Ageing hardening,microstructure and mechanical properties of Mg-xY-1.5LPC-0.4Zr(x=0,2,4,6)alloys(LPC represents La-based rare earth metal)were investigated.It was found that the age hardening was enhanced,the grai...Ageing hardening,microstructure and mechanical properties of Mg-xY-1.5LPC-0.4Zr(x=0,2,4,6)alloys(LPC represents La-based rare earth metal)were investigated.It was found that the age hardening was enhanced,the grains became finer and the tensile strength was improved with the increase of Y content in Mg-Y-1.5LPC-0.4Zr alloy.The results show that the formed precipitates responsible for age hardening change from fine hexagonal-shaped equilibrium Mg12RE phase to metastableβ′phase with orthorhombic-bc crystal structure when Y is added into Mg-1.5LPC-0.4Zr alloy,and the volume fraction of precipitate phases also increases.The cubic-shapedβ-Mg24Y5 precipitate phases were also observed at grain boundaries in Mg-6Y-1.5LPC-0.4Zr alloy. The distribution of prismatic shapedβ′phases and cubic shapedβ-Mg24Y5 precipitate phases in Mg matrix may account for the remarkable enhancement of tensile strength of Mg-Y-LPC-Zr alloy.The Mg-6Y-1.5LPC-0.4Zr alloy exhibits maximum tensile strength at peak-aged hardness,and the values are 250 MPa at room temperature and 210 MPa at 250°C.展开更多
The microstructure,mechanical properties and fracture behavior of an as-received QE22 alloy have been investigated under different thermal conditions,including solution treated(ST),under aged(UA),peak aged(PA)and over...The microstructure,mechanical properties and fracture behavior of an as-received QE22 alloy have been investigated under different thermal conditions,including solution treated(ST),under aged(UA),peak aged(PA)and over aged(OA)conditions.A significant increase in hardness of 27%,yield strength of 60%and ultimate tensile strength of 19%was observed in peak aged sample as compared to solution treated sample.The improvements of mechanical strength properties are mainly associated with the metastable λ and β′precipitates.Grain growth was not observed in the ST samples after subjecting to UA and PA treatments due to the presence of eutectic Mg_(12)Nd particles along the grain boundaries.In over aged sample,significant grain growth occurred because of dissolution of eutectic phase particles.Different natures of crack initiation and propagation were observed under different thermal conditions during tensile testing at room temperature.The mode of failure of solution treated sample is transgranular,cleavage and twin boundary fractures.A mixed mode of transgranular,intergranular,cleavage and twin boundary failure is observed in both peak aged and over aged samples.展开更多
In this study, the precipitation transformation and age hardening of solution-treated Mg-9Gd-4Y-2Zn-0.5Zr(wt.%) alloy were investigated at different aging treatment parameters. The precipitation sequences of the alloy...In this study, the precipitation transformation and age hardening of solution-treated Mg-9Gd-4Y-2Zn-0.5Zr(wt.%) alloy were investigated at different aging treatment parameters. The precipitation sequences of the alloy aged at 200℃, 250℃ and 300℃ are β’’(DO19) → β’(BCO) → β(FCC), β’’(DO19) → β’(BCO) → β_(1)(FCC) → β(FCC) and β(FCC), respectively. The streaks sequences of the alloy aged at 200℃, 250℃ and 300℃ are SF, SF → 14H-LPSO and SF → 14H-LPSO, respectively. For the alloy aged at 200℃ and 250℃, the increase in hardness with increasing aging time is contributed from the increase in precipitate volume fraction and the transformation from β’’ to β’ phase with basal → prismatic and spherical → spindle-like precipitate changes. The decrease in hardness after the peak-aging stage is attributed to the appearance of micro-sized β precipitates. Because of the smaller size of precipitates and the triangular arrangement of β’ precipitate, the hardness of the alloy aged at 200℃ is higher than that aged at 250℃. For the alloy aged at 300℃, the appearance of only micro-sized β precipitate and its coarsening with increasing aging time leads to the lowest hardness and an overall decrease in hardness with the aging time.展开更多
To avoid grain boundary(GB) precipitation during aging, a new strategy of in situ thermomechanical processing for age hardening alloys was proposed. Specifically, high-density nanoscale precipitates were introduced in...To avoid grain boundary(GB) precipitation during aging, a new strategy of in situ thermomechanical processing for age hardening alloys was proposed. Specifically, high-density nanoscale precipitates were introduced into ultrafine grain(UFG) interiors of 7075 Al alloy by equal-channel-angular(ECAP) processing at 250 ℃ for 8 passes, thus avoiding GB precipitation. Tensile test results indicated that the UFG 7075 Al alloy exhibits superior mechanical properties(yield strength of 350 MPa, ultimate tensile strength of 500 MPa, uniform elongation of 18% and tensile ductility of 19%) compared with the UFG 1050 Al counterpart(yield strength of 170 MPa, ultimate tensile strength of 180 MPa, uniform elongation of 2.5% and tensile ductility of 7%). Fracture surface morphology studies revealed numerous homogeneous micro shear bands in necking shrinkage areas of both UFG 7075 Al and 1050 Al alloys, which are controlled by cooperative GB sliding. Moreover, the introduction of nanoscale precipitates in UFG 7075 Al matrix weakened the tendency of shear fracture, resulting in a higher tensile ductility and more homogeneous deformation. Different from the GB precipitation during postmortem aging, in situ thermomechanical treatment dynamically formed GBs after precipitation, thus avoiding precipitation on GBs.展开更多
The weldability of a low-carbon copper-bearing age hardening steel was evaluated using cracking suscepti- bility calculation, HAZ maximum hardness measurement, and Y-groove cracking evaluation test. The results show t...The weldability of a low-carbon copper-bearing age hardening steel was evaluated using cracking suscepti- bility calculation, HAZ maximum hardness measurement, and Y-groove cracking evaluation test. The results show that the hardenability characteristics and cold cracking susceptibility of the steel are very low. The results also indicate that a crack-free weldment can be obtained during the welding of this type of steel even at an ambient temperature as low as -5 ℃ as well as in an absolute humidity lower than 4 000 Pa without any preheat treatment. A slight preheat treatment can prevent the joint from cracking when welding is carried out at lower ambient temperature or higher absolute humidity.展开更多
The metastable extension of solid solubility and age hardening of rapidly solidified Al-Er alloy were inves- tigated.The splat foils(0.04~0.06 mm in thickness)and spun ribbons(0.02~0.04 mm in thickness)of Al-Er allo...The metastable extension of solid solubility and age hardening of rapidly solidified Al-Er alloy were inves- tigated.The splat foils(0.04~0.06 mm in thickness)and spun ribbons(0.02~0.04 mm in thickness)of Al-Er alloys were prepared by melt hammer-anvil and melt spinning techniques,respectively.The cooling rate was about 10~6~10~7 K/s.The metastable extended solid solubility of Er in Al evaluated by measurements of lat- tice parameters of rapidly solidified alloys was 0.75 at%.An age hardening response was observed in the quenched and aged specimen.The precipitate responsible for age hardening was identified to be Cu_3Au type cubic Al_3Er.展开更多
Rapidly solidified Al-3.9V-0.1 Zr alloy is a single sol- id solution.The metastable limited solid solubility of solute V in Al reaches 3.9 wt-% under about 10~6 K/s cooling rate.A strong age hardening response have be...Rapidly solidified Al-3.9V-0.1 Zr alloy is a single sol- id solution.The metastable limited solid solubility of solute V in Al reaches 3.9 wt-% under about 10~6 K/s cooling rate.A strong age hardening response have been observed in this alloy.A large amount of dislocation lines and loops were observed in the alloy aged at 100-150℃: and an age peak occurs at 450℃,the hardness value in- creases by a factor of 2.The precipitate which is responsi- ble for age hardening is identified to be Al_V(Al).展开更多
A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechan...A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechanical properties and creep aging process. The results show that creep strain and creep rate increase with the applied stress. The hardness of specimen varies with aging time and stress in a effect of temperature on hardness of material is seen in the range of 185-195 ℃. The optimum mechanical properties are obtained at the conditions of (200 MPa, 185 ℃, 8 h) as the result of the coexistence of strengthening S" and S' phases in the matrix by transmission electron microscopy (TEM). TEM observation shows that applied stress promotes the formation and growth of precioitates and no obvious stress orientation effect is observed in the matrix.展开更多
The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A d...The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.展开更多
The effect of Sc on precipitation hardening of AlSi6Mg was studied.Zr was previously reported that it increased the effectiveness of Sc in wrought aluminum in many areas so Zr was also used together with Sc in this st...The effect of Sc on precipitation hardening of AlSi6Mg was studied.Zr was previously reported that it increased the effectiveness of Sc in wrought aluminum in many areas so Zr was also used together with Sc in this study. Different levels of Sc and Zr additions were added to AlSi6Mg before casting in the permanent mold.The samples were precipitation hardened at different aging temperatures and for various aging time before testing for tensile strength and hardness.It was found that Sc addition into Al6SiMg can change its response to age hardening.Additions of Sc and Sc with Zr increased both yield strength and hardness for both aging temperatures.In addition,Sc was found to modify eutectic Si to obtain fibrous morphology.This effect of Sc on eutectic silicon modification has never been reported before.展开更多
Friction stir processing and post process artificial ageing was successfully carried out on AA7075 with and without reinforcement of SiC particles producing defect free processed zone with uniform distribution of fill...Friction stir processing and post process artificial ageing was successfully carried out on AA7075 with and without reinforcement of SiC particles producing defect free processed zone with uniform distribution of filler material.Effect of SiC particle reinforcement and artificial ageing times on the microstructural modifications was characterized using optical and electron microscopy,electron backscattered diffraction and X-Ray diffraction.Hardness,impact and wear tests were carried out to investigate mechanical behaviour before and after processing.Reinforcement of SiC particles during FSP and subsequent age hardening treatment brought about nearly twofold increase in hardness and impact toughness values by the combined effect of grain refinement,Zener pinning,dispersion strengthening and precipitation hardening.Significant improvement in wear resistance in terms of wear loss was also observed after processing compared to the reference material AA7075-T6.Fractured surface of post FSP age hardened AA7075 alloy exhibited features of ductile fracture during Charpy impact test.展开更多
In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures...In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures of these final-rolled sheets are inhomogeneous,mainly including coarse deformed grains and dynamic recrystallized(DRXed)grains,and the volume fraction of these coarse deformed grains increases as the rolling temperature increases.Thus,more DRXed grains can be found in R-385℃sheet,resulting in a smaller average grain size and weaker basal texture,while the biggest grains and the highest strong basal texture are present in R-450℃sheet.Amounts of dynamic precipitation ofβphases which are mainly determined by the rolling temperature are present in these sheets,and its precipitation can consume the content of Gd solutes in the matrix.As a result,the lowest number density ofβphase in R-450℃sheet is beneficial to modify the age hardening response.Thus,the R-450℃sheet displays the best age hardening response because of a severe traditional precipitation ofβ’(more)andβH/βM(less)precipitates,resulting in a sharp improvement in strength,i.e.ultimate tensile strength(UTS)of∼518±17 MPa and yield strength(YS)of∼438±18 MPa.However,the elongation(EL)of this sheet reduces greatly,and its value is∼2.7±0.3%.By contrasting,the EL of the peak-aging R-385℃sheet keeps better,changing from∼4.9±1.2%to∼4.8±1.4%due to a novel dislocation-induced chain-like precipitate which is helpful to keep good balance between strength and ductility.展开更多
By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation a...By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation and growth of the S-phase precipitate are rather anisotropic and temperature-dependent companying with low dimensional phase transformation. There are actually two types of Guinier-Preston (GP) zones that determine the formation mechanism of S-phase at high aging temperatures higher than 180 ℃. One is the precursors of the S-phase itself, the other is the structural units or the precursors of the well-known Guinier-Preston-Bagaryatsky (GPB) zones. At high temperatures the later GPB zone units may form around S-phase precipitate and cease its growth in the width direction, leading to the formation of rod-like S-phase crystals; whereas at low temperatures the S-phase precipitates develop without the interference with GPB zones, resulting in S-phase orecioitates with lath-like momhology.展开更多
The microstructure, age hardening behavior and mechanical properties of an Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy prepared by casting and hot extrusion techniques were investigated. The solution-treated (T4 temper) alloys ...The microstructure, age hardening behavior and mechanical properties of an Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy prepared by casting and hot extrusion techniques were investigated. The solution-treated (T4 temper) alloys were extruded at 400, 450 and 500 °C with an extrusion ratio of 10:1, respectively. Optimized mechanical properties were obtained by extrusion at 400 °C followed by T5 treatment under the combined effects of grain refinement and precipitation strengthening. The alloy exhibits a grain size of about 5.0 μm, initial and peak microhardness of HV 109 and HV 129, respectively. The tensile yield strength, ultimate tensile strength and elongation at room temperature are 391 MPa, 430 MPa and 5.2%, respectively.展开更多
The influence of combination of different designated precipitation hardening and cold working on the tensile properties of 6061 aluminum alloy was investigated. The results indicate that applying single aging at 180 ...The influence of combination of different designated precipitation hardening and cold working on the tensile properties of 6061 aluminum alloy was investigated. The results indicate that applying single aging at 180 ℃ for 4 h in different thermal-mechanical treatments improves both the strength and elongation. However, double aging does not improve the mechanical properties. In addition, pre-aging shows a negative effect on the subsequent precipitation hardening of material. The changes in mechanical properties were discussed by explanation of microstructural evolution due to the competition of precipitation hardening, strain hardening and work softening processes.展开更多
The evolution of precipitates and mechanical properties of AZ80A magnesium alloy with aging time was studied by in situ observation with SEM,TEM and tensile testing.The results show that the continuous precipitation(C...The evolution of precipitates and mechanical properties of AZ80A magnesium alloy with aging time was studied by in situ observation with SEM,TEM and tensile testing.The results show that the continuous precipitation(CP)phases near the reaction front(RF)are replaced by the discontinuous precipitation(DP)phases at the early aging stage.In DP regions,the elliptical phases coarsen obviously with the increase of aging time,which results in a slightly slow reduction of the intracrystalline hardness of DP regions.In CP regions,some small plate phases reprecipitate simultaneously with the growth of the initial precipitates,which contributes to a slight increase in the intracrystalline hardness in CP regions at the later aging stage.The aging hardening of DP regions is faster and stronger than that of CP regions.However,the age strengthening of CP regions not only compensates for the overaging softening of DP regions but also improves the strength of the alloy.展开更多
Effects of cold rolling on the microstructure and mechanical properties of Fe-Ni-Mn-Mo-Ti-Cr maraging steels were studied.To investigate the microstructure and mechanical properties,optical microscopy,scanning electro...Effects of cold rolling on the microstructure and mechanical properties of Fe-Ni-Mn-Mo-Ti-Cr maraging steels were studied.To investigate the microstructure and mechanical properties,optical microscopy,scanning electron microscopy,X-ray diffraction,tensile test,and hardness test were used.The results show that the solution-annealing treatment in the cold-rolled steel redounds to the formation of sub-microcrystalline Fe2(Mo,Ti) Laves phase particles,which are stable at high temperatures.These secondary Laves phase particles prevent from recrystallization at high temperatures and correspond to semi-brittle fracture in the subsequent aging treatment.展开更多
The microstructures of Cr modified Al3Ti containing Al2Ti and L10-AlTi precipitates have been investigated in terms of transmission electron microscopy(TEM). Fine precipitation of Al2Ti (Ga2Hf type structure) and Ll0-...The microstructures of Cr modified Al3Ti containing Al2Ti and L10-AlTi precipitates have been investigated in terms of transmission electron microscopy(TEM). Fine precipitation of Al2Ti (Ga2Hf type structure) and Ll0-AlTi(Cr) occurs in Ll2-Al3Ti(Cr) by aging around 973K. The aging behavior was investigated by microhardness measurements. TEM observations reveal that plate-like Al2Ti precipitates lie on{100} planes of the Ll2-Al3Ti(Cr) matrix with the c axis of the tetragonal phase perpendicular to the thin plate. As contrast with Al2Ti precipitates, Ll0-AlTi(Cr) precipitates form thin plate and lie on {100} planes of Ll2-Al3Ti(Cr) matrix at the initial aging time and for long time aging the habit plane of the thin plate deviates from {100} plane and finally forms a kinked plate. The coherency stresses across the precipitate/matrix interface are considered to be the main factors controlling the precipitate morphology.展开更多
The Mg-6.5Gd-1.3Nd-0.7Y-0.3Zn alloy ingot and sheet were prepared by casting and hot extrusion techniques,and the microstructure,age hardening behavior and mechanical properties were investigated.The results show that...The Mg-6.5Gd-1.3Nd-0.7Y-0.3Zn alloy ingot and sheet were prepared by casting and hot extrusion techniques,and the microstructure,age hardening behavior and mechanical properties were investigated.The results show that the as-cast alloy mainly containsα-Mg solid solution and compounds of Mg5RE and Mg24RE5(RE=Gd,Y and Nd)phases.The grain size is refined after hot extrusion,and the Mg5RE and Mg24RE5 compounds are broken during the extrusion process.The extruded alloy exhibits remarkable age hardening response and excellent mechanical properties in the peak-aging state.The ultimate tensile strength,yield strength and elongation are 310 MPa,201 MPa and 5.8%at room temperature,and 173 MPa,133 MPa and 25.0%at 300℃,respectively.展开更多
Aging behaviors of extruded and rolled AZ80 and AZ31 Mg alloys were investigated under conditions similar to the paint-bake cycle currently used in automotive industry.Artificial aging at 170℃ from 0.5 to 12 h was co...Aging behaviors of extruded and rolled AZ80 and AZ31 Mg alloys were investigated under conditions similar to the paint-bake cycle currently used in automotive industry.Artificial aging at 170℃ from 0.5 to 12 h was conducted on solution-treated specimens to study the effects of aging on mechanical properties.SEM observations and EDS data show thatβ-phase of Al12Mg17 precipitates continuously or discontinuously fromα-Mg matrix and distributes along grain boundaries of the AZ80 alloy during artificial aging.Data of tensile tests and Vickers hardness tests show that an optimum mechanical property is achieved after baking at 170℃ for 6-8 h when Vickers hardness,tensile strength,and elongation are increased by 6.35%,15.30%,and 7.88%,respectively, while the AZ31 alloy does not exhibit significant hardening behavior over the aging period.展开更多
基金Project(2010A6100153)supported by Natural Science Foundation of Ningbo,China
文摘Ageing hardening,microstructure and mechanical properties of Mg-xY-1.5LPC-0.4Zr(x=0,2,4,6)alloys(LPC represents La-based rare earth metal)were investigated.It was found that the age hardening was enhanced,the grains became finer and the tensile strength was improved with the increase of Y content in Mg-Y-1.5LPC-0.4Zr alloy.The results show that the formed precipitates responsible for age hardening change from fine hexagonal-shaped equilibrium Mg12RE phase to metastableβ′phase with orthorhombic-bc crystal structure when Y is added into Mg-1.5LPC-0.4Zr alloy,and the volume fraction of precipitate phases also increases.The cubic-shapedβ-Mg24Y5 precipitate phases were also observed at grain boundaries in Mg-6Y-1.5LPC-0.4Zr alloy. The distribution of prismatic shapedβ′phases and cubic shapedβ-Mg24Y5 precipitate phases in Mg matrix may account for the remarkable enhancement of tensile strength of Mg-Y-LPC-Zr alloy.The Mg-6Y-1.5LPC-0.4Zr alloy exhibits maximum tensile strength at peak-aged hardness,and the values are 250 MPa at room temperature and 210 MPa at 250°C.
