-1 and their relations with the expression of apoptosis associated-proteins Fas/FasL and ICH-1L/S in human hepatocellular carcinoma (HCC). ME... AIM: To study the distribution pattern of transcription factors NF-kB and AP-1 and their relations with the expression of apoptosis associated-proteins Fas/FasL and ICH-1L/S in human hepatocellular carcinoma (HCC). METHODS: We performed in situ hybridization and immunohistochemical techniques for NF-kB, AP-1, Fas/FasL and ICH-1 in 40 cases of human HCC along with corresponding nontumoral tissues and 7 cases of normal liver tissues. RESULTS: Twenty-two (55%) and 25 (62.5%) of 40 cases for NF-κB and AP-1 were presented for nuclear or both nuclear and cytoplastic staining respectively, while less cases were presented for only cytoplastic staining for NF-κB (18%) and AP-1 (10%) in adjacent nontumoral tissues and negative staining in normal liver tissues. There was no statistically significant difference of NF-κB or AP-1 activation between well differentiated tumors and poorly differentiated tumors (P>0.05). NF-κkB activity is positively corresponded to AP-1 activation. The expression of ICH-1L/S was associated with the activation of NF-κB and AP-1 (P<0.05), but no significant relationship was found between Fas/FasL and NF-κB or AP-l(P>0.05). CONCLUSION: Activation of both NF-κB and AP-1 may be required for ICH-1L/S-induced apoptosis in HCC, but not for Fas/FasL-mediated apoptosis. NF-κB and AP-1 may play important roles in the pathogenesis of human HCC. 展开更多
关键词 Hepatocellular carcinoma (HCC) transcription factors APOPTOSIS Protein
下载PDF
Mapping of liver-enriched transcription factors in the human intestine 被引量:2
10
作者 Frank Lehner Ulf Kulik +1 位作者 Juergen Klempnauer Juergen Borlak 《World Journal of Gastroenterology》 SCIE CAS CSCD 2010年第31期3919-3927,共9页
AIM: To investigate the gene expression pattern of hepatocyte nuclear factor 6 (HNF6) and other liverenriched transcription factors in various segments of the human intestine to better understand the differentiation o... AIM: To investigate the gene expression pattern of hepatocyte nuclear factor 6 (HNF6) and other liverenriched transcription factors in various segments of the human intestine to better understand the differentiation of the gut epithelium. METHODS: Samples of healthy duodenum and jejunum were obtained from patients with pancreatic cancer whereas ileum and colon was obtained from patients undergoing right or left hemicolectomy or (recto)sigmoid or rectal resection. All surgical specimens were subjected to histopathology. Excised tissue was shock-frozen and analyzed for gene expression of liver-enriched transcription factors by semiquantitative reverse transcription polymerase chain and compared to the human colon carcinoma cell line Caco-2. Protein expression of major liver-enriched transcription factors was determined by Western blotting while the DNA binding of HNF6 was investigated by electromobility shift assays. RESULTS: The gene expression patterning of liverenriched transcription factors differed in the various segments of the human intestine with HNF6 gene expression being most abundant in the duodenum (P < 0.05) whereas expression of the zinc finger protein GATA4 and of the HNF6 target gene ALDH3A1 was most abundant in the jejunum (P < 0.05). Likewise, expression of FOXA2 and the splice variants 2 and 4 of HNF4α were most abundantly expressed in the jejunum (P < 0.05). Essentially, expression of transcription factors declined from the duodenum towards the colon with the most abundant expression in the jejunum and less in the ileum. The expression of HNF6 and of genes targeted by this factor, i.e. neurogenin 3 (NGN3) was most abundant in the jejunum followed by the ileum and the colon while DNA binding activity of HNF4α and of NGN3 was conf irmed by electromobility shift assays to an optimized probe. Furthermore, Western blotting provided evidence of the expression of several liver-enriched transcription factors in cultures of colon epithelial cells, albeit at different levels. CONCLUSION: We describe significant local and segmental differences in the expression of liver-enriched transcription factors in the human intestine which impact epithelial cell biology of the gut. 展开更多
