Leaf senescence is an orderly and highly coordinated process,and finely regulated by ethylene and nitrogen(N),ultimately affecting grain yield and nitrogen-use efficiency(NUE).However,the underlying regulatory mechani...Leaf senescence is an orderly and highly coordinated process,and finely regulated by ethylene and nitrogen(N),ultimately affecting grain yield and nitrogen-use efficiency(NUE).However,the underlying regulatory mechanisms on the crosstalk between ethylene-and N-regulated leaf senescence remain a mystery in maize.In this study,ethylene biosynthesis gene ZmACS7 overexpressing(OE-ZmACS7)plants were used to study the role of ethylene regulating leaf senescence in response to N deficiency,and they exhibited the premature leaf senescence accompanied by increased ethylene release,decreased chlorophyll content and F_v/F_m ratio,and accelerated chloroplast degradation.Then,we investigated the dynamics changes of transcriptome reprogramming underlying ethylene-accelerated leaf senescence in response to N deficiency.The differentially expressed genes(DEGs)involved in chlorophyll biosynthesis were significantly down-regulated,while DEGs involved in chlorophyll degradation and autophagy processes were significantly up-regulated,especially in OE-ZmACS7 plants in response to N deficiency.A gene regulatory network(GRN)was predicted during ethylene-accelerated leaf senescence in response to N deficiency.Three transcription factors(TFs)ZmHSF4,Zmb HLH106,and ZmEREB147 were identified as the key regulatory genes,which targeted chlorophyll biosynthesis gene ZmLES22,chlorophyll degradation gene ZmNYC1,and autophagy-related gene ZmATG5,respectively.Furthermore,ethylene signaling key genes might be located upstream of these TFs,generating the signaling cascade networks during ethylene-accelerated leaf senescence in response to N deficiency.Collectively,these findings improve our molecular knowledge of ethylene-accelerated maize leaf senescence in response to N deficiency,which is promising to improve NUE by manipulating the progress of leaf senescence in maize.展开更多
Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types withi...Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.展开更多
Based on the reconstructed MODIS data and ECMWF reanalysis data from 2003 to 2021,spatial correlations between chlorophyll a(Chl a)and sea surface temperature(SST),photosynthetically available radiation(PAR),aerosol o...Based on the reconstructed MODIS data and ECMWF reanalysis data from 2003 to 2021,spatial correlations between chlorophyll a(Chl a)and sea surface temperature(SST),photosynthetically available radiation(PAR),aerosol optical thickness(AOT),and wind speed(WS)in the Bohai Sea were analyzed from the perspective of time domain and frequency domain.Results indicate that the frequency domain analysis was more conducive to revealing the correlations between Chl a and environmental factors.The spatial pattern of time-domain correlations was similar to the isobaths of the Bohai Sea,which was positive in shallow waters and negative in deep waters for SST,PAR,and AOT,and was reversed for WS.Frequency-domain correlations were obtained by performing Fourier Transform and were higher than correlations in time domain.The spatial distributions indicated that the effects of SST and PAR on Chl a were greater than AOT and WS in the Bohai Sea.Additionally,cross-spectrum analysis was applied to explore the response relationships.A depth-dependent pattern was shown in correlations and time lags,indicating that the influential mechanism of environmental factors on Chl-a concentration is related to seawater depth.展开更多
Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-20...Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO).展开更多
Angiosperms need light to synthesize chlorophyll, but lotus (Nelumbo nucifera Gaertn.) embryo was suspected to have the ability to form chlorophyll in the dark because lotus embryo can turn into green under the covera...Angiosperms need light to synthesize chlorophyll, but lotus (Nelumbo nucifera Gaertn.) embryo was suspected to have the ability to form chlorophyll in the dark because lotus embryo can turn into green under the coverage of four layers of integuments (cotyledon, seed coat, pericarp, lotus pod) which were thought impossible for light to pass through. The authors excluded this possibility based on two experimental results: First, enclosing the young lotus pod with aluminium foil, the growth of louts embryo continued, but the chlorophyll formation was seriously inhibited. A lot of protochlorophyllide, chlorophyll precursor, were accumulated, most of which were combined with LPOR (light dependent protochlorophyllide oxidoreductase). Second, DPOR (dark or light-independent protochlorophyllide oxidoreductase) was the enzyme necessary for chlorophyll synthesis in the dark. The genes encoding DPOR were conservative in many species, but no homologues could be found in lotus genome. Taken together, authers' results clearly demonstrated that lotus embryo synthesizes chlorophyll only through the light-dependent pathway.展开更多
