Estimation of base level changes in geological records is an important topic for petroleum geologists.Taking the Paleocene Upper Lingfeng Member of Lishui Sag as an example,this paper conducted a base level reconstruc...Estimation of base level changes in geological records is an important topic for petroleum geologists.Taking the Paleocene Upper Lingfeng Member of Lishui Sag as an example,this paper conducted a base level reconstruction based on Basin Filling Modelling(BFM).The reconstruction was processed on the ground of a previously interpreted seismic stratigraphic framework with several assumptions and simplification.The BFM is implemented with a nonlinear diffusion equation solver written in R coding that excels in shallow marine stratigraphic simulation.The modeled results fit the original stratigraphy very well.The BFM is a powerful tool for reconstructing the base level,and is an effective way to check the reasonableness of previous interpretations.Although simulation solutions may not be unique,the BFM still provides us a chance to gain some insights into the mechanism and dynamic details of the stratigraphy of sedimentary basins.展开更多
The basin filling geometric pattern of volcanic eruptive rocks depends on both of the eruptive locations in a basin and structural styles of fault terraces. It is divided into three types by eruptive locations and occ...The basin filling geometric pattern of volcanic eruptive rocks depends on both of the eruptive locations in a basin and structural styles of fault terraces. It is divided into three types by eruptive locations and occurrences of eruptive rocks, including the pattern of eruption along fault and occurrence (PEAFO), the pattern of eruption on footwall of a fault and occurrence (PEOFO) and the pattern of eruption on hangingwall of fault and occurrence (PEOHO) in Xujiaweizi fault depression of Songliao basin, Northeast of China. Those basin filling patterns of volcanic eruptive rocks are of specific geometric characteristics controlling or affecting sedimentation, geometry of sedimentary body and sequence architecture during a sequence evolution. The study shows that the volcanic rocks developed at different stages of lowstand, transgressive and highstand can give different controls or affects on the sequence architecture.展开更多
Variations of sedimentation rate within a basin over geologic time are a time series that can be filtered into several cyclic wave curves. Based on back-stripping and the empirical mode decomposition method, the cores...Variations of sedimentation rate within a basin over geologic time are a time series that can be filtered into several cyclic wave curves. Based on back-stripping and the empirical mode decomposition method, the cores from 14 wells in the Tarim Basin were selected to do filtering analysis. Four cycles or quasi-cycles (33 Ma, 64.4 Ma, 103.6 Ma, and 224 Ma) were obtained. Among these, the 33 Ma period, which was related to the internal earth activity, an external force, or a combination of the two, was the most obvious. The 64.4 Ma period corresponded to the solar system crossing the galaxy plane or the periodic melting of inner-earth material. The 103.6 Ma period was related with plate collisional tectonism around the Tarim Plate. The 224 Ma period was related to one galaxy year and may also be related to the aesthenospherical convection cycle.展开更多
The Dongying and Zhanhua sags are the major hydrocarbon exploration and produc- tion subbasins in the Bohai Bay Basin. Integrated analysis of the sedimentary basin fills has shown that the syndepositional faults and t...The Dongying and Zhanhua sags are the major hydrocarbon exploration and produc- tion subbasins in the Bohai Bay Basin. Integrated analysis of the sedimentary basin fills has shown that the syndepositional faults and their arrangement styles exerted an important influ- ence on the development and distribution of the Eogene depositional systems. The sedimentary filling evolution of the subbasins reflects the general control of the episodic rifting process. The major long-term active normal faults formed a series of paleogeomorphic accident or slopebreak zones that commonly delineated the subsidiary palaeostructural units and the depositional facies tracts and constrained the general distribution of sedimentary facies zones. The central sag boundary fault slopebreak zones usually determined the distribution of the depocenters of ter- restrial clastic depositional systems, particularly the lowstand fans or deltaic depositional sys- tems, and have proven to be the economically important targets for the exploration of subtle sandstone reservoirs. A variety of syndepositional fault arrangement patterns, including the par- allel, en echelon, combo-like, broom-like fault systems and the fault overlap or transfer zones, have been recognized in the subbasins. They generated distinctive geomorphic features and exerted a direct influence on sediment dispersal and sandbody distribution during the Eogene synrift stage. It is the key for the prediction of depositional systems tracts and reservoir sand- stones to investigate the activity and distribution of the fault slopebreak zones and reconstruct the structural paleogeomorphy in different basin filling stages of the basin evolution.展开更多
The Markit Slope is an important area for the petroleum exploration in the Tarim Basin. Elucidation of the oil filling history of discovered oilfields has great significance for recognizing the accumulation processes ...The Markit Slope is an important area for the petroleum exploration in the Tarim Basin. Elucidation of the oil filling history of discovered oilfields has great significance for recognizing the accumulation processes of the whole region. Using molecular geochemistry, fluid inclusion techniques and basin modeling, we studied the oil filling process of the Bashituo Oilfield that is located in the west of the Markit Slope. The molecular migration indexes, such as the methyldibenzothiophene ratio (4-/1-MDBT), trimethylnaphthalene ratio (TMNr) and pyrrolic nitrogen compounds content, decrease from west to east, indicating that the charging direction and migration pathways are from west to east. Lithological analysis and homogenization temperatures of saline fluid inclusions accompanied with oil fluid inclusions suggest that two charging periods occurred in the Devonian oil reservoir. Combining the burial history and heating history of well BT4, Basinmod 1D software modeling shows the two oil filling periods are from 290 Ma to 285 Ma and from l0 Ma to 4 Ma, respectively, and later oil filling dominates. This study may be helpful to understand the accumulation process and provide useful references for oil and gas exploration in the Markit Slope.展开更多