关键词 Liver-enriched transcription factors Human intestine CACO-2 Gene expression
下载PDF
Function of GATA transcription factors in hydroxyurea-induced HEL cells 被引量:2
11
作者 ZhanSB HeQY 《Cell Research》 SCIE CAS CSCD 2001年第4期301-310,共10页
HEL cells, a human erythroleukemia cell line, mainly express the fetal (r)globin gene and trace amount of the embryonic (E)globin gene, but not adult (B) globin gene. Here we show that hydroxyurea (HU) can induce HEL ... HEL cells, a human erythroleukemia cell line, mainly express the fetal (r)globin gene and trace amount of the embryonic (E)globin gene, but not adult (B) globin gene. Here we show that hydroxyurea (HU) can induce HEL cells to express adult (B) globin gene and lead these cells to terminal differentiation. Results showed in Gel mobility shift assays that GATA factors could specifically bind to the regulatory elements of human B- globin gene, including the proximal regulatory element (the B- promoter) and the distal regulatory elements (the DNase I hypersensitive sites in the LCR, HS2-HS4 core sequences). However, the DNA binding patterns of GATA factors were quite different between HU-induced and uninduced HEL cells. Western-blot analysis of nuclear extracts from both the uninduced and HU- induced HEL cells revealed that the level of GATA-2 transcription factor decreased, whereas the level of GATA-1 transcription factor increased following the time of hydroxyurea induction. Furthermore, using RT-PCR analysis the expression of human B-globin gene in HU-induced HEL cells could be blocked again when HEL cells were incubated in the presence of antisense oligonucleotides for hGATA-1, suggesting that the upregulation of hGATA-1 transcription factor might be critical for the expression of human β- globin gene in HU-induced HEL cells. 展开更多
关键词 GATA transcription factors human β-gobin gene HEL cells hydroxyurea.
下载PDF
SOX transcription factors and glioma stem cells:Choosing between stemness and differentiation 被引量:2
12
作者 Milena Stevanovic Natasa Kovacevic-Grujicic +2 位作者 Marija Mojsin Milena Milivojevic Danijela Drakulic 《World Journal of Stem Cells》 SCIE 2021年第10期1417-1445,共29页
Glioblastoma(GBM)is the most common,most aggressive and deadliest brain tumor.Recently,remarkable progress has been made towards understanding the cellular and molecular biology of gliomas.GBM tumor initiation,progres... Glioblastoma(GBM)is the most common,most aggressive and deadliest brain tumor.Recently,remarkable progress has been made towards understanding the cellular and molecular biology of gliomas.GBM tumor initiation,progression and relapse as well as resistance to treatments are associated with glioma stem cells(GSCs).GSCs exhibit a high proliferation rate and self-renewal capacity and the ability to differentiate into diverse cell types,generating a range of distinct cell types within the tumor,leading to cellular heterogeneity.GBM tumors may contain different subsets of GSCs,and some of them may adopt a quiescent state that protects them against chemotherapy and radiotherapy.GSCs enriched in recurrent gliomas acquire more aggressive and therapy-resistant properties,making them more malignant,able to rapidly spread.The impact of SOX transcription factors(TFs)on brain tumors has been extensively studied in the last decade.Almost all SOX genes are expressed in GBM,and their expression levels are associated with patient prognosis and survival.Numerous SOX TFs are involved in the maintenance of the stemness of GSCs or play a role in the initiation of GSC differentiation.The fine-tuning of SOX gene expression levels controls the balance between cell stemness and differentiation.Therefore,innovative therapies targeting SOX TFs are emerging as promising tools for combatting GBM.Combatting GBM has been a demanding and challenging goal for decades.The current therapeutic strategies have not yet provided a cure for GBM and have only resulted in a slight improvement in patient survival.Novel approaches will require the fine adjustment of multimodal therapeutic strategies that simultaneously target numerous hallmarks of cancer cells to win the battle against GBM. 展开更多