A high yielding rice mutant ( Oryza sativa L. cv. Zhenhui 249) with low chlorophyll b was recently discovered in the field. The mutant was mainly characterized by the decrease of the content of extrinsic antennae c...A high yielding rice mutant ( Oryza sativa L. cv. Zhenhui 249) with low chlorophyll b was recently discovered in the field. The mutant was mainly characterized by the decrease of the content of extrinsic antennae complex. This variation was shown in the stage when the leaves were expanding. When the leaves are at the final developmental stage, the content would approach to that of the wild type. It was discovered that only moderate amount of chlorophyll b decreased in this mutant. The photosynthetic apparatus of the mutant was rather stable in the whole life span of the leaf. The extrinsic antennae complex of the mutant might make efficient use of light and meanwhile reduce the production of O -· 2.展开更多
[Objective] The mitigative effect of antioxidase system of a rice mutant with low chlorophyll b on photooxidative damage was studied.[Method] A rice mutant with low chlorophyll b and its wild type were taken as experi...[Objective] The mitigative effect of antioxidase system of a rice mutant with low chlorophyll b on photooxidative damage was studied.[Method] A rice mutant with low chlorophyll b and its wild type were taken as experimental materials to comparatively research their peroxide (H2O2) contents, the activity and isozymes of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in chloroplast.[Result] Compared with the wild type, there were many kinds of SOD, POD and CAT isozymes in leaf cells and chloroplast cell of mutant, and the activity of SOD, POD and CAT isozymes in leaf cells and chloroplast cell of mutant was also correspondingly higher. Under intense light condition, the H2O2 content of chloroplast in mutant was less than that in the wild type. [Conclusion] The higher activity of scavenging active oxygen can relieve the photooxidative damage made by excessive light energy of intense light on photosynthetic membrane, which is an important reason for higher photosystem Ⅱ (PS II) stability of this mutant.展开更多
[Objective] The aim was to compare differences of SPAD value, chloro- phyll content, agronomic characters, economic characters and yield traits to analyze correlation of SPAD value with other indices and establish reg...[Objective] The aim was to compare differences of SPAD value, chloro- phyll content, agronomic characters, economic characters and yield traits to analyze correlation of SPAD value with other indices and establish regression functions. [Method] Based on 34 Brassica napus L. varieties, SPAD value, chlorophyll content, agronomic characters, economic characters and yield traits were measured and re- gression functions were established according to correlations. [Result] SPAD value, chlorophyll content, agronomic and economic characters and yield traits all achieved significant level in differences among 34 varieties. Specifically, SPAD value was of extremely significant correlation with chlorophyll a and b, total chlorophyll and carotenoid, and the correlation from high to low was chl-b〉chl-z〉chl-a〉chl-x. SPAD value was of significantly positive correlation with total pod number per plant, plant height, seed number per pod, yield per plant and harvest yield, and of insignificant correlation with branch point height, effective branch number, pod density of main stem, and pod length. [Conclusion] It is simple and rapid to predict chlorophyll con- tent, economic characters and yields of Brassica napus L. with SPAD value and re- gression functions.展开更多
The responses of photosynthesis of phosphoenopyruvate carboxylase (PEPC), pyrurate dikinase (PPDK), NADP-malic enzyme (NADP-ME) and PPDK+PEPC transgenic rice (Oryza saltiva L.) plant to light, temperature, CO 2 and t...The responses of photosynthesis of phosphoenopyruvate carboxylase (PEPC), pyrurate dikinase (PPDK), NADP-malic enzyme (NADP-ME) and PPDK+PEPC transgenic rice (Oryza saltiva L.) plant to light, temperature, CO 2 and the characteristics of chlorophyll fluorescence under photoinhibition conditions were studied. The results were as follows: 1. The light-saturated photosynthetic rates of transgenic rice plants were higher than that of wild type, in which the light-saturated point of PEPC and PPDK+PEPC transgenic rice plants was 200 μmol·m -2·s -1 higher than that of untransformed rice and the light-saturated photosynthetic rates were 51.6% and 58.5% respectively. The carboxylation efficiency of PEPC transgenic rice plant increased by 49.3% and the CO 2 compensation point decreased by 26.2% than that of untransformed rice. Under high temperature (35 ℃), the photosynthetic rate of PEPC transgenic rice plant was higher over 17.5% than that of untransformed rice. 2. On the 8th day after photoinhibition treatment, the PSