Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes d...Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.展开更多
An intense laser pulse focused onto a plasma can excite nonlinear plasma waves.Under appropriate conditions,electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic vel...An intense laser pulse focused onto a plasma can excite nonlinear plasma waves.Under appropriate conditions,electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic velocities.This scheme is called a laser wakefield accelerator.In this work,we present results from a laser wakefield acceleration experiment using a petawatt-class laser to excite the wakefields as well as nanoparticles to assist the injection of electrons into the accelerating phase of the wakefields.We find that a 10-cm-long,nanoparticle-assisted laser wakefield accelerator can generate 340 pC,10±1.86 GeV electron bunches with a 3.4 GeV rms convolved energy spread and a 0.9 mrad rms divergence.It can also produce bunches with lower energies in the 4–6 GeV range.展开更多
Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important me...Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important means to reduce storm surge-related losses.Storm surge numerical models are important for storm surge forecasting.To further improve the performance of the storm surge forecast models,we developed a numerical storm surge forecast model based on an unstructured spherical centroidal Voronoi tessellation(SCVT)grid.The model is based on shallow water equations in vector-invariant form,and is discretized by Arakawa C grid.The SCVT grid can not only better describe the coastline information but also avoid rigid transitions,and it has a better global consistency by generating high-resolution grids in the key areas through transition refinement.In addition,the simulation speed of the model is accelerated by using the openACC-based GPU acceleration technology to meet the timeliness requirements of operational ensemble forecast.It only takes 37 s to simulate a day in the coastal waters of China.The newly developed storm surge model was applied to simulate typhoon-induced storm surges in the coastal waters of China.The hindcast experiments on the selected representative typhoon-induced storm surge processes indicate that the model can reasonably simulate the distribution characteristics of storm surges.The simulated maximum storm surges and their occurrence times are consistent with the observed data at the representative tide gauge stations,and the mean absolute errors are 3.5 cm and 0.6 h respectively,showing high accuracy and application prospects.展开更多
Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanism...Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanisms are taken as examples.By analyzing the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,a new method for establishing the dynamic equation of the sensing mechanism is proposed.Firstly,based on the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,the expression of the branch rod length is obtained.The inherent constraint relationship between the branches is excavated and the branch coordination closed chain of the“12-6”configuration is constructed.The output coordination equation of the sensing mechanism is successfully derived.Secondly,the dynamic equations of“12-4”and“12-6”configurations are constructed by the Newton-Euler method,and the forward decoupling equations of the two configurations are solved by combining the dynamic equations and the output coordination equations.Finally,the virtual prototype experiment is carried out,and the maximum reference errors of the forward decoupling equations of the two configuration sensing mechanisms are 4.23%and 6.53%,respectively.The results show that the proposed method is effective and feasible,and meets the real-time requirements.展开更多
We have recently proposed a new technique of plasma tailoring by laser-driven hydrodynamic shockwaves generated on both sides of a gas jet[Marquès et al.,Phys.Plasmas 28,023103(2021)].In a continuation of this nu...We have recently proposed a new technique of plasma tailoring by laser-driven hydrodynamic shockwaves generated on both sides of a gas jet[Marquès et al.,Phys.Plasmas 28,023103(2021)].In a continuation of this numerical work,we study experimentally the influence of the tailoring on proton acceleration driven by a high-intensity picosecond laser in three cases:without tailoring,by tailoring only the entrance side of the picosecond laser,and by tailoring both sides of the gas jet.Without tailoring,the acceleration is transverse to the laser axis,with a low-energy exponential spectrum,produced by Coulomb explosion.When the front side of the gas jet is tailored,a forward acceleration appears,which is significantly enhanced when both the front and back sides of the plasma are tailored.This forward acceleration produces higher-energy protons,with a peaked spectrum,and is in good agreement with the mechanism of collisionless shock acceleration(CSA).The spatiotemporal evolution of the plasma profile is characterized by optical shadowgraphy of a probe beam.The refraction and absorption of this beam are simulated by post-processing 3D hydrodynamic simulations of the plasma tailoring.Comparison with the experimental results allows estimation of the thickness and near-critical density of the plasma slab produced by tailoring both sides of the gas jet.These parameters are in good agreement with those required for CSA.展开更多
Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the ...Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the process of direct laser acceleration (DLA) of electrons in a relativisticlaser channel when the electrons undergo transverse betatron oscillations in self-generated quasi-static electric and magnetic fields. In anexperiment at the PHELIX laser system, high-current directed beams of DLA electrons with a mean energy ten times higher than the ponderomotive potential and maximum energy up to 100 MeV were measured at 10^(19) W/cm^(2)laser intensity. The spectrum of directed x-raysin the range of 5–60 keV was evaluated using two sets of Ross filters placed at 0°and 10°to the laser pulse propagation axis. The differential x-ray absorption method allowed for absolute measurements of the angular-dependent photon fluence. We report 10^(13) photons/sr withenergies >5 keV measured at 0°to the laser axis and a brilliance of 10^(21) photons s^(−1) mm^(−2) mrad−2(0.1%BW)−1. The angular distributionof the emission has an FWHM of 14°–16°. Thanks to the ultra-high photon fluence, point-like radiation source, and ultra-short emissiontime, DLA-based keV backlighters are promising for various applications in high-energy-density research with kilojoule petawatt-class laserfacilities.展开更多
Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling wi...Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling with solid targets.Experimentally,we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside.The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations,revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection,which is one possible mechanism to boost electron energization.In addition,the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation.Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams.展开更多
A scheme for a quasi-monoenergetic high-flux neutron source with femtosecond duration and highly anisotropic angular distribution is proposed.This scheme is based on bulk acceleration of deuteron ions in an optical tr...A scheme for a quasi-monoenergetic high-flux neutron source with femtosecond duration and highly anisotropic angular distribution is proposed.This scheme is based on bulk acceleration of deuteron ions in an optical trap or density grating formed by two counter-propagating laser pulses at an intensity of-10^(16)W~cm^(2)in a near-critical-density plasma.The deuterons are first pre-accelerated to an energy of tens of keV in the ambipolar fields formed in the optical trap.Their energy is boosted to the MeV level by another one or two laser pulses at an intensity of-10^(20)W~cm^(2),enabling fusion reactions to be triggered with high efficiency.In contrast to previously proposed pitcher–catcher configurations,our scheme can provide spatially periodic acceleration structures and effective collisions between deuterons inside the whole target volume.Subsequently,neutrons are generated directly inside the optical trap.Our simulations show that neutron pulses with energy 2–8 MeV,yield 10^(18)–10^(19)n/s,and total number 106–107 in a duration-400 fs can be obtained with a 25μm target.Moreover,the neutron pulses exhibit unique angularly dependent energy spectra and flux distributions,predominantly along the axis of the energy-boosting lasers.Such microsize femtosecond neutron pulses may find many applications,such as high-resolution fast neutron imaging and nuclear physics research.展开更多
The newly built Compact Laser Plasma Accelerator-Therapy facility at Peking University will deliver 60 J/1 Hz laser pulses with 30 fs duration.Driven by this petawatt laser facility,proton beams with energy up to 200 ...The newly built Compact Laser Plasma Accelerator-Therapy facility at Peking University will deliver 60 J/1 Hz laser pulses with 30 fs duration.Driven by this petawatt laser facility,proton beams with energy up to 200 MeV are expected to be generated for tumor therapy.During high-repetition operation,both prompt radiation and residual radiation may cause safety problems.Therefore,human radiological safety assessment before commissioning is essential.In this paper,we simulate both prompt and residual radiation using the Geant4 and FLUKA Monte Carlo codes with reasonable proton and as-produced electron beam parameters.We find that the prompt radiation can be shielded well by the concrete wall of the experimental hall,but the risk from residual radiation is nonnegligible and necessitates adequate radiation cooling.On the basis of the simulation results,we discuss the constraints imposed by radiation safety considerations on the annual working time,and we propose radiation cooling strategies for different shooting modes.展开更多
We propose an efficient scheme to produce ultrahigh-brightness tens of MeV electron beams by designing a density-tailored plasma to induce a wakefield in the weakly nonlinear regime with a moderate laser energy of 120...We propose an efficient scheme to produce ultrahigh-brightness tens of MeV electron beams by designing a density-tailored plasma to induce a wakefield in the weakly nonlinear regime with a moderate laser energy of 120 mJ.In this scheme,the second bucket of the wakefield can have a much lower phase velocity at the steep plasma density down-ramp than the first bucket and can be exploited to implement longitudinal electron injection at a lower laser intensity,leading to the generation of bright electron beams with ultralow emittance together with low energy spread.Three-dimensional particle-in-cell simulations are carried out and demonstrate that high-quality electron beams with a peak energy of 50 MeV,ultralow emittance of28 nm rad,energy spread of 1%,charge of 4.4 pC,and short duration less than 5 fs can be obtained within a 1-mm-long tailored plasma density,resulting in an ultrahigh six-dimensional brightness B6D,n of2×1017 A/m2/0.1%.By changing the density parameters,tunable bright electron beams with peak energies ranging from 5 to 70 MeV,a small emittance of B0.1 mm mrad,and a low energy spread at a few-percent level can be obtained.These bright MeV-class electron beams have a variety of potential applications,for example,as ultrafast electron probes for diffraction and imaging,in laboratory astrophysics,in coherent radiation source generation,and as injectors for GeV particle accelerators.展开更多
The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In thi...The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In this work, we fill this gap by numerical simulations based on the experimental data, which indicate that in a C-shape magnet, magnetic field possesses the beam focusing effect, considering that the divergence angle will result in an increase in the full width at half maxima(FWHM) of the electron density distribution in a uniformly isotropic manner, while the length-to-width ratio decreases. This indicates that the energy spread obtained from the electron deflection distance is smaller than the actual value, regardless of the divergence angle. A promising and efficient way to accurately correct the value is presented by considering the divergence angle(for instance, for an electron beam with a length-to-width ratio of 1.12, the energy spread correct from 1.2% to 1.5%), providing a reference for developing the high-quality electron beam source.展开更多
The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular mom...The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular momentum(OAM)modes in different non-line-of-sight situations are simulated.The errors of target accelerations in detection are calculated and compared based on the OAM spectra spreading by using two combinations of composite OAM modes in the keyhole space.According to the research,the effects about spectrum spreads of higher OAM modes are more obvious.The error in detection is mainly affected by OAM spectrum spreading,which can be reduced by reasonably using different combinations of OAM modes in different practical situations.The above results provide a reference idea for investigating keyhole effect when vortex electromagnetic wave is used to detect accelerations.展开更多
Anderson acceleration(AA)is an extrapolation technique designed to speed up fixed-point iterations.For optimization problems,we propose a novel algorithm by combining the AA with the energy adaptive gradient method(AE...Anderson acceleration(AA)is an extrapolation technique designed to speed up fixed-point iterations.For optimization problems,we propose a novel algorithm by combining the AA with the energy adaptive gradient method(AEGD)[arXiv:2010.05109].The feasibility of our algorithm is ensured in light of the convergence theory for AEGD,though it is not a fixed-point iteration.We provide rigorous convergence rates of AA for gradient descent(GD)by an acceleration factor of the gain at each implementation of AA-GD.Our experimental results show that the proposed AA-AEGD algorithm requires little tuning of hyperparameters and exhibits superior fast convergence.展开更多
Objective: To explore the effectiveness of various interventions in accelerating tooth movement, a systematic review and net-work meta analysis were used to draw a conclusion. Methods: MEDLINE, EMBASE, Willey Library,...Objective: To explore the effectiveness of various interventions in accelerating tooth movement, a systematic review and net-work meta analysis were used to draw a conclusion. Methods: MEDLINE, EMBASE, Willey Library, EBSCO, Web of Science Databases, and Cochrane Central Register of Controlled Trials databases to identify relevant studies. ADDIS 1.16.6 and Stata 16.0 software were used for NMA. Results: Five thousand five hundred and forty-two articles were searched out. After screening by two independent investigators, forty-seven randomized controlled trials, 1 390 participants, were included in this network meta-analysis. A total of 11 interventions involving Piezocision (Piezo), Photobiomodulation therapy (PBMT), Plate- let-rich plasma(PRP), Electromagnetic field(EF), Low intensity laser therapy(LLLT), Low intensity pulsed ultrasound(LI-PUS), Low-frequency vibrations(LFV), Distraction osteogenesis(DAD), Corticotomy(Corti), Microosteoperforations (MOPS), Traditional orthodontic(OT)were identified and classified into 3 classes including surgical treatment, non-surgical treatment and traditional orthodontic treatment. According to SUCRA probability ranking of the best intervention effect, when orthodontic treatment lasted for 1 month, PBMT (90.6%), Piezo(87.4%) and MOPs(73.6%)were the top three interventions to improve the efficiency of canine tooth movement. When orthodontic treatment lasted for 2 months, Corti (75.7%), Piezo (69.6%) and LFV(58.9%)were the top three interventions for improving the mobility efficiency of canine tooth movement. When orthodontic treatment lasted for 3 months, Cort (73.3%), LLLT(68.4%)and LFV(60.8%)were the top three interventions for improving the mobility efficiency of canine tooth movement. Conclusion: PBMT and Piezo can improve the efficiency of canine tooth movement significantly after 1 month, while Corti and LFV can improve the efficiency of canine tooth movement better after 2 and 3 months.展开更多
As an important component of load transfer,various fatigue damages occur in the track as the rail service life and train traffic increase gradually,such as rail corrugation,rail joint damage,uneven thermite welds,rail ...As an important component of load transfer,various fatigue damages occur in the track as the rail service life and train traffic increase gradually,such as rail corrugation,rail joint damage,uneven thermite welds,rail squats fas-tener defects,etc.Real-time recognition of track defects plays a vital role in ensuring the safe and stable operation of rail transit.In this paper,an intelligent and innovative method is proposed to detect the track defects by using axle-box vibration acceleration and deep learning network,and the coexistence of the above-mentioned typical track defects in the track system is considered.Firstly,the dynamic relationship between the track defects(using the example of the fastening defects)and the axle-box vibration acceleration(ABVA)is investigated using the dynamic vehicle-track model.Then,a simulation model for the coupled dynamics of the vehicle and track with different track defects is established,and the wavelet power spectrum(WPS)analysis is performed for the vibra-tion acceleration signals of the axle box to extract the characteristic response.Lastly,using wavelet spectrum photos as input,an automatic detection technique based on the deep convolution neural network(DCNN)is sug-gested to realize the real-time intelligent detection and identification of various track problems.Thefindings demonstrate that the suggested approach achieves a 96.72%classification accuracy.展开更多
Introduction: The cicatricial acceleration method (MAC®) promotes photobiological effects of an anti-inflammatory and healing nature. Its therapeutic radiation is emitted, producing photobiostimulant effects that...Introduction: The cicatricial acceleration method (MAC®) promotes photobiological effects of an anti-inflammatory and healing nature. Its therapeutic radiation is emitted, producing photobiostimulant effects that result in rapid tissue repair and better tissue quality. The treatment of burns has always been a challenge, which involves both performing surgery and controlling and guiding scar regeneration, avoiding possible morbidities. Objective: To evaluate the effects of applying the MAC methodology with an AlGa (aluminum, gallium arsenide) laser on the time and quality of tissue repair in the skin of rats after induced chemical burns. Method: 22 adult male rats were subjected to a second-degree chemical burn on the back using 50% trichloroacetic acid. After the burns, the animals were randomly separated into 2 groups: control and experimental. The control group (G1) received placebo laser therapy and the laser group (G2) underwent laser irradiation with an energy density of 100 J/cm2. Histological analysis and macroscopic evaluation were carried out by means of the paper template method. Results: Group G1 showed (53%) of the necrosis area and group G2 showed (11%) necrosis area. Conclusion: The cicatricial acceleration method (MAC®) favored the repair of wounds caused by a 2nd-degree chemical burn, optimizing time and improving quality.展开更多
The loss of Baryonic Matter through Black Holes from our spatial 3-D Universe into its 4th dimension as Dark Matter, is used along with the Conservation of Angular Momentum Principle to prove theoretically the acceler...The loss of Baryonic Matter through Black Holes from our spatial 3-D Universe into its 4th dimension as Dark Matter, is used along with the Conservation of Angular Momentum Principle to prove theoretically the accelerated expansion of the 3-D Universe, as has already been confirmed experimentally being awarded the 2011 Nobel Prize in Physics. Theoretical calculations can estimate further to indicate the true nature of the acceleration;that the outward acceleration is due to the rotation of the Universe caused by Dark Energy from the Void, that the acceleration is non-linear, initially increasing from zero for the short period of about a Million years at a constant rate, and then leveling off non-linearly over extended time before the outward acceleration begins to decrease in a non-linear fashion until it is matched by the gravitational attraction of the matter content of 4D Space and the virtual matter in 3-D Vacuum Space. m = m(4D) + m(Virtual). The rotation of our 3D Universe will become constant once all 3D matter has entered 4D space. As the 3-D Universe tries to expand further it will be pulled inward by its gravitational attraction and will then keep on oscillating about a final radius r<sub>f</sub> while it also keeps on oscillating at right angles to the radius r<sub>f</sub> around final angular velocity ω<sub>f</sub>, until it becomes part of the 4-D Universe. The constant value of the Angular Momentum of our Universe is L = .展开更多
Laser-accelerated high-flux-intensity heavy-ion beams are important for new types of accelerators.A particle-in-cell program(Smilei) is employed to simulate the entire process of Station of Extreme Light(SEL) 100 PW l...Laser-accelerated high-flux-intensity heavy-ion beams are important for new types of accelerators.A particle-in-cell program(Smilei) is employed to simulate the entire process of Station of Extreme Light(SEL) 100 PW laser-accelerated heavy particles using different nanoscale short targets with a thickness of 100 nm Cr, Fe, Ag, Ta, Au, Pb, Th and U, as well as 200 nm thick Al and Ca. An obvious stratification is observed in the simulation. The layering phenomenon is a hybrid acceleration mechanism reflecting target normal sheath acceleration and radiation pressure acceleration, and this phenomenon is understood from the simulated energy spectrum,ionization and spatial electric field distribution. According to the stratification, it is suggested that high-quality heavy-ion beams could be expected for fusion reactions to synthesize superheavy nuclei. Two plasma clusters in the stratification are observed simultaneously, which suggest new techniques for plasma experiments as well as thinner metal targets in the precision machining process.展开更多
Computer vision(CV)-based techniques have been widely used in the field of structural health monitoring(SHM)owing to ease of installation and cost-effectiveness for displacement measurement.This paper introduces compu...Computer vision(CV)-based techniques have been widely used in the field of structural health monitoring(SHM)owing to ease of installation and cost-effectiveness for displacement measurement.This paper introduces computer vision based method for robust displacement measurement under occlusion by incorporating random sample consensus(RANSAC).The proposed method uses the Kanade-Lucas-Tomasi(KLT)tracker to extract feature points for tracking,and these feature points are filtered through RANSAC to remove points that are noisy or occluded.With the filtered feature points,the proposed method incorporates Kalman filter to estimate acceleration from velocity and displacement extracted by the KLT.For validation,numerical simulation and experimental validation are conducted.In the simulation,performance of the proposed RANSAC filtering was validated to extract correct displacement out of group of displacements that includes dummy displacement with noise or bias.In the experiment,both RANSAC filtering and acceleration measurement were validated by partially occluding the target for tracking attached on the structure.The results demonstrated that the proposed method successfully measures displacement and estimates acceleration as compared to a reference displacement sensor and accelerometer,even under occluded conditions.展开更多
Introduction:Rotatory chair testing has been used to evaluate horizontal canal function.Frequently used tests include sinusoidal harmonic acceleration test(SHAT)and velocity step test(VST).Objectives:Assessment of age...Introduction:Rotatory chair testing has been used to evaluate horizontal canal function.Frequently used tests include sinusoidal harmonic acceleration test(SHAT)and velocity step test(VST).Objectives:Assessment of age effect on the SHAT and VST and assessment of test-retest reliability of the parameters of those two tests.Methods:A prospective study was performed on 100 subjects with no ear or vestibular complaints and normal vestibular evaluation.They were divided into two groups;Group A:below 50 years of age and Group B:50 years of age or above.SHAT was presented at frequencies 0.02,0.04,0.08,0.16,0.32,0.64 Hz with a peak velocity of 60°/s.VST was performed using a maximum velocity of 100°/s with acceleration and deceleration of 200°/s2.Thirty subjects were tested twice to assess reliability.Results:Study participants ranged in age from 20 to 67 years.Regarding group A,the mean age was30.92±7.31 and 55.36±4.61 for group B.No significant differences were found in SHAT parameters between the two groups.As well,there was no significant difference in VST per-rotatory time constant,however,post-rotatory time constant was significantly longer for Group B(P value<0.05).Intraclass correlation coefficient(ICC)values showed moderate to good reliability(ICC 0.5800.818)for SHAT parameters for the lower frequencies and indicated moderate reliability for VST time constant(ICC 0.5090.652).Conclusions:Age has no significant effect on the parameters of SHAT and VST.Test-retest reliability is generally good for both tests.展开更多
基金funded by the Chinese Academy of Medical Science health innovation project(grant nos.2021-I2M-1-042,2021-I2M-1-058,and 2022-I2M-C&T-A-005)Tianjin Outstanding Youth Fund Project(grant no.20JCJQIC00230)CAMS Innovation Fund for Medical Sciences(CIFMS)(grant no.2022-I2M-C&T-B-012).
文摘Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.
基金supported by the Air Force Office of Scientific Research Grant No.FA9550-17-1-0264supported by the DOE,Office of Science,Fusion Energy Sciences under Contract No.DE-SC0021125+2 种基金supported by the U.S.Department of Energy Grant No.DESC0011617.D.A.Jarozynski,E.Brunetti,B.Ersfeld,and S.Yoffe would like to acknowledge support from the U.K.EPSRC(Grant Nos.EP/J018171/1 and EP/N028694/1)the European Union’s Horizon 2020 research and innovation program under Grant Agreement No.871124 Laserlab-Europe and EuPRAXIA(Grant No.653782)funded by the N8 research partnership and EPSRC(Grant No.EP/T022167/1).
文摘An intense laser pulse focused onto a plasma can excite nonlinear plasma waves.Under appropriate conditions,electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic velocities.This scheme is called a laser wakefield accelerator.In this work,we present results from a laser wakefield acceleration experiment using a petawatt-class laser to excite the wakefields as well as nanoparticles to assist the injection of electrons into the accelerating phase of the wakefields.We find that a 10-cm-long,nanoparticle-assisted laser wakefield accelerator can generate 340 pC,10±1.86 GeV electron bunches with a 3.4 GeV rms convolved energy spread and a 0.9 mrad rms divergence.It can also produce bunches with lower energies in the 4–6 GeV range.
基金The National Natural Science Foundation of China under contract No.42076214.
文摘Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important means to reduce storm surge-related losses.Storm surge numerical models are important for storm surge forecasting.To further improve the performance of the storm surge forecast models,we developed a numerical storm surge forecast model based on an unstructured spherical centroidal Voronoi tessellation(SCVT)grid.The model is based on shallow water equations in vector-invariant form,and is discretized by Arakawa C grid.The SCVT grid can not only better describe the coastline information but also avoid rigid transitions,and it has a better global consistency by generating high-resolution grids in the key areas through transition refinement.In addition,the simulation speed of the model is accelerated by using the openACC-based GPU acceleration technology to meet the timeliness requirements of operational ensemble forecast.It only takes 37 s to simulate a day in the coastal waters of China.The newly developed storm surge model was applied to simulate typhoon-induced storm surges in the coastal waters of China.The hindcast experiments on the selected representative typhoon-induced storm surge processes indicate that the model can reasonably simulate the distribution characteristics of storm surges.The simulated maximum storm surges and their occurrence times are consistent with the observed data at the representative tide gauge stations,and the mean absolute errors are 3.5 cm and 0.6 h respectively,showing high accuracy and application prospects.
基金supported in part by the National Natural Science Foundation of China(No.51405237)。
文摘Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanisms are taken as examples.By analyzing the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,a new method for establishing the dynamic equation of the sensing mechanism is proposed.Firstly,based on the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,the expression of the branch rod length is obtained.The inherent constraint relationship between the branches is excavated and the branch coordination closed chain of the“12-6”configuration is constructed.The output coordination equation of the sensing mechanism is successfully derived.Secondly,the dynamic equations of“12-4”and“12-6”configurations are constructed by the Newton-Euler method,and the forward decoupling equations of the two configurations are solved by combining the dynamic equations and the output coordination equations.Finally,the virtual prototype experiment is carried out,and the maximum reference errors of the forward decoupling equations of the two configuration sensing mechanisms are 4.23%and 6.53%,respectively.The results show that the proposed method is effective and feasible,and meets the real-time requirements.
基金funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No.871124 Laserlab-Europeby Grant No.ANR-17-CE30-0026-Pinnacle from the Agence Nationale de la Recherche.
文摘We have recently proposed a new technique of plasma tailoring by laser-driven hydrodynamic shockwaves generated on both sides of a gas jet[Marquès et al.,Phys.Plasmas 28,023103(2021)].In a continuation of this numerical work,we study experimentally the influence of the tailoring on proton acceleration driven by a high-intensity picosecond laser in three cases:without tailoring,by tailoring only the entrance side of the picosecond laser,and by tailoring both sides of the gas jet.Without tailoring,the acceleration is transverse to the laser axis,with a low-energy exponential spectrum,produced by Coulomb explosion.When the front side of the gas jet is tailored,a forward acceleration appears,which is significantly enhanced when both the front and back sides of the plasma are tailored.This forward acceleration produces higher-energy protons,with a peaked spectrum,and is in good agreement with the mechanism of collisionless shock acceleration(CSA).The spatiotemporal evolution of the plasma profile is characterized by optical shadowgraphy of a probe beam.The refraction and absorption of this beam are simulated by post-processing 3D hydrodynamic simulations of the plasma tailoring.Comparison with the experimental results allows estimation of the thickness and near-critical density of the plasma slab produced by tailoring both sides of the gas jet.These parameters are in good agreement with those required for CSA.
基金supported by the Czech Ministry of Education,Youth and Sports(Project No.CZ.02.2.69/0.0/0.0/18_053/0016980)the Grant Agency of the Czech Republic(Grant No.GM23-05027M).
文摘Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the process of direct laser acceleration (DLA) of electrons in a relativisticlaser channel when the electrons undergo transverse betatron oscillations in self-generated quasi-static electric and magnetic fields. In anexperiment at the PHELIX laser system, high-current directed beams of DLA electrons with a mean energy ten times higher than the ponderomotive potential and maximum energy up to 100 MeV were measured at 10^(19) W/cm^(2)laser intensity. The spectrum of directed x-raysin the range of 5–60 keV was evaluated using two sets of Ross filters placed at 0°and 10°to the laser pulse propagation axis. The differential x-ray absorption method allowed for absolute measurements of the angular-dependent photon fluence. We report 10^(13) photons/sr withenergies >5 keV measured at 0°to the laser axis and a brilliance of 10^(21) photons s^(−1) mm^(−2) mrad−2(0.1%BW)−1. The angular distributionof the emission has an FWHM of 14°–16°. Thanks to the ultra-high photon fluence, point-like radiation source, and ultra-short emissiontime, DLA-based keV backlighters are promising for various applications in high-energy-density research with kilojoule petawatt-class laserfacilities.
基金supported by the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(Grant Agreement No.787539)funding from EPRSC(Grant Nos.EP/E035728,EP/C003586,and EP/P010059/1)supported by the National Sciences and Engineering Research Council of Canada(NSERC)and Compute Canada(Job:pve-323-ac,PA).
文摘Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling with solid targets.Experimentally,we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside.The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations,revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection,which is one possible mechanism to boost electron energization.In addition,the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation.Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams.
基金supported by the National Natural Science Foundation of China(Grant Nos.11991074,11975154,12135009,12005287,and 12225505)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25050100).
文摘A scheme for a quasi-monoenergetic high-flux neutron source with femtosecond duration and highly anisotropic angular distribution is proposed.This scheme is based on bulk acceleration of deuteron ions in an optical trap or density grating formed by two counter-propagating laser pulses at an intensity of-10^(16)W~cm^(2)in a near-critical-density plasma.The deuterons are first pre-accelerated to an energy of tens of keV in the ambipolar fields formed in the optical trap.Their energy is boosted to the MeV level by another one or two laser pulses at an intensity of-10^(20)W~cm^(2),enabling fusion reactions to be triggered with high efficiency.In contrast to previously proposed pitcher–catcher configurations,our scheme can provide spatially periodic acceleration structures and effective collisions between deuterons inside the whole target volume.Subsequently,neutrons are generated directly inside the optical trap.Our simulations show that neutron pulses with energy 2–8 MeV,yield 10^(18)–10^(19)n/s,and total number 106–107 in a duration-400 fs can be obtained with a 25μm target.Moreover,the neutron pulses exhibit unique angularly dependent energy spectra and flux distributions,predominantly along the axis of the energy-boosting lasers.Such microsize femtosecond neutron pulses may find many applications,such as high-resolution fast neutron imaging and nuclear physics research.
基金supported by the National Natural Science Foundation of China(Grant No.12205008)the NSFC Innovation Group Project(Grant No.11921006)+1 种基金the National Grand Instrument Project(Grant Nos.2019YFF01014402 and 2019YFF01014403)the National Science Fund for Distinguished Young Scholars(Grant No.12225501).
文摘The newly built Compact Laser Plasma Accelerator-Therapy facility at Peking University will deliver 60 J/1 Hz laser pulses with 30 fs duration.Driven by this petawatt laser facility,proton beams with energy up to 200 MeV are expected to be generated for tumor therapy.During high-repetition operation,both prompt radiation and residual radiation may cause safety problems.Therefore,human radiological safety assessment before commissioning is essential.In this paper,we simulate both prompt and residual radiation using the Geant4 and FLUKA Monte Carlo codes with reasonable proton and as-produced electron beam parameters.We find that the prompt radiation can be shielded well by the concrete wall of the experimental hall,but the risk from residual radiation is nonnegligible and necessitates adequate radiation cooling.On the basis of the simulation results,we discuss the constraints imposed by radiation safety considerations on the annual working time,and we propose radiation cooling strategies for different shooting modes.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11974251,12105180,12074397,11904377,and 12005137)the Innovation Program of Shanghai Municipal Education Commission(Grant No.2021-01-07-00-02-E00118)the National Key Research and Development Program(Grant No.2023YFA1406804).
文摘We propose an efficient scheme to produce ultrahigh-brightness tens of MeV electron beams by designing a density-tailored plasma to induce a wakefield in the weakly nonlinear regime with a moderate laser energy of 120 mJ.In this scheme,the second bucket of the wakefield can have a much lower phase velocity at the steep plasma density down-ramp than the first bucket and can be exploited to implement longitudinal electron injection at a lower laser intensity,leading to the generation of bright electron beams with ultralow emittance together with low energy spread.Three-dimensional particle-in-cell simulations are carried out and demonstrate that high-quality electron beams with a peak energy of 50 MeV,ultralow emittance of28 nm rad,energy spread of 1%,charge of 4.4 pC,and short duration less than 5 fs can be obtained within a 1-mm-long tailored plasma density,resulting in an ultrahigh six-dimensional brightness B6D,n of2×1017 A/m2/0.1%.By changing the density parameters,tunable bright electron beams with peak energies ranging from 5 to 70 MeV,a small emittance of B0.1 mm mrad,and a low energy spread at a few-percent level can be obtained.These bright MeV-class electron beams have a variety of potential applications,for example,as ultrafast electron probes for diffraction and imaging,in laboratory astrophysics,in coherent radiation source generation,and as injectors for GeV particle accelerators.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1601700)the National Natural Science Foundation of China (Grant Nos. 12074251, 11991073, 12335016, 12305272, and 12105174)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25000000 and XDA25030400)Yangyang Development Fund,China。
文摘The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In this work, we fill this gap by numerical simulations based on the experimental data, which indicate that in a C-shape magnet, magnetic field possesses the beam focusing effect, considering that the divergence angle will result in an increase in the full width at half maxima(FWHM) of the electron density distribution in a uniformly isotropic manner, while the length-to-width ratio decreases. This indicates that the energy spread obtained from the electron deflection distance is smaller than the actual value, regardless of the divergence angle. A promising and efficient way to accurately correct the value is presented by considering the divergence angle(for instance, for an electron beam with a length-to-width ratio of 1.12, the energy spread correct from 1.2% to 1.5%), providing a reference for developing the high-quality electron beam source.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11804073 and 61775050).
文摘The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular momentum(OAM)modes in different non-line-of-sight situations are simulated.The errors of target accelerations in detection are calculated and compared based on the OAM spectra spreading by using two combinations of composite OAM modes in the keyhole space.According to the research,the effects about spectrum spreads of higher OAM modes are more obvious.The error in detection is mainly affected by OAM spectrum spreading,which can be reduced by reasonably using different combinations of OAM modes in different practical situations.The above results provide a reference idea for investigating keyhole effect when vortex electromagnetic wave is used to detect accelerations.
基金partially supported by the National Science Foundation under(Grant DMS No.1812666)。
文摘Anderson acceleration(AA)is an extrapolation technique designed to speed up fixed-point iterations.For optimization problems,we propose a novel algorithm by combining the AA with the energy adaptive gradient method(AEGD)[arXiv:2010.05109].The feasibility of our algorithm is ensured in light of the convergence theory for AEGD,though it is not a fixed-point iteration.We provide rigorous convergence rates of AA for gradient descent(GD)by an acceleration factor of the gain at each implementation of AA-GD.Our experimental results show that the proposed AA-AEGD algorithm requires little tuning of hyperparameters and exhibits superior fast convergence.
基金Hainan Provincial Finance Fund for Science and Technology Program-2020 Hainan Province Key R&D Program for Social Developmen(No.ZDYF2020166)2023 Hainan Province Key R&D Program for Social Development(No.ZDYF2023SHFZ095)。
文摘Objective: To explore the effectiveness of various interventions in accelerating tooth movement, a systematic review and net-work meta analysis were used to draw a conclusion. Methods: MEDLINE, EMBASE, Willey Library, EBSCO, Web of Science Databases, and Cochrane Central Register of Controlled Trials databases to identify relevant studies. ADDIS 1.16.6 and Stata 16.0 software were used for NMA. Results: Five thousand five hundred and forty-two articles were searched out. After screening by two independent investigators, forty-seven randomized controlled trials, 1 390 participants, were included in this network meta-analysis. A total of 11 interventions involving Piezocision (Piezo), Photobiomodulation therapy (PBMT), Plate- let-rich plasma(PRP), Electromagnetic field(EF), Low intensity laser therapy(LLLT), Low intensity pulsed ultrasound(LI-PUS), Low-frequency vibrations(LFV), Distraction osteogenesis(DAD), Corticotomy(Corti), Microosteoperforations (MOPS), Traditional orthodontic(OT)were identified and classified into 3 classes including surgical treatment, non-surgical treatment and traditional orthodontic treatment. According to SUCRA probability ranking of the best intervention effect, when orthodontic treatment lasted for 1 month, PBMT (90.6%), Piezo(87.4%) and MOPs(73.6%)were the top three interventions to improve the efficiency of canine tooth movement. When orthodontic treatment lasted for 2 months, Corti (75.7%), Piezo (69.6%) and LFV(58.9%)were the top three interventions for improving the mobility efficiency of canine tooth movement. When orthodontic treatment lasted for 3 months, Cort (73.3%), LLLT(68.4%)and LFV(60.8%)were the top three interventions for improving the mobility efficiency of canine tooth movement. Conclusion: PBMT and Piezo can improve the efficiency of canine tooth movement significantly after 1 month, while Corti and LFV can improve the efficiency of canine tooth movement better after 2 and 3 months.
基金supported by the Doctoral Fund Project(Grant No.X22003Z).
文摘As an important component of load transfer,various fatigue damages occur in the track as the rail service life and train traffic increase gradually,such as rail corrugation,rail joint damage,uneven thermite welds,rail squats fas-tener defects,etc.Real-time recognition of track defects plays a vital role in ensuring the safe and stable operation of rail transit.In this paper,an intelligent and innovative method is proposed to detect the track defects by using axle-box vibration acceleration and deep learning network,and the coexistence of the above-mentioned typical track defects in the track system is considered.Firstly,the dynamic relationship between the track defects(using the example of the fastening defects)and the axle-box vibration acceleration(ABVA)is investigated using the dynamic vehicle-track model.Then,a simulation model for the coupled dynamics of the vehicle and track with different track defects is established,and the wavelet power spectrum(WPS)analysis is performed for the vibra-tion acceleration signals of the axle box to extract the characteristic response.Lastly,using wavelet spectrum photos as input,an automatic detection technique based on the deep convolution neural network(DCNN)is sug-gested to realize the real-time intelligent detection and identification of various track problems.Thefindings demonstrate that the suggested approach achieves a 96.72%classification accuracy.
文摘Introduction: The cicatricial acceleration method (MAC®) promotes photobiological effects of an anti-inflammatory and healing nature. Its therapeutic radiation is emitted, producing photobiostimulant effects that result in rapid tissue repair and better tissue quality. The treatment of burns has always been a challenge, which involves both performing surgery and controlling and guiding scar regeneration, avoiding possible morbidities. Objective: To evaluate the effects of applying the MAC methodology with an AlGa (aluminum, gallium arsenide) laser on the time and quality of tissue repair in the skin of rats after induced chemical burns. Method: 22 adult male rats were subjected to a second-degree chemical burn on the back using 50% trichloroacetic acid. After the burns, the animals were randomly separated into 2 groups: control and experimental. The control group (G1) received placebo laser therapy and the laser group (G2) underwent laser irradiation with an energy density of 100 J/cm2. Histological analysis and macroscopic evaluation were carried out by means of the paper template method. Results: Group G1 showed (53%) of the necrosis area and group G2 showed (11%) necrosis area. Conclusion: The cicatricial acceleration method (MAC®) favored the repair of wounds caused by a 2nd-degree chemical burn, optimizing time and improving quality.