文摘The microstructure,mechanical properties and fracture behavior of an as-received QE22 alloy have been investigated under different thermal conditions,including solution treated(ST),under aged(UA),peak aged(PA)and over aged(OA)conditions.A significant increase in hardness of 27%,yield strength of 60%and ultimate tensile strength of 19%was observed in peak aged sample as compared to solution treated sample.The improvements of mechanical strength properties are mainly associated with the metastable λ and β′precipitates.Grain growth was not observed in the ST samples after subjecting to UA and PA treatments due to the presence of eutectic Mg_(12)Nd particles along the grain boundaries.In over aged sample,significant grain growth occurred because of dissolution of eutectic phase particles.Different natures of crack initiation and propagation were observed under different thermal conditions during tensile testing at room temperature.The mode of failure of solution treated sample is transgranular,cleavage and twin boundary fractures.A mixed mode of transgranular,intergranular,cleavage and twin boundary failure is observed in both peak aged and over aged samples.
基金financially supported by the Key R&D program of Shanxi Province (International Cooperation) (No.201903D421036)the Natural Science Foundation of Shanxi Province (No.201901D111176)+5 种基金the Joint Funds of the National Natural Science Foundation of China (Grant No.U20A20230)the Bureau of Science,Technology and Industry for National Defense of China (No.WDZC2019JJ006)the National Natural Science Foundation of China (Grant No.52075501)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No.201802072)the National Defense Basic Scientific Research Program (No.JCKY2018408B003)the XX Supporting Scientific Research Project (No.xxxx-2019-021)。
文摘In this study, the precipitation transformation and age hardening of solution-treated Mg-9Gd-4Y-2Zn-0.5Zr(wt.%) alloy were investigated at different aging treatment parameters. The precipitation sequences of the alloy aged at 200℃, 250℃ and 300℃ are β’’(DO19) → β’(BCO) → β(FCC), β’’(DO19) → β’(BCO) → β_(1)(FCC) → β(FCC) and β(FCC), respectively. The streaks sequences of the alloy aged at 200℃, 250℃ and 300℃ are SF, SF → 14H-LPSO and SF → 14H-LPSO, respectively. For the alloy aged at 200℃ and 250℃, the increase in hardness with increasing aging time is contributed from the increase in precipitate volume fraction and the transformation from β’’ to β’ phase with basal → prismatic and spherical → spindle-like precipitate changes. The decrease in hardness after the peak-aging stage is attributed to the appearance of micro-sized β precipitates. Because of the smaller size of precipitates and the triangular arrangement of β’ precipitate, the hardness of the alloy aged at 200℃ is higher than that aged at 250℃. For the alloy aged at 300℃, the appearance of only micro-sized β precipitate and its coarsening with increasing aging time leads to the lowest hardness and an overall decrease in hardness with the aging time.
基金the National Key R&D Program of China(No.2017YFA0204403)the National Natural Science Foundation of China(Nos.51971112,51225102)the Fundamental Research Funds for the Central Universities,China(No.30919011405).