关键词 GLIOBLASTOMA SOX transcription factors Glioma stem cells STEMNESS DIFFERENTIATION
下载PDF
Effects of the Ratio of Lysine to Digestible Energy Level in the Diet on the Expression and Activity of Transcription Factors Involved in Lipogenesis in Rongchang Pigs 被引量:1
13
作者 Yuan Lu Xiaolei Yang +1 位作者 Defa Li Jingdong Yin 《Journal of Animal Science and Biotechnology》 SCIE CAS 2010年第3期165-174,共10页
This study was conducted to determine the effects of varying the ratio of lysine to digestible energy level On the activity and gene expression of the transcription factors peroxisome proliferator-activated receptor-... This study was conducted to determine the effects of varying the ratio of lysine to digestible energy level On the activity and gene expression of the transcription factors peroxisome proliferator-activated receptor-γ (PPAR-γ) and CCAAT/enhancer-binding protein-or and -β (C/EBP-α and C/EBP-β) to better understand the regulatory mechanisms controlling adipogenesis in fat and muscle tissue of the Rongchang pig. A total of 144 castrated Rongchang pigs weighing approximately 20 kg were used in a 2 ×2 factorial design experiment. Diets were formulated to contain a high (14.22 MJ/kg) or low (13.11 MJ/kg) digesti- ble energy (DE) level. Within each energy level, pigs were fed diets containing a high lysine: DE ratio (0.67,0. 53, or 0. 42) or a low lysine : DE ratio (0.49,0.38 ,or 0.30) during the periods from 20 to 50 kg, 50 to 80 kg, and 80 kg to slaughter, respectively. Each diet was fed to six replicate pens, each containing nine pigs. When the pigs reached average live weights of 20,35,60, and 90 kg ,one pig from each of the replicates was chosen at random and slaughtered.Samples of back fat and longissimus dorsi muscle were collected for the assessment of transcriptional factor. The results showed that feeding a high DE level significantly increased ( P 〈 0.05 ) the expression of PPAR-T at 60 and 90 kg in muscle and at 35,60, and 90 kg in back fat. Energy level also significantly increased the expression of C/EBP-fl at 35 and 60 kg in both muscle and back fat ( P 〈 0.05 ). Higher dieta- ry lysine increased the expression of C/EBP-fl in muscle at 35 and 90 kg ( P 〈 0.05), but decreased the expression in back fat at 35 (P = 0.03 ) and 90 kg (P = 0.09). The lysine level increased the expression of PPAR-3~ in muscle at 60 kg only. Energy level and lysine content had no significant effects on promote the activity of PPAR-γ, C/EBP-α, or C/EBP-β either in muscle or in back fat at any level of the body weights tested. Collectively, these data indicated that dietary energy density and lysine level were equally important for lipid deposition in muscle tissue, whereas dietary energy density was more important than lysine level for fat deposition in fat tissue. 展开更多
关键词 ACTIVITY ADIPOGENESIS digestible energy gene expression LYSINE pigs transcription factors
下载PDF
Culture conditions for equine bone marrow mesenchymal stem cells and expression of key transcription factors during their differentiation into osteoblasts 被引量:1
14
作者 Elizabeth R A Glynn Alfredo Sanchez Londono +2 位作者 Steven A Zinn Thomas A Hoagl Kristen E Govoni 《Journal of Animal Science and Biotechnology》 SCIE CAS 2014年第2期163-172,共10页
Background: The use of equine bone marrow mesenchymal stem cells (BMSC) is a novel method to improve fracture healing in horses. However, additional research is needed to identify optimal culture conditions and to ... Background: The use of equine bone marrow mesenchymal stem cells (BMSC) is a novel method to improve fracture healing in horses. However, additional research is needed to identify optimal culture conditions and to determine the mechanisms involved in regulating BMSC differentiation into osteoblasts. The objectives of the experiments were to determine: 1) if autologous or commercial serum is better for proliferation and differentiation of equine BMSC into osteoblasts, and 2) the expression of key transcription factors during the differentiation of equine BMSC into osteoblasts. Equine BMSC were isolated from the sterna of 3 horses, treated with purchased fetal bovine serum (FBS) or autologous horse serum (HS), and cell proliferation determined. To induce osteoblast differentiation, cells were incubated with L-ascorbic acid-2-phosphate and glycerol-2-phosphate in the presence or absence of human bone morphogenetic protein2 (BMP2), dexamethasone (DEX), or combination of the two. Alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was determined by ELISA. Total RNA was isolated from differentiating BMSC between d 0 to 18 to determine expression of runt-reloted tronscrJption foctor2 (Runx2), osterix (Osx), and T-box3 (Tbx3). Data were analyzed by ANOVA. Results: Relative to control, FBS and HS increased cell number (133 ± 5 and 116 ± 5%, respectively; P 〈 0.001) and 5-bromo- 2'-deoxyuridine (BrdU) incorporation (167 ± 6 and 120 ± 6%, respectively; P 〈 0.001). Treatment with DEX increased ALP activity compared with control (1,638 ± 38%; P 〈 0.001). In the absence and presence of Dex, BMP-2 did not alter ALP activity (P 〉 0.8). Runt-reloted transcription foctor2 expression increased 3-fold (P 〈 0.001) by d 6 of culture. Osterix expression increased 94old (P 〈 0.05) by d 18 of culture. Expression of Tbx3 increased 1.8-fold at d 3 (P 〈 0.01); however expression was reduced 4-fold at d 18 (P 〈 0.01). Conclusions: Dexamethasone, but not BMP-2, is required for differentiation of equine BMSC into osteoblasts. In addition, expression of Runx2 and osterix increased and expression of Tbx3 is reduced during differentiation. 展开更多
关键词 Bone marrow mesenchymal stem cells Cell culture EQUINE OSTEOBLASTS transcription factors
下载PDF
Expression of transcription factors Slug in the lens epithelial cells undergoing epithelial-mesenchymal transition induced by connective tissue growth factor 被引量:1
15
作者 Ying-Na Wang Li Qin +2 位作者 Jing-Ming Li Li Chen Cheng Pei 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2015年第5期872-876,共5页
AIMTo investigate the expression of transcription factors Slug in human lens epithelial cells (HLECs) undergoing epithelial-mesenchymal transition (EMT) induced by connective tissue growth factor (CTGF).METHODSHLECs w... AIMTo investigate the expression of transcription factors Slug in human lens epithelial cells (HLECs) undergoing epithelial-mesenchymal transition (EMT) induced by connective tissue growth factor (CTGF).METHODSHLECs were treated with CTGF of different concentrations (20, 50 and 100 ng/mL) or without CTGF (control) for 24h. The morphological changes of HLECs were analysed by microscopy. The expression and cellular localization of Slug was evaluated by immumo-fluorescence. Expressions of Slug, E-cadherin and alpha smooth muscle actin (&#x003b1;-SMA) were further determined by Western blot analysis.RESULTSHLECs showed spidle fibrolasts-like characteristics and loosely connected each other after CTGF treatment. The immuno-fluorescence staining indicated that Slug was localized in the nuclei and its expression was induced by CTGF. The relative expressions of Slug protein were 1.64&#x000b1;0.11, 1.96 &#x000b1;0.03, 3.12 &#x000b1;0.10, and 4.08&#x000b1;0.14, respectively, in response to control group and treatment with CTGF of 20, 50 and 100 ng/mL (F=443.86, P&#x0003c;0.01). The increased Slug protein levels were correlated well with up-expression of &#x003b1;-SMA (0.78&#x000b1;0.05, 0.85&#x000b1;0.06, 2.17&#x000b1;0.15, 2.86&#x000b1;0.10; F=449.85, P&#x0003c;0.01) and down-expression of E-cadherin (2.50&#x000b1;0.11, 1.79&#x000b1;0.26, 1.05&#x000b1;0.14, 0.63&#x000b1;0.08; F=101.55, P&#x0003c;0.01).CONCLUSIONTranscription factor Slug may be involved in EMT of HLECs induced by CTGF in vitro. 展开更多
关键词 transcription factors Slug human lens epithelial cells connective tissue growth factor epithelial-mesenchymal transition alpha smooth muscle actin adhesion molecules E-cadherin
下载PDF
Transcription factors specificity protein and nuclear receptor 4A1 in pancreatic cancer 被引量:1
16
作者 Stephen Safe Rupesh Shrestha +3 位作者 Kumaravel Mohankumar Marcell Howard Erik Hedrick Maen Abdelrahim 《World Journal of Gastroenterology》 SCIE CAS 2021年第38期6387-6398,共12页