文摘The loss of Baryonic Matter through Black Holes from our spatial 3-D Universe into its 4th dimension as Dark Matter, is used along with the Conservation of Angular Momentum Principle to prove theoretically the accelerated expansion of the 3-D Universe, as has already been confirmed experimentally being awarded the 2011 Nobel Prize in Physics. Theoretical calculations can estimate further to indicate the true nature of the acceleration;that the outward acceleration is due to the rotation of the Universe caused by Dark Energy from the Void, that the acceleration is non-linear, initially increasing from zero for the short period of about a Million years at a constant rate, and then leveling off non-linearly over extended time before the outward acceleration begins to decrease in a non-linear fashion until it is matched by the gravitational attraction of the matter content of 4D Space and the virtual matter in 3-D Vacuum Space. m = m(4D) + m(Virtual). The rotation of our 3D Universe will become constant once all 3D matter has entered 4D space. As the 3-D Universe tries to expand further it will be pulled inward by its gravitational attraction and will then keep on oscillating about a final radius r<sub>f</sub> while it also keeps on oscillating at right angles to the radius r<sub>f</sub> around final angular velocity ω<sub>f</sub>, until it becomes part of the 4-D Universe. The constant value of the Angular Momentum of our Universe is L = .
基金support from the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB34030000)the National Key R & D Program of China (No.2022YFA1602404)+2 种基金National Natural Science Foundation of China (No. U1832129)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No.2017309)the Program for Innovative Research Team (in Science and Technology) in University of Henan Province of China (No.21IRTSTHN011)。
文摘Laser-accelerated high-flux-intensity heavy-ion beams are important for new types of accelerators.A particle-in-cell program(Smilei) is employed to simulate the entire process of Station of Extreme Light(SEL) 100 PW laser-accelerated heavy particles using different nanoscale short targets with a thickness of 100 nm Cr, Fe, Ag, Ta, Au, Pb, Th and U, as well as 200 nm thick Al and Ca. An obvious stratification is observed in the simulation. The layering phenomenon is a hybrid acceleration mechanism reflecting target normal sheath acceleration and radiation pressure acceleration, and this phenomenon is understood from the simulated energy spectrum,ionization and spatial electric field distribution. According to the stratification, it is suggested that high-quality heavy-ion beams could be expected for fusion reactions to synthesize superheavy nuclei. Two plasma clusters in the stratification are observed simultaneously, which suggest new techniques for plasma experiments as well as thinner metal targets in the precision machining process.
基金National R&D Project for Smart Construction Technology (RS-2020-KA156887) funded by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, InfrastructureTransport and managed by the Korea Expressway Corporation and National Research Foundation of Korea (NRF) Grant (NRF-2021R1A6A3A13046053)the Chung-Ang University Research grants in 2022。
文摘Computer vision(CV)-based techniques have been widely used in the field of structural health monitoring(SHM)owing to ease of installation and cost-effectiveness for displacement measurement.This paper introduces computer vision based method for robust displacement measurement under occlusion by incorporating random sample consensus(RANSAC).The proposed method uses the Kanade-Lucas-Tomasi(KLT)tracker to extract feature points for tracking,and these feature points are filtered through RANSAC to remove points that are noisy or occluded.With the filtered feature points,the proposed method incorporates Kalman filter to estimate acceleration from velocity and displacement extracted by the KLT.For validation,numerical simulation and experimental validation are conducted.In the simulation,performance of the proposed RANSAC filtering was validated to extract correct displacement out of group of displacements that includes dummy displacement with noise or bias.In the experiment,both RANSAC filtering and acceleration measurement were validated by partially occluding the target for tracking attached on the structure.The results demonstrated that the proposed method successfully measures displacement and estimates acceleration as compared to a reference displacement sensor and accelerometer,even under occluded conditions.
文摘Introduction:Rotatory chair testing has been used to evaluate horizontal canal function.Frequently used tests include sinusoidal harmonic acceleration test(SHAT)and velocity step test(VST).Objectives:Assessment of age effect on the SHAT and VST and assessment of test-retest reliability of the parameters of those two tests.Methods:A prospective study was performed on 100 subjects with no ear or vestibular complaints and normal vestibular evaluation.They were divided into two groups;Group A:below 50 years of age and Group B:50 years of age or above.SHAT was presented at frequencies 0.02,0.04,0.08,0.16,0.32,0.64 Hz with a peak velocity of 60°/s.VST was performed using a maximum velocity of 100°/s with acceleration and deceleration of 200°/s2.Thirty subjects were tested twice to assess reliability.Results:Study participants ranged in age from 20 to 67 years.Regarding group A,the mean age was30.92±7.31 and 55.36±4.61 for group B.No significant differences were found in SHAT parameters between the two groups.As well,there was no significant difference in VST per-rotatory time constant,however,post-rotatory time constant was significantly longer for Group B(P value<0.05).Intraclass correlation coefficient(ICC)values showed moderate to good reliability(ICC 0.5800.818)for SHAT parameters for the lower frequencies and indicated moderate reliability for VST time constant(ICC 0.5090.652).Conclusions:Age has no significant effect on the parameters of SHAT and VST.Test-retest reliability is generally good for both tests.