文摘To avoid grain boundary(GB) precipitation during aging, a new strategy of in situ thermomechanical processing for age hardening alloys was proposed. Specifically, high-density nanoscale precipitates were introduced into ultrafine grain(UFG) interiors of 7075 Al alloy by equal-channel-angular(ECAP) processing at 250 ℃ for 8 passes, thus avoiding GB precipitation. Tensile test results indicated that the UFG 7075 Al alloy exhibits superior mechanical properties(yield strength of 350 MPa, ultimate tensile strength of 500 MPa, uniform elongation of 18% and tensile ductility of 19%) compared with the UFG 1050 Al counterpart(yield strength of 170 MPa, ultimate tensile strength of 180 MPa, uniform elongation of 2.5% and tensile ductility of 7%). Fracture surface morphology studies revealed numerous homogeneous micro shear bands in necking shrinkage areas of both UFG 7075 Al and 1050 Al alloys, which are controlled by cooperative GB sliding. Moreover, the introduction of nanoscale precipitates in UFG 7075 Al matrix weakened the tendency of shear fracture, resulting in a higher tensile ductility and more homogeneous deformation. Different from the GB precipitation during postmortem aging, in situ thermomechanical treatment dynamically formed GBs after precipitation, thus avoiding precipitation on GBs.
文摘The weldability of a low-carbon copper-bearing age hardening steel was evaluated using cracking suscepti- bility calculation, HAZ maximum hardness measurement, and Y-groove cracking evaluation test. The results show that the hardenability characteristics and cold cracking susceptibility of the steel are very low. The results also indicate that a crack-free weldment can be obtained during the welding of this type of steel even at an ambient temperature as low as -5 ℃ as well as in an absolute humidity lower than 4 000 Pa without any preheat treatment. A slight preheat treatment can prevent the joint from cracking when welding is carried out at lower ambient temperature or higher absolute humidity.
基金The project was supported by National Natural Science Foundation of China(5870071).
文摘The metastable extension of solid solubility and age hardening of rapidly solidified Al-Er alloy were inves- tigated.The splat foils(0.04~0.06 mm in thickness)and spun ribbons(0.02~0.04 mm in thickness)of Al-Er alloys were prepared by melt hammer-anvil and melt spinning techniques,respectively.The cooling rate was about 10~6~10~7 K/s.The metastable extended solid solubility of Er in Al evaluated by measurements of lat- tice parameters of rapidly solidified alloys was 0.75 at%.An age hardening response was observed in the quenched and aged specimen.The precipitate responsible for age hardening was identified to be Cu_3Au type cubic Al_3Er.
文摘Rapidly solidified Al-3.9V-0.1 Zr alloy is a single sol- id solution.The metastable limited solid solubility of solute V in Al reaches 3.9 wt-% under about 10~6 K/s cooling rate.A strong age hardening response have been observed in this alloy.A large amount of dislocation lines and loops were observed in the alloy aged at 100-150℃: and an age peak occurs at 450℃,the hardness value in- creases by a factor of 2.The precipitate which is responsi- ble for age hardening is identified to be Al_V(Al).
基金Project(51235010)supported by the National Natural Science Foundation of ChinaProject(2010CB731700)supported by the National Basic Research Program of ChinaProject(20120162110003)supported by PhD Programs Foundation of Ministry of Education of China
文摘A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechanical properties and creep aging process. The results show that creep strain and creep rate increase with the applied stress. The hardness of specimen varies with aging time and stress in a effect of temperature on hardness of material is seen in the range of 185-195 ℃. The optimum mechanical properties are obtained at the conditions of (200 MPa, 185 ℃, 8 h) as the result of the coexistence of strengthening S" and S' phases in the matrix by transmission electron microscopy (TEM). TEM observation shows that applied stress promotes the formation and growth of precioitates and no obvious stress orientation effect is observed in the matrix.
基金Project(51141007)supported by the National Natural Science Foundation of ChinaProject(E2013501096)supported by Hebei Province Natural Science Foundation,China
文摘The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.
文摘The effect of Sc on precipitation hardening of AlSi6Mg was studied.Zr was previously reported that it increased the effectiveness of Sc in wrought aluminum in many areas so Zr was also used together with Sc in this study. Different levels of Sc and Zr additions were added to AlSi6Mg before casting in the permanent mold.The samples were precipitation hardened at different aging temperatures and for various aging time before testing for tensile strength and hardness.It was found that Sc addition into Al6SiMg can change its response to age hardening.Additions of Sc and Sc with Zr increased both yield strength and hardness for both aging temperatures.In addition,Sc was found to modify eutectic Si to obtain fibrous morphology.This effect of Sc on eutectic silicon modification has never been reported before.
基金The authors would like to acknowledge National Facility for Texture and OIM(A DST-IRPHA project),IIT Mumbai for XRD and EBSD measurements.One of the authors VDH would like to acknowledge Science and Engineering Research Board(SERB)for financial assistance(EEQ/2016/000422)to carry out project work.