Specificity protein(Sp)transcription factors(TFs)Sp1,Sp3 and Sp4,and the orphan nuclear receptor 4A1(NR4A1)are highly expressed in pancreatic tumors and Sp1 is a negative prognostic factor for pancreatic cancer patien... Specificity protein(Sp)transcription factors(TFs)Sp1,Sp3 and Sp4,and the orphan nuclear receptor 4A1(NR4A1)are highly expressed in pancreatic tumors and Sp1 is a negative prognostic factor for pancreatic cancer patient survival.Results of knockdown and overexpression of Sp1,Sp3 and Sp4 in pancreatic and other cancer lines show that these TFs are individually pro-oncogenic factors and loss of one Sp TF is not compensated by other members.NR4A1 is also a prooncogenic factor and both NR4A1 and Sp TFs exhibit similar functions in pancreatic cancer cells and regulate cell growth,survival,migration and invasion.There is also evidence that Sp TFs and NR4A1 regulate some of the same genes including survivin,epidermal growth factor receptor,PAX3-FOXO1,α5-andα6-integrins,β1-,β3-andβ4-integrins;this is due to NR4A1 acting as a cofactor and mediating NR4A1/Sp1/4-regulated gene expression through GC-rich gene promoter sites.Several studies show that drugs targeting Sp downregulation or NR4A1 antagonists are highly effective inhibitors of Sp/NR4A1-regulated pathways and genes in pancreatic and other cancer cells,and the triterpenoid celastrol is a novel dual-acting agent that targets both Sp TFs and NR4A1. 展开更多
关键词 Specificity protein Nuclear receptor 4A1 Pancreatic cancer transcription factors Ligand inhibitors Nuclear receptor 4A antagonists
下载PDF
Mining Myb transcription factors related to wood development in Larix olgensis
17
作者 Jiali Zhao Huanhuan Xiong +2 位作者 Junhui Wang Hanguo Zhang Lei Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第6期2453-2461,共9页
Larix olgensis A.Henry is a fast-growing tree used for aff orestation in northeastern China and has great ecological and economic value.For studying developmental genes in the xylem of this species,we investigated the... Larix olgensis A.Henry is a fast-growing tree used for aff orestation in northeastern China and has great ecological and economic value.For studying developmental genes in the xylem of this species,we investigated the Myb transcription factor family,one of the largest families of transcription factors in plants,which plays an important role in the regulation of lignifi cation in plant secondary walls.By sequencing a L.olgensis cDNA library using the Illumina HiSeq2500 high-throughput sequencing platform,we obtained 58,683 unigene sequences,of which 16,554 unigenes were longer than 1000 bp,accounting for 28.2%of the total database.The alignment of these genes with the GO,COG,KEGG,Swiss-Prot and NR databases resulted in annotated 29,350 unigenes.We obtained a total of 1460 differentially expressed genes,of which 453 were upregulated and 1007 were downregulated at the two developmental stages analyzed.The gene annotations showed a wide range of biological functions and metabolic pathways.The 10 Myb transcription factors that were obtained from the diff erentially expressed genes were analyzed by real-time quantitative PCR(qRT-PCR).The results showed that four Myb transcription factors may be associated with xylem development in L.olgensis.Due to the large genome size of conifers,genomics research on these species has lagged behind that for other plant groups.Our data provide the basis for further studies on xylem development in L.olgensis. 展开更多
关键词 Larix olgensis RNA-SEQ Myb transcription factors Diff erentially expressed genes
下载PDF
Onecut transcription factors in retinal development and maintenance
18
作者 Darshan Sapkota Xiuqian Mu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第6期899-900,共2页
The retina and its development: The retina is an essential part of the visual system. A myriad of eye diseases are characterized by retinal degeneration, caused by either genetic or environmental factors. This unders... The retina and its development: The retina is an essential part of the visual system. A myriad of eye diseases are characterized by retinal degeneration, caused by either genetic or environmental factors. This underscores the importance of studying the genetic and molecular mechanisms that regulate the generation and maintenance of neurons in the mammalian retina. Our recent studies demonstrate that two related transcription factors Onecutl (Ocl) and Onecut2 (0c2) regulate multiple cell fates in the mouse retina, and their absence results in progressive retinal neurodegeneration (Wu et al., 2012, 2013; Sapkota et al., 2014). 展开更多
关键词 CELL Onecut transcription factors in retinal development and maintenance RGCS
下载PDF
Engineering personalized neural tissue using functionalized transcription factors
19
作者 stephanie m.willerth 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1570-1571,共2页
Diseases and disorders of the central nervous system often require significant interventions to restore lost function due to their com- plexity. Examples of such disorders include Parkinson's disease, Alzheimer's di... Diseases and disorders of the central nervous system often require significant interventions to restore lost function due to their com- plexity. Examples of such disorders include Parkinson's disease, Alzheimer's disease, multiple sclerosis, traumatic brain injury, and spinal cord in)ury. These diseases and disorders result trom healthy cells being destroyed, which in turn causes dysfunction in the cen- tral nervous system, The death of these cells can trigger a cascade of events that affect the rest of the body, causing symptoms that become progressively worse over time. Developing strategies for repairing the damage to the central nervous system remains chal- lenging, in part due to its inability to regenerate. 展开更多
关键词 CELL Engineering personalized neural tissue using functionalized transcription factors
下载PDF
Dysregulated miRNA Associated with Transcription Factors of Insulin Gene Expression in Chronic Pancreatitis
20
作者 K. Murali Manohar M. Sasikala +2 位作者 P. Pavan Kumar G. V. Rao D. Nageshwar Reddy 《Open Journal of Endocrine and Metabolic Diseases》 2016年第10期205-227,共24页
Background/Aim: MicroRNAs with regulatory functions in gene expression are implicated in different diseases. The present study investigated differentially expressed miRNAs that possibly influence transcription factors... Background/Aim: MicroRNAs with regulatory functions in gene expression are implicated in different diseases. The present study investigated differentially expressed miRNAs that possibly influence transcription factors involved in insulin gene expression in Chronic Pancreatitis (CP) employing bioinformatics approaches. Methods: Pancreatic tissues were collected from CP patients undergoing partial pancreatectomy (n = 16) and controls (n = 15) undergoing resections for non-pancreatic malignancies. MiRNA profiles obtained using microarrays were validated by qRT-PCR. Target search involving miRWalk and TarBase as well as functional annotation employing KEGG (Kyoto encyclopedia of genes and genomes) and DAVID (Database for Annotation) databases were performed. Ingenuity pathway analysis (IPA) was used to construct networks relating miRNAs to their target genes. mRNA and proteins related to insulin gene transcription factors and hormones were evaluated by qRT-PCR and western blotting followed by confirmation upon immunofluorescent staining. Results: Microarray data revealed 10 up-regulated and 15 down-regulated miRNAs in CP as compared to controls (Log2 FC > 2). Bioinformatic analysis showed 8399 target genes and KEGG pathway analysis suggested a role for the dysregulated miRNAs in modulating cytokine signaling, fibrosis, JAK-STAT signaling and insulin synthesis. IPA analysis suggested a simplified network attributing dysregulated miRNAs to NFκB-dependent cytokine signaling. Further, associations could be noted between miRNA 200b with Maf A, 138-1 with Neuro D and 27b with FoxO1. Decreases in mRNA levels of Pdx1, Neuro D and increases of Maf A and FoxO1 transcription factors could be noted (P Conclusion: Our results identified dysregulation of miRNAs 138-1, 27b and 200b which were found to be associated with insulin gene transcription factors Neuro D, FoxO1 and Maf A respectively. 展开更多
关键词 MICRORNAS transcription factors Networks β-Cell Dysfunction
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部