Based on the interpretation of high resolution 2D/3D seismic data, sedimentary filling characteristics and full- filled time of the Central Canyon in different segments in the Qiongdongnan Basin of northwestern South ...Based on the interpretation of high resolution 2D/3D seismic data, sedimentary filling characteristics and full- filled time of the Central Canyon in different segments in the Qiongdongnan Basin of northwestern South China Sea have been studied. The research results indicate that the initial formation age of the Central Canyon is traced back to 11.6 Ma (T40), at which the canyon began to develop due to the scouring of turbidity currents from west to east. During the period of 11.6-8.2 Ma (T40-T31), strong downcutting by gravity flow occurred, which led to the formation of the canyon. The canyon fillings began to form since 8.2 Ma (T31) and were dominated by turbidite deposits, which constituted of lateral migration and vertical superposition of turbidity channels during the time of 8.2-5.5 Ma. The interbeds of turbidity currents deposits and mass transport deposits (MTDs) were developed in the period of 5.5-3.8 Ma (T30-T28). After then, the canyon fillings were primarily made up of large scale MTDs, interrupted by small scale turbidity channels and thin pelagic mudstones. The Central Canyon can be divided into three types according to the main controlling factors, geomorphology-controlled, fault-controlled and intrusion- modified canyons. Among them, the geomorphology-controlled canyon is developed at the Ledong, Lingshui, Songnan and western Baodao Depressions, situated in a confined basin center between the northern slope and the South Uplift Belt along the Central Depression Belt. The fault-controlled canyon is developed mainly along the deep-seated faults in the Changchang Depression and eastern Baodao Depression. Intrusion-modified canyon is only occurred in the Songnan Low Uplift, which is still mainly controlled by geomorphology, the intrusion just modified seabed morphology. The full-filled time of the Central Canyon differs from west to east, displaying a tendency of being successively late eastward. The geomorphology-controlled canyon was completely filled before 3.8 Ma (T28), but that in intrusion-modified canyon was delayed to 2.4 Ma (T27) because of the uplifted southern canyon wall. To the Changchang Depression, the complete filling time was successively late eastward, and the canyon in eastern Changchang Depression is still not fully filled up to today. Difference in full-filled time in the Central Canyon is mainly governed by multiple sediment supplies and regional tectonic activities. Due to sufficient supply of turbidity currents and MTDs from west and north respectively, western segment of the Central Canyon is entirely filled up earlier. Owing to slower sediment supply rate, together with differential subsidence by deep-seated faults, the full-filled time of the canyon is put off eastwards gradually.展开更多
Studies on basin fills have provided significant insights into reservoir distribution and prediction in petroliferous basins, however, the effect of basin fills on source rock properties has been underexplored. This p...Studies on basin fills have provided significant insights into reservoir distribution and prediction in petroliferous basins, however, the effect of basin fills on source rock properties has been underexplored. This paper documents basin filling characteristics and their implications for depositional processes and heterogeneity of source rock in the Qingnan subsag of the Jiuquan Basin, by using subsurface geological data from recent hydrocarbon exploration efforts in this area. Drill core data reveals that the basin fill of the Qingnan subsag was dominated by fan delta-lacustrine systems, in which deposition of the fan deltas along the basin margin was mainly through gravity flows. The temporal and spatial evolution of the depositional systems indicates that the basin fill was characterized by a continuously retrogradational process, with decreasing extent of fan deltas in vertical succession. Weakening of tectonic activities and climate change from humid to semi-arid are interpreted to be the main control factors that were responsible for the retrogradational basin fill. The different depositional environments in the early stage and late stage of the retrogradational basin filling history resulted in the different depositional processes and properties of source rocks. This study suggests that source rock heterogeneity associated with basin fills in lacustrine basins should be considered in hydrocarbon exploration.展开更多
Coupling relationship exists in development time of the Qinling orogen and the neighboring Ordos basin, implying that they are connected genetically, that is, the formation and evolution of the Ordos basin are respons...Coupling relationship exists in development time of the Qinling orogen and the neighboring Ordos basin, implying that they are connected genetically, that is, the formation and evolution of the Ordos basin are response to orogeny. The present Ordos basin is a residual part of the Late Triassic large Ordos basin. The primary large Ordos basin was featured by four types of boundaries, i.e. (1) southern thrusting boundary; (2) southwestern strikeslip thrusting boundary; (3) northwestern rifting boundary; and (4) northeastern and northern passive gentle slope type boundary. This basin was composed of sequences A and B. These sequences consist of three parts, i.e. lower alluvial systems tract, middle expanding lacustrine systems tract and the upper contracting lacustrine systems tract. A systems tract is actually a parasequence set. Based on division of sequences stratigraphic units and reconstruction of depositional systems tracts, the present paper proposes that: (1) two episodes occurred during Late Triassic Qinling collision orogeny; (2) collision is stronger in western Qinling than in eastern Qinling.展开更多
In this paper, incised valley filling deposits, which formed an important pathway system for long-distance hydrocarbon migration, are discussed in detail based on core and logging data. The sequence SQy23 of the Creta...In this paper, incised valley filling deposits, which formed an important pathway system for long-distance hydrocarbon migration, are discussed in detail based on core and logging data. The sequence SQy23 of the Cretaceous Yaojia Formation is the main hydrocarbon-bearing layer in the Fulaerji Oilfield. The hydrocarbon source of the oilfield is the Qijia-Gulong Sag which is about 80 km away from the Fulaerji Oilfield. The transport layer of long-distance hydrocarbon migration is the overlapped sandstone complex which fills the incised valley. The incised valley developed during the depositional period from the late Qingshankou Formation to the early Yaojia Formation of Cretaceous (SQqna-SQy0 was about 70 km long and 20 km wide, and extended in the NW-SE direction. The overlapped filling of the incised valley mainly occurred in the expanding system tract of the third-order sequence SQy23 (ESTy23). Towards the basin, incised valley filling deposits overlapped on the delta developed in the early period, and towards the basin margin, incised valley filling deposits were covered by the shore-shallow lacustrine sandy beach bar developed in the maximum flooding period. All of the delta, the incised valley filling and the shore-shallow sandy beach bar are sandstone-rich, and have high porosity and permeability, and can form an effective hydrocarbon migration and accumulation system. Deltaic sand bodies collected and pumped hydrocarbon from the active source, incised valley filling depositional system completed the long-distance hydrocarbon migration, and lithological traps of shore-shallow lacustrine sandy beach bar accumulated hydrocarbon. The incised valley filling sequences are multi-cycle: an integrated shortterm filling cycle was developed on the erosion surface, and the sequences upward were mud-gravel stone, medium-fine sandstone containing terrigenous gravels and muddy pebbles with cross bedding, silty mudstone with ripple bedding, and mudstone. The incised valley filling deposits are characterized by a strong heterogeneity and the main hydrocarbon migration pathway is the medium-fine sandstone interval.展开更多
In the South Yellow Sea Basin,Mesozoic–Paleozoic marine strata are generally well developed with large thickness,and no substantial breakthroughs have been made in hydrocarbon exploration.Through research,it is belie...In the South Yellow Sea Basin,Mesozoic–Paleozoic marine strata are generally well developed with large thickness,and no substantial breakthroughs have been made in hydrocarbon exploration.Through research,it is believed that the Upper Permian–Lower Triassic can be regarded as a long-term base-level cycle.Based on drilling data,characteristics of the lithology–electric property combination cyclicity,and the special lithology,the long-term base-level cycle was divided into five medium-term base-level cycles(MC1–MC5).On this basis,the Permian–Triassic sedimentary systems and their filling model were analyzed in accordance with the change of base-level cycle and transition of sedimentary environment,as well as characteristics of the drilling sedimentary facies and seismic facies.The results show that there were six sedimentary systems(fluvial,delta,tidal flat,open platform,restricted platform,and continental shelf)developed in the Upper Permian–Lower Triassic,the sedimentary systems were distributed such that the water was deep in the northwest and shallow in the southeast,and there were two base-level cycle filling models(a relatively stable tidal flat facies and a rapidly transgressive continental shelf facies to stable platform facies)developed in the Upper Permian–Lower Triassic.These models can provide a basis for evaluation of the Mesozoic–Paleozoic hydrocarbon geology in the South Yellow Sea Basin.展开更多
1.Objective Yican 1 well, drilled in Southeastern Ordos Basin by Oil & Gas Survey, China Geological Survey in 2014 produced 3.7×104 m3 natural gas daily, which is the most productive well in the area by far. ...1.Objective Yican 1 well, drilled in Southeastern Ordos Basin by Oil & Gas Survey, China Geological Survey in 2014 produced 3.7×104 m3 natural gas daily, which is the most productive well in the area by far. However, the reservoir quality is poor compared with those of Jingbian gas field in the middle of the Basin, which is mainly caused by the pores filling in karst reservoir.展开更多
Based on comprehensive analysis of seismic,logging,core,thin section data,and stable isotopic compositions of carbon and oxygen,the sedimentary filling characteristics of the Lower Cretaceous Barra Velha Formation seq...Based on comprehensive analysis of seismic,logging,core,thin section data,and stable isotopic compositions of carbon and oxygen,the sedimentary filling characteristics of the Lower Cretaceous Barra Velha Formation sequence in H oil field,Santos Basin,are studied,and the high-frequency sequence stratigraphic framework is established,and the spatial distribution of reef-shoal bodies are predicted and the controlling factors are discussed.During the depositional period of the Barra Velha Formation,the study area is a slope-isolated platform-slope sedimentary pattern from southwest to northeast and the change of climate background from rift to depression periods has resulted in the variation of sedimentary characteristics from the lower third-order sequence SQ1(BVE 300 Member)of low-energy deep water to the upper third-order sequence SQ2(BVE 200 and 100 members)of high-energy shallow water in the Barra Velha Formation.The activities of extensional faults and strike-slip faults in rift period and the sedimentary differentiation from platform margin to intra-platform in depression period made the sedimentary paleogeomorphology in these two periods show features of“three ridges and two depressions”.The reef-shoal bodies mainly developed in the SQ2-LHST period,with vertical development positions restricted by the periodic oscillation of the lake level,and developed on the top of each high-frequency sequence stratigraphic unit in SQ2-LHST in the platform.The strike-slip fault activity controlled the distribution of the reef-shoal bodies on the plane by changing the sedimentary paleogeomorphology.The positive flower-shaped strike-slip faults made the formation of local highlands at the margins of and inside the shallow water platforms and which became high-energy sedimentary zones,creating conditions for the development of reef-shoal bodies.展开更多
The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantl...The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantly,but the origin analysis of different gas types has previously been weak.Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings,this research covers the diverse origins of natural gas in different strata.The gas components are mainly methane with a small amount of C_(2+),and non-hydrocarbon gases,including nitrogen(N_(2)),hydrogen(H_(2)),carbon dioxide(CO_(2)),and helium(He).At greater depth,the carbon isotope of methane becomes heavier,and the hydrogen isotope points to a lacustrine sedimentary environment.With increasing depth,the origins of N_(2)and CO_(2)change gradually from a mixture of organic and inorganic to inorganic.The origins of hydrogen gas are complex and include organic sources,water radiolysis,water-rock(Fe^(2+)-containing minerals)reactions,and mantle-derived.The shales of Denglouku and Shahezi Formations,as source rocks,provide the premise for generation and occurrence of organic gas.Furthermore,the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas.The discovery of a high content of H_(2)in study area not only reveals the organic and inorganic association of natural-gas generation,but also provides a scientific basis for the exploration of deep hydrogen-rich gas.展开更多
The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth ...The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth of 8780e8840 m,also the deepest in Asia in terms of oil discovery.In this paper,the geochemical characteristics of Sinian oil and gas from the well were investigated and compared with those of Cambrian oil and gas discovered in the same basin.The oil samples,with Pr/Ph ratio of 0.78 and a whole oil carbon isotopic value of31.6‰,have geochemical characteristics similar to those of Ordovician oils from the No.1 fault in the North Shuntuoguole area(also named Shunbei area)and the Middle Cambrian oil from wells Zhongshen 1(ZS1)and Zhongshen 5(ZS5)of Tazhong Uplift.The maturity of light hydrocarbons,diamondoids and aromatic fractions all suggest an approximate maturity of 1.5%e1.7%Ro for the samples.The(4-+3-)methyldiamantane concentration of the samples is 113.5 mg/g,indicating intense cracking with a cracking degree of about 80%,which is consistent with the high bottom hole temperature(179℃).The Sinian gas samples are dry with a dryness coefficient of 0.97.The gas is a mixture of kerogen-cracking gas and oil-cracking gas and has Ro values ranging between 1.5%and 1.7%,and methane carbon isotopic values of41.6‰.Based on the equivalent vitrinite reflectance(R_(eqv)=1.51%e1.61%)and the thermal evolution of source rocks from the Cambrian Yu'ertusi Formation of the same well,it is proposed that the Sinian oil and gas be mainly sourced from the Cambrian Yu'ertusi Formation during the Himalayan period but probably also be joined by hydrocarbon of higher maturity that migrated from other source rocks in deeper formations.The discovery of Sinian oil and gas from Well TS5 suggests that the ancient ultra-deep strata in the northern Tarim Basin have the potential for finding volatile oil or condensate reservoirs.展开更多
The relation and unity of the tectonic process and sedimentation is being paid a good deal of attention. It is very obvious that the sedimentary process of the terrestrial basin is controlled by tectogenesis. The sedi...The relation and unity of the tectonic process and sedimentation is being paid a good deal of attention. It is very obvious that the sedimentary process of the terrestrial basin is controlled by tectogenesis. The sedimentary evolution of the basin is the reflection of the tectonic evolution . The sedimentary process of the terrestrial basin has unique characteristics.(1) The scope of the terrestrial basin is mainly controlled by the fault zones.(2) The regional tectonic cycle obviously controls the sedimentary sequence boundary of the terrestrial basin. The periodicity of tectogenesis causes the periodic change of the sedimentary sequence.(3) The sedimentary model of the terrestrial basin is obviously controlled by the tectonic framework.(4) There are many surprise sedimentary events in sedimentary formation of the terrestrial basin.(5) Owing to the influence of the tectonization, the deformation frequently occurs in the sedimentary deposit.(6) Because the sediments of the terrestrial basin have the short\|distance transport, the sediments have the low mature index.(7) There are more sedimentary centres, more matter\|sources, narrow sedimentary facies\|zone and the quick facies change in the terrestrial basin.According to the background of the tectonic dynamics, the terrestrial basin can be divided into the extension basin, the compression basin and the shear basin. The three basins differ greatly in the sedimentary characteristics. The extension basin is usually directed at rift basin. The border of the extension basin is mainly the normal fault or growth fault. The plane shape of the extension is zone\|shape. The sedimentary deposit of the extension basin has not strong deformation. The thickness of the sediment on the downthrow wall is greater than that the sediment on the upcast wall. The periodic change of the tectogenesis causes the enlarging or the contract of the extension basin.展开更多
A stratigraphic and depositional filling modal of Triassic—Jurassic North Tarim foreland basin system is erected, through synthetic analysis of geological setting, depositional provenance, sequence stratigraphy, and ...A stratigraphic and depositional filling modal of Triassic—Jurassic North Tarim foreland basin system is erected, through synthetic analysis of geological setting, depositional provenance, sequence stratigraphy, and quantitative tectonic stratigraphy. The result suggests that the major factors controlling formation and evolution of the system are oblique collision and convergence of different plates, and favorite hydrocarbon plays is predicted.The geological setting analysis emphasizes the historical succession of the foreland basin system formation and evolution. The tectonic setting analysis sketchy outlines formation of the system and tectonic setting of its successive evolution. The sedimentary geology analysis reveals the uplift and subsidence of the basin basement a seesaw style movement.展开更多
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro...To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.展开更多
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra...Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.展开更多
The Linxia Basin is characterized by an abundance of Cenozoic sediments,that contain exceptionally rich fossil resources.Equids are abundant in the Linxia Basin,the fossil record of equids in this region including 16 ...The Linxia Basin is characterized by an abundance of Cenozoic sediments,that contain exceptionally rich fossil resources.Equids are abundant in the Linxia Basin,the fossil record of equids in this region including 16 species that represent 10 genera.In comparison to other classic late Cenozoic areas in China,the Linxia Basin stands out,because the fauna and chronological data accompanying Linxia equids render them remarkably useful for biostratigraphy.The anchitheriines in the region,such as Anchitherium and Sinohippus,represent early equids that appeared in the late stages of the middle and late Miocene,respectively.Among the equines,most species of Chinese hipparions have been identified in the Linxia Basin and some species of the genera Hipparion and Hippotherium have FAD records for China.Furthermore,Equus eisenmannae is one of the earliest known species of Equus in the Old World and is well-represented at the Longdan locality.Some species with precise geohistorical distributions can serve as standards for high-resolution chronological units within this framework.Located at the eastern margin of the Tibetan Plateau and subject to considerable uplift,the Linxia Basin has served as a biogeographic transition area for equids throughout the late Cenozoic.展开更多
In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned o...In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned oil and gas(AOG)wells,focusing particularly on Lubbock,a geographic area situated within the larger region known as the Permian Basin in West Texas,United States.The objective is to assess the extent and environmental implications of methane leakage from these wells.The analysis integrates pertinent literature,governmental and industry data,and prior Lubbock reports.Factors affecting methane leakage,including well integrity,geological characteristics,and human activities,are explored.Our research estimates 1781 drilled wells in Lubbock,forming a foundation for targeted assessments and monitoring due to historical drilling trends.The hierarchy of well statuses in Lubbock highlights the prevalence of“active oil wells,”trailed by“plugged and abandoned oil wells”and“inactive oil wells.”Methane leakage potential aligns with these well types,underscoring the importance of strategic monitoring and mitigation.The analysis notes a zenith in“drilled and completed”wells during 1980-1990.While our study's case analysis and literature review reiterate the critical significance of assessing and mitigating methane emissions from AOG wells,it's important to clarify that the research does not directly provide methane leakage data.Instead,it contextualizes the issue's magnitude and emphasizes the well type and status analysis's role in targeted mitigation efforts.In summary,our research deepens our understanding of methane leakage,aiding informed decision-making and policy formulation for environmental preservation.By clarifying well type implications and historical drilling patterns,we aim to contribute to effective strategies in mitigating methane emissions from AOG wells.展开更多
基金the Initial Fund for Young Scholars of Qingdao University of Science and Technology and the National Natural Science Foundation of China(No.51804325)。
文摘Estimation of base level changes in geological records is an important topic for petroleum geologists.Taking the Paleocene Upper Lingfeng Member of Lishui Sag as an example,this paper conducted a base level reconstruction based on Basin Filling Modelling(BFM).The reconstruction was processed on the ground of a previously interpreted seismic stratigraphic framework with several assumptions and simplification.The BFM is implemented with a nonlinear diffusion equation solver written in R coding that excels in shallow marine stratigraphic simulation.The modeled results fit the original stratigraphy very well.The BFM is a powerful tool for reconstructing the base level,and is an effective way to check the reasonableness of previous interpretations.Although simulation solutions may not be unique,the BFM still provides us a chance to gain some insights into the mechanism and dynamic details of the stratigraphy of sedimentary basins.
文摘The basin filling geometric pattern of volcanic eruptive rocks depends on both of the eruptive locations in a basin and structural styles of fault terraces. It is divided into three types by eruptive locations and occurrences of eruptive rocks, including the pattern of eruption along fault and occurrence (PEAFO), the pattern of eruption on footwall of a fault and occurrence (PEOFO) and the pattern of eruption on hangingwall of fault and occurrence (PEOHO) in Xujiaweizi fault depression of Songliao basin, Northeast of China. Those basin filling patterns of volcanic eruptive rocks are of specific geometric characteristics controlling or affecting sedimentation, geometry of sedimentary body and sequence architecture during a sequence evolution. The study shows that the volcanic rocks developed at different stages of lowstand, transgressive and highstand can give different controls or affects on the sequence architecture.
基金financially supported by the National Natural Science Foundation of China (Grant No.41172124)the Petroleum Exploration and Production Research Institute,Sinopec Company Ltd
文摘Variations of sedimentation rate within a basin over geologic time are a time series that can be filtered into several cyclic wave curves. Based on back-stripping and the empirical mode decomposition method, the cores from 14 wells in the Tarim Basin were selected to do filtering analysis. Four cycles or quasi-cycles (33 Ma, 64.4 Ma, 103.6 Ma, and 224 Ma) were obtained. Among these, the 33 Ma period, which was related to the internal earth activity, an external force, or a combination of the two, was the most obvious. The 64.4 Ma period corresponded to the solar system crossing the galaxy plane or the periodic melting of inner-earth material. The 103.6 Ma period was related with plate collisional tectonism around the Tarim Plate. The 224 Ma period was related to one galaxy year and may also be related to the aesthenospherical convection cycle.
基金This work was supported by the Ministry of Science and Technology of China (Grant No. G1999043304) the National Natural Science Foundation of China (Grant No. 40072039).
文摘The Dongying and Zhanhua sags are the major hydrocarbon exploration and produc- tion subbasins in the Bohai Bay Basin. Integrated analysis of the sedimentary basin fills has shown that the syndepositional faults and their arrangement styles exerted an important influ- ence on the development and distribution of the Eogene depositional systems. The sedimentary filling evolution of the subbasins reflects the general control of the episodic rifting process. The major long-term active normal faults formed a series of paleogeomorphic accident or slopebreak zones that commonly delineated the subsidiary palaeostructural units and the depositional facies tracts and constrained the general distribution of sedimentary facies zones. The central sag boundary fault slopebreak zones usually determined the distribution of the depocenters of ter- restrial clastic depositional systems, particularly the lowstand fans or deltaic depositional sys- tems, and have proven to be the economically important targets for the exploration of subtle sandstone reservoirs. A variety of syndepositional fault arrangement patterns, including the par- allel, en echelon, combo-like, broom-like fault systems and the fault overlap or transfer zones, have been recognized in the subbasins. They generated distinctive geomorphic features and exerted a direct influence on sediment dispersal and sandbody distribution during the Eogene synrift stage. It is the key for the prediction of depositional systems tracts and reservoir sand- stones to investigate the activity and distribution of the fault slopebreak zones and reconstruct the structural paleogeomorphy in different basin filling stages of the basin evolution.
基金supported by the Natural Science Foundation of China (Grant No.40972089)the Foundation of the State Key Laboratory of Petroleum Resources and Prospecting (Grant No.PRPDX2008-01)
文摘The Markit Slope is an important area for the petroleum exploration in the Tarim Basin. Elucidation of the oil filling history of discovered oilfields has great significance for recognizing the accumulation processes of the whole region. Using molecular geochemistry, fluid inclusion techniques and basin modeling, we studied the oil filling process of the Bashituo Oilfield that is located in the west of the Markit Slope. The molecular migration indexes, such as the methyldibenzothiophene ratio (4-/1-MDBT), trimethylnaphthalene ratio (TMNr) and pyrrolic nitrogen compounds content, decrease from west to east, indicating that the charging direction and migration pathways are from west to east. Lithological analysis and homogenization temperatures of saline fluid inclusions accompanied with oil fluid inclusions suggest that two charging periods occurred in the Devonian oil reservoir. Combining the burial history and heating history of well BT4, Basinmod 1D software modeling shows the two oil filling periods are from 290 Ma to 285 Ma and from l0 Ma to 4 Ma, respectively, and later oil filling dominates. This study may be helpful to understand the accumulation process and provide useful references for oil and gas exploration in the Markit Slope.
基金The National Natural Science Foundation of China under contract Nos 41372112 and 91028009the National Key Projects of Oil and Gas under contract No.2011ZX05025-002-02the Open Fund of Key Laboratory of Tectonics and Petroleum Resources(China University of Geosciences),Ministry of Education under contract No.TPR-2012-05
文摘Based on the interpretation of high resolution 2D/3D seismic data, sedimentary filling characteristics and full- filled time of the Central Canyon in different segments in the Qiongdongnan Basin of northwestern South China Sea have been studied. The research results indicate that the initial formation age of the Central Canyon is traced back to 11.6 Ma (T40), at which the canyon began to develop due to the scouring of turbidity currents from west to east. During the period of 11.6-8.2 Ma (T40-T31), strong downcutting by gravity flow occurred, which led to the formation of the canyon. The canyon fillings began to form since 8.2 Ma (T31) and were dominated by turbidite deposits, which constituted of lateral migration and vertical superposition of turbidity channels during the time of 8.2-5.5 Ma. The interbeds of turbidity currents deposits and mass transport deposits (MTDs) were developed in the period of 5.5-3.8 Ma (T30-T28). After then, the canyon fillings were primarily made up of large scale MTDs, interrupted by small scale turbidity channels and thin pelagic mudstones. The Central Canyon can be divided into three types according to the main controlling factors, geomorphology-controlled, fault-controlled and intrusion- modified canyons. Among them, the geomorphology-controlled canyon is developed at the Ledong, Lingshui, Songnan and western Baodao Depressions, situated in a confined basin center between the northern slope and the South Uplift Belt along the Central Depression Belt. The fault-controlled canyon is developed mainly along the deep-seated faults in the Changchang Depression and eastern Baodao Depression. Intrusion-modified canyon is only occurred in the Songnan Low Uplift, which is still mainly controlled by geomorphology, the intrusion just modified seabed morphology. The full-filled time of the Central Canyon differs from west to east, displaying a tendency of being successively late eastward. The geomorphology-controlled canyon was completely filled before 3.8 Ma (T28), but that in intrusion-modified canyon was delayed to 2.4 Ma (T27) because of the uplifted southern canyon wall. To the Changchang Depression, the complete filling time was successively late eastward, and the canyon in eastern Changchang Depression is still not fully filled up to today. Difference in full-filled time in the Central Canyon is mainly governed by multiple sediment supplies and regional tectonic activities. Due to sufficient supply of turbidity currents and MTDs from west and north respectively, western segment of the Central Canyon is entirely filled up earlier. Owing to slower sediment supply rate, together with differential subsidence by deep-seated faults, the full-filled time of the canyon is put off eastwards gradually.
基金supported by the National Natural Science Foundation of China (NSFC) Program (No. 41472084)the Major National Petroleum Program in the ‘Thirteenth Five-Year’ Plan (No. 2016ZX05006-006-002)+2 种基金the Comprehensive Geological Survey Project of Ningde Coastal Zone (No. DD20189505)the Open Fund of Evaluation and Detection Technology Laboratory of Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology (No. KC201701)the Natural Science Foundation of Shandong Province (No. ZR2016DB29)
文摘Studies on basin fills have provided significant insights into reservoir distribution and prediction in petroliferous basins, however, the effect of basin fills on source rock properties has been underexplored. This paper documents basin filling characteristics and their implications for depositional processes and heterogeneity of source rock in the Qingnan subsag of the Jiuquan Basin, by using subsurface geological data from recent hydrocarbon exploration efforts in this area. Drill core data reveals that the basin fill of the Qingnan subsag was dominated by fan delta-lacustrine systems, in which deposition of the fan deltas along the basin margin was mainly through gravity flows. The temporal and spatial evolution of the depositional systems indicates that the basin fill was characterized by a continuously retrogradational process, with decreasing extent of fan deltas in vertical succession. Weakening of tectonic activities and climate change from humid to semi-arid are interpreted to be the main control factors that were responsible for the retrogradational basin fill. The different depositional environments in the early stage and late stage of the retrogradational basin filling history resulted in the different depositional processes and properties of source rocks. This study suggests that source rock heterogeneity associated with basin fills in lacustrine basins should be considered in hydrocarbon exploration.
文摘Coupling relationship exists in development time of the Qinling orogen and the neighboring Ordos basin, implying that they are connected genetically, that is, the formation and evolution of the Ordos basin are response to orogeny. The present Ordos basin is a residual part of the Late Triassic large Ordos basin. The primary large Ordos basin was featured by four types of boundaries, i.e. (1) southern thrusting boundary; (2) southwestern strikeslip thrusting boundary; (3) northwestern rifting boundary; and (4) northeastern and northern passive gentle slope type boundary. This basin was composed of sequences A and B. These sequences consist of three parts, i.e. lower alluvial systems tract, middle expanding lacustrine systems tract and the upper contracting lacustrine systems tract. A systems tract is actually a parasequence set. Based on division of sequences stratigraphic units and reconstruction of depositional systems tracts, the present paper proposes that: (1) two episodes occurred during Late Triassic Qinling collision orogeny; (2) collision is stronger in western Qinling than in eastern Qinling.
文摘In this paper, incised valley filling deposits, which formed an important pathway system for long-distance hydrocarbon migration, are discussed in detail based on core and logging data. The sequence SQy23 of the Cretaceous Yaojia Formation is the main hydrocarbon-bearing layer in the Fulaerji Oilfield. The hydrocarbon source of the oilfield is the Qijia-Gulong Sag which is about 80 km away from the Fulaerji Oilfield. The transport layer of long-distance hydrocarbon migration is the overlapped sandstone complex which fills the incised valley. The incised valley developed during the depositional period from the late Qingshankou Formation to the early Yaojia Formation of Cretaceous (SQqna-SQy0 was about 70 km long and 20 km wide, and extended in the NW-SE direction. The overlapped filling of the incised valley mainly occurred in the expanding system tract of the third-order sequence SQy23 (ESTy23). Towards the basin, incised valley filling deposits overlapped on the delta developed in the early period, and towards the basin margin, incised valley filling deposits were covered by the shore-shallow lacustrine sandy beach bar developed in the maximum flooding period. All of the delta, the incised valley filling and the shore-shallow sandy beach bar are sandstone-rich, and have high porosity and permeability, and can form an effective hydrocarbon migration and accumulation system. Deltaic sand bodies collected and pumped hydrocarbon from the active source, incised valley filling depositional system completed the long-distance hydrocarbon migration, and lithological traps of shore-shallow lacustrine sandy beach bar accumulated hydrocarbon. The incised valley filling sequences are multi-cycle: an integrated shortterm filling cycle was developed on the erosion surface, and the sequences upward were mud-gravel stone, medium-fine sandstone containing terrigenous gravels and muddy pebbles with cross bedding, silty mudstone with ripple bedding, and mudstone. The incised valley filling deposits are characterized by a strong heterogeneity and the main hydrocarbon migration pathway is the medium-fine sandstone interval.
基金Projects(41506080,41702162)supported by the National Natural Science Foundation of ChinaProjects(DD20160152,DD20160147,GZH200800503)supported by China Geological Survey+1 种基金Projects(XQ-2005-01,2009GYXQ10)supported by China Ministry of Land and ResourcesProject(201602004)supported by the Postdoctoral Innovation Foundation of Shandong Province,China
文摘In the South Yellow Sea Basin,Mesozoic–Paleozoic marine strata are generally well developed with large thickness,and no substantial breakthroughs have been made in hydrocarbon exploration.Through research,it is believed that the Upper Permian–Lower Triassic can be regarded as a long-term base-level cycle.Based on drilling data,characteristics of the lithology–electric property combination cyclicity,and the special lithology,the long-term base-level cycle was divided into five medium-term base-level cycles(MC1–MC5).On this basis,the Permian–Triassic sedimentary systems and their filling model were analyzed in accordance with the change of base-level cycle and transition of sedimentary environment,as well as characteristics of the drilling sedimentary facies and seismic facies.The results show that there were six sedimentary systems(fluvial,delta,tidal flat,open platform,restricted platform,and continental shelf)developed in the Upper Permian–Lower Triassic,the sedimentary systems were distributed such that the water was deep in the northwest and shallow in the southeast,and there were two base-level cycle filling models(a relatively stable tidal flat facies and a rapidly transgressive continental shelf facies to stable platform facies)developed in the Upper Permian–Lower Triassic.These models can provide a basis for evaluation of the Mesozoic–Paleozoic hydrocarbon geology in the South Yellow Sea Basin.
基金supported by National Science Foundation of China (41802173).
文摘1.Objective Yican 1 well, drilled in Southeastern Ordos Basin by Oil & Gas Survey, China Geological Survey in 2014 produced 3.7×104 m3 natural gas daily, which is the most productive well in the area by far. However, the reservoir quality is poor compared with those of Jingbian gas field in the middle of the Basin, which is mainly caused by the pores filling in karst reservoir.
基金Supported by the National Science and Technology Major Project of China(2016ZX05033-002-008).
文摘Based on comprehensive analysis of seismic,logging,core,thin section data,and stable isotopic compositions of carbon and oxygen,the sedimentary filling characteristics of the Lower Cretaceous Barra Velha Formation sequence in H oil field,Santos Basin,are studied,and the high-frequency sequence stratigraphic framework is established,and the spatial distribution of reef-shoal bodies are predicted and the controlling factors are discussed.During the depositional period of the Barra Velha Formation,the study area is a slope-isolated platform-slope sedimentary pattern from southwest to northeast and the change of climate background from rift to depression periods has resulted in the variation of sedimentary characteristics from the lower third-order sequence SQ1(BVE 300 Member)of low-energy deep water to the upper third-order sequence SQ2(BVE 200 and 100 members)of high-energy shallow water in the Barra Velha Formation.The activities of extensional faults and strike-slip faults in rift period and the sedimentary differentiation from platform margin to intra-platform in depression period made the sedimentary paleogeomorphology in these two periods show features of“three ridges and two depressions”.The reef-shoal bodies mainly developed in the SQ2-LHST period,with vertical development positions restricted by the periodic oscillation of the lake level,and developed on the top of each high-frequency sequence stratigraphic unit in SQ2-LHST in the platform.The strike-slip fault activity controlled the distribution of the reef-shoal bodies on the plane by changing the sedimentary paleogeomorphology.The positive flower-shaped strike-slip faults made the formation of local highlands at the margins of and inside the shallow water platforms and which became high-energy sedimentary zones,creating conditions for the development of reef-shoal bodies.
基金supported by the National Natural Science Foundation of China(Grant No.42072168)the National Key R&D Program of China(Grant No.2019YFC0605405)the Fundamental Research Funds for the Central Universities(Grant No.2023ZKPYDC07)。
文摘The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantly,but the origin analysis of different gas types has previously been weak.Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings,this research covers the diverse origins of natural gas in different strata.The gas components are mainly methane with a small amount of C_(2+),and non-hydrocarbon gases,including nitrogen(N_(2)),hydrogen(H_(2)),carbon dioxide(CO_(2)),and helium(He).At greater depth,the carbon isotope of methane becomes heavier,and the hydrogen isotope points to a lacustrine sedimentary environment.With increasing depth,the origins of N_(2)and CO_(2)change gradually from a mixture of organic and inorganic to inorganic.The origins of hydrogen gas are complex and include organic sources,water radiolysis,water-rock(Fe^(2+)-containing minerals)reactions,and mantle-derived.The shales of Denglouku and Shahezi Formations,as source rocks,provide the premise for generation and occurrence of organic gas.Furthermore,the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas.The discovery of a high content of H_(2)in study area not only reveals the organic and inorganic association of natural-gas generation,but also provides a scientific basis for the exploration of deep hydrogen-rich gas.
基金funded by projects of the National Natural Science Foundation of China(Nos.:42272167,U19B6003 and 41772153)projects of the Science&Technology Department of Sinopec(Nos.:P22121,P21058-8 and P23167).
文摘The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth of 8780e8840 m,also the deepest in Asia in terms of oil discovery.In this paper,the geochemical characteristics of Sinian oil and gas from the well were investigated and compared with those of Cambrian oil and gas discovered in the same basin.The oil samples,with Pr/Ph ratio of 0.78 and a whole oil carbon isotopic value of31.6‰,have geochemical characteristics similar to those of Ordovician oils from the No.1 fault in the North Shuntuoguole area(also named Shunbei area)and the Middle Cambrian oil from wells Zhongshen 1(ZS1)and Zhongshen 5(ZS5)of Tazhong Uplift.The maturity of light hydrocarbons,diamondoids and aromatic fractions all suggest an approximate maturity of 1.5%e1.7%Ro for the samples.The(4-+3-)methyldiamantane concentration of the samples is 113.5 mg/g,indicating intense cracking with a cracking degree of about 80%,which is consistent with the high bottom hole temperature(179℃).The Sinian gas samples are dry with a dryness coefficient of 0.97.The gas is a mixture of kerogen-cracking gas and oil-cracking gas and has Ro values ranging between 1.5%and 1.7%,and methane carbon isotopic values of41.6‰.Based on the equivalent vitrinite reflectance(R_(eqv)=1.51%e1.61%)and the thermal evolution of source rocks from the Cambrian Yu'ertusi Formation of the same well,it is proposed that the Sinian oil and gas be mainly sourced from the Cambrian Yu'ertusi Formation during the Himalayan period but probably also be joined by hydrocarbon of higher maturity that migrated from other source rocks in deeper formations.The discovery of Sinian oil and gas from Well TS5 suggests that the ancient ultra-deep strata in the northern Tarim Basin have the potential for finding volatile oil or condensate reservoirs.