文摘Friction stir processing and post process artificial ageing was successfully carried out on AA7075 with and without reinforcement of SiC particles producing defect free processed zone with uniform distribution of filler material.Effect of SiC particle reinforcement and artificial ageing times on the microstructural modifications was characterized using optical and electron microscopy,electron backscattered diffraction and X-Ray diffraction.Hardness,impact and wear tests were carried out to investigate mechanical behaviour before and after processing.Reinforcement of SiC particles during FSP and subsequent age hardening treatment brought about nearly twofold increase in hardness and impact toughness values by the combined effect of grain refinement,Zener pinning,dispersion strengthening and precipitation hardening.Significant improvement in wear resistance in terms of wear loss was also observed after processing compared to the reference material AA7075-T6.Fractured surface of post FSP age hardened AA7075 alloy exhibited features of ductile fracture during Charpy impact test.
基金financially supported by National Key R&D Program of China(No.2021YFB3701100)Beijing Municipal Natural Science Foundation(No.2202004).
文摘In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures of these final-rolled sheets are inhomogeneous,mainly including coarse deformed grains and dynamic recrystallized(DRXed)grains,and the volume fraction of these coarse deformed grains increases as the rolling temperature increases.Thus,more DRXed grains can be found in R-385℃sheet,resulting in a smaller average grain size and weaker basal texture,while the biggest grains and the highest strong basal texture are present in R-450℃sheet.Amounts of dynamic precipitation ofβphases which are mainly determined by the rolling temperature are present in these sheets,and its precipitation can consume the content of Gd solutes in the matrix.As a result,the lowest number density ofβphase in R-450℃sheet is beneficial to modify the age hardening response.Thus,the R-450℃sheet displays the best age hardening response because of a severe traditional precipitation ofβ’(more)andβH/βM(less)precipitates,resulting in a sharp improvement in strength,i.e.ultimate tensile strength(UTS)of∼518±17 MPa and yield strength(YS)of∼438±18 MPa.However,the elongation(EL)of this sheet reduces greatly,and its value is∼2.7±0.3%.By contrasting,the EL of the peak-aging R-385℃sheet keeps better,changing from∼4.9±1.2%to∼4.8±1.4%due to a novel dislocation-induced chain-like precipitate which is helpful to keep good balance between strength and ductility.
基金Projects(51371081,11427806,51471067,51171063) supported by the National Natural Science Foundation of ChinaProject(2009CB623704) supported by the National Basic Research Program of China
文摘By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation and growth of the S-phase precipitate are rather anisotropic and temperature-dependent companying with low dimensional phase transformation. There are actually two types of Guinier-Preston (GP) zones that determine the formation mechanism of S-phase at high aging temperatures higher than 180 ℃. One is the precursors of the S-phase itself, the other is the structural units or the precursors of the well-known Guinier-Preston-Bagaryatsky (GPB) zones. At high temperatures the later GPB zone units may form around S-phase precipitate and cease its growth in the width direction, leading to the formation of rod-like S-phase crystals; whereas at low temperatures the S-phase precipitates develop without the interference with GPB zones, resulting in S-phase orecioitates with lath-like momhology.
基金Projects (50674067, 51074106) supported by the National Natural Science Foundation of ChinaProject (2009AA033501) supported by the High-Tech Research and Development Program of ChinaProject (09JC1408200) supported by the Science and Technology Commission of Shanghai Municipality, China
文摘The microstructure, age hardening behavior and mechanical properties of an Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy prepared by casting and hot extrusion techniques were investigated. The solution-treated (T4 temper) alloys were extruded at 400, 450 and 500 °C with an extrusion ratio of 10:1, respectively. Optimized mechanical properties were obtained by extrusion at 400 °C followed by T5 treatment under the combined effects of grain refinement and precipitation strengthening. The alloy exhibits a grain size of about 5.0 μm, initial and peak microhardness of HV 109 and HV 129, respectively. The tensile yield strength, ultimate tensile strength and elongation at room temperature are 391 MPa, 430 MPa and 5.2%, respectively.
基金financial support of Islamic Azad University, Dezful Branch for the project No. 6230
文摘The influence of combination of different designated precipitation hardening and cold working on the tensile properties of 6061 aluminum alloy was investigated. The results indicate that applying single aging at 180 ℃ for 4 h in different thermal-mechanical treatments improves both the strength and elongation. However, double aging does not improve the mechanical properties. In addition, pre-aging shows a negative effect on the subsequent precipitation hardening of material. The changes in mechanical properties were discussed by explanation of microstructural evolution due to the competition of precipitation hardening, strain hardening and work softening processes.
基金financially supported by the Natural Science Foundation of Hunan Province, China (No. 2018JJ2503)the Postgraduate Independent Exploration and Innovation Project of Central South University, China (No. 1053320171111)
文摘The evolution of precipitates and mechanical properties of AZ80A magnesium alloy with aging time was studied by in situ observation with SEM,TEM and tensile testing.The results show that the continuous precipitation(CP)phases near the reaction front(RF)are replaced by the discontinuous precipitation(DP)phases at the early aging stage.In DP regions,the elliptical phases coarsen obviously with the increase of aging time,which results in a slightly slow reduction of the intracrystalline hardness of DP regions.In CP regions,some small plate phases reprecipitate simultaneously with the growth of the initial precipitates,which contributes to a slight increase in the intracrystalline hardness in CP regions at the later aging stage.The aging hardening of DP regions is faster and stronger than that of CP regions.However,the age strengthening of CP regions not only compensates for the overaging softening of DP regions but also improves the strength of the alloy.
文摘Effects of cold rolling on the microstructure and mechanical properties of Fe-Ni-Mn-Mo-Ti-Cr maraging steels were studied.To investigate the microstructure and mechanical properties,optical microscopy,scanning electron microscopy,X-ray diffraction,tensile test,and hardness test were used.The results show that the solution-annealing treatment in the cold-rolled steel redounds to the formation of sub-microcrystalline Fe2(Mo,Ti) Laves phase particles,which are stable at high temperatures.These secondary Laves phase particles prevent from recrystallization at high temperatures and correspond to semi-brittle fracture in the subsequent aging treatment.
基金the Gmnt-in-Aid for Scientific Research from the Ministry of Education, Science and Culture Of Japan and the National NaturalSci
文摘The microstructures of Cr modified Al3Ti containing Al2Ti and L10-AlTi precipitates have been investigated in terms of transmission electron microscopy(TEM). Fine precipitation of Al2Ti (Ga2Hf type structure) and Ll0-AlTi(Cr) occurs in Ll2-Al3Ti(Cr) by aging around 973K. The aging behavior was investigated by microhardness measurements. TEM observations reveal that plate-like Al2Ti precipitates lie on{100} planes of the Ll2-Al3Ti(Cr) matrix with the c axis of the tetragonal phase perpendicular to the thin plate. As contrast with Al2Ti precipitates, Ll0-AlTi(Cr) precipitates form thin plate and lie on {100} planes of Ll2-Al3Ti(Cr) matrix at the initial aging time and for long time aging the habit plane of the thin plate deviates from {100} plane and finally forms a kinked plate. The coherency stresses across the precipitate/matrix interface are considered to be the main factors controlling the precipitate morphology.
基金Projects(2006BA104B04-1,2006BAE04B07-3)supported by the National Science and Technology Supporting Program of ChinaProject(2007KZ05)supported by the Science and Technology Supporting Project of Changchun City,China+1 种基金Project supported by the Open Subject of State Key Laboratory of Rare Earth Resource Utilization(2008)the"985 Project"of Jilin University,China
文摘The Mg-6.5Gd-1.3Nd-0.7Y-0.3Zn alloy ingot and sheet were prepared by casting and hot extrusion techniques,and the microstructure,age hardening behavior and mechanical properties were investigated.The results show that the as-cast alloy mainly containsα-Mg solid solution and compounds of Mg5RE and Mg24RE5(RE=Gd,Y and Nd)phases.The grain size is refined after hot extrusion,and the Mg5RE and Mg24RE5 compounds are broken during the extrusion process.The extruded alloy exhibits remarkable age hardening response and excellent mechanical properties in the peak-aging state.The ultimate tensile strength,yield strength and elongation are 310 MPa,201 MPa and 5.8%at room temperature,and 173 MPa,133 MPa and 25.0%at 300℃,respectively.
基金Project(50801034)supported by the National Natural Science Foundation of ChinaProject(20060425)supported by the Scientific and Technological Research Key Laboratory Foundation of Liaoning Education Department,China
文摘Aging behaviors of extruded and rolled AZ80 and AZ31 Mg alloys were investigated under conditions similar to the paint-bake cycle currently used in automotive industry.Artificial aging at 170℃ from 0.5 to 12 h was conducted on solution-treated specimens to study the effects of aging on mechanical properties.SEM observations and EDS data show thatβ-phase of Al12Mg17 precipitates continuously or discontinuously fromα-Mg matrix and distributes along grain boundaries of the AZ80 alloy during artificial aging.Data of tensile tests and Vickers hardness tests show that an optimum mechanical property is achieved after baking at 170℃ for 6-8 h when Vickers hardness,tensile strength,and elongation are increased by 6.35%,15.30%,and 7.88%,respectively, while the AZ31 alloy does not exhibit significant hardening behavior over the aging period.