文摘The relation and unity of the tectonic process and sedimentation is being paid a good deal of attention. It is very obvious that the sedimentary process of the terrestrial basin is controlled by tectogenesis. The sedimentary evolution of the basin is the reflection of the tectonic evolution . The sedimentary process of the terrestrial basin has unique characteristics.(1) The scope of the terrestrial basin is mainly controlled by the fault zones.(2) The regional tectonic cycle obviously controls the sedimentary sequence boundary of the terrestrial basin. The periodicity of tectogenesis causes the periodic change of the sedimentary sequence.(3) The sedimentary model of the terrestrial basin is obviously controlled by the tectonic framework.(4) There are many surprise sedimentary events in sedimentary formation of the terrestrial basin.(5) Owing to the influence of the tectonization, the deformation frequently occurs in the sedimentary deposit.(6) Because the sediments of the terrestrial basin have the short\|distance transport, the sediments have the low mature index.(7) There are more sedimentary centres, more matter\|sources, narrow sedimentary facies\|zone and the quick facies change in the terrestrial basin.According to the background of the tectonic dynamics, the terrestrial basin can be divided into the extension basin, the compression basin and the shear basin. The three basins differ greatly in the sedimentary characteristics. The extension basin is usually directed at rift basin. The border of the extension basin is mainly the normal fault or growth fault. The plane shape of the extension is zone\|shape. The sedimentary deposit of the extension basin has not strong deformation. The thickness of the sediment on the downthrow wall is greater than that the sediment on the upcast wall. The periodic change of the tectogenesis causes the enlarging or the contract of the extension basin.
文摘A stratigraphic and depositional filling modal of Triassic—Jurassic North Tarim foreland basin system is erected, through synthetic analysis of geological setting, depositional provenance, sequence stratigraphy, and quantitative tectonic stratigraphy. The result suggests that the major factors controlling formation and evolution of the system are oblique collision and convergence of different plates, and favorite hydrocarbon plays is predicted.The geological setting analysis emphasizes the historical succession of the foreland basin system formation and evolution. The tectonic setting analysis sketchy outlines formation of the system and tectonic setting of its successive evolution. The sedimentary geology analysis reveals the uplift and subsidence of the basin basement a seesaw style movement.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ18-03)Changqing Oilfield Major Science and Technology Project(2023DZZ01)。
文摘To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.
基金supported by the National Natural Science Foundation of China(42376221,42276083)Director Research Fund Project of Guangzhou Marine Geological Survey(2023GMGSJZJJ00030)+2 种基金National Key Research and Development Program of China(2021YFC2800901)Guangdong Major Project of Basic and Applied Basic Research(2020B030103003)the project of the China Geological Survey(DD20230064).
文摘Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.
基金supported by National Key Research and Development Program of China(Grant No.2023YFF0804501)the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2021069)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB31000000)the Second Comprehensive Scientific Expedition on the Tibetan Plateau(Grant No.2019QZKK0705)the All China Commission of Stratigraphy(Grant No.DD20221829).
文摘The Linxia Basin is characterized by an abundance of Cenozoic sediments,that contain exceptionally rich fossil resources.Equids are abundant in the Linxia Basin,the fossil record of equids in this region including 16 species that represent 10 genera.In comparison to other classic late Cenozoic areas in China,the Linxia Basin stands out,because the fauna and chronological data accompanying Linxia equids render them remarkably useful for biostratigraphy.The anchitheriines in the region,such as Anchitherium and Sinohippus,represent early equids that appeared in the late stages of the middle and late Miocene,respectively.Among the equines,most species of Chinese hipparions have been identified in the Linxia Basin and some species of the genera Hipparion and Hippotherium have FAD records for China.Furthermore,Equus eisenmannae is one of the earliest known species of Equus in the Old World and is well-represented at the Longdan locality.Some species with precise geohistorical distributions can serve as standards for high-resolution chronological units within this framework.Located at the eastern margin of the Tibetan Plateau and subject to considerable uplift,the Linxia Basin has served as a biogeographic transition area for equids throughout the late Cenozoic.
文摘In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned oil and gas(AOG)wells,focusing particularly on Lubbock,a geographic area situated within the larger region known as the Permian Basin in West Texas,United States.The objective is to assess the extent and environmental implications of methane leakage from these wells.The analysis integrates pertinent literature,governmental and industry data,and prior Lubbock reports.Factors affecting methane leakage,including well integrity,geological characteristics,and human activities,are explored.Our research estimates 1781 drilled wells in Lubbock,forming a foundation for targeted assessments and monitoring due to historical drilling trends.The hierarchy of well statuses in Lubbock highlights the prevalence of“active oil wells,”trailed by“plugged and abandoned oil wells”and“inactive oil wells.”Methane leakage potential aligns with these well types,underscoring the importance of strategic monitoring and mitigation.The analysis notes a zenith in“drilled and completed”wells during 1980-1990.While our study's case analysis and literature review reiterate the critical significance of assessing and mitigating methane emissions from AOG wells,it's important to clarify that the research does not directly provide methane leakage data.Instead,it contextualizes the issue's magnitude and emphasizes the well type and status analysis's role in targeted mitigation efforts.In summary,our research deepens our understanding of methane leakage,aiding informed decision-making and policy formulation for environmental preservation.By clarifying well type implications and historical drilling patterns,we aim to contribute to effective strategies in mitigating methane emissions from AOG wells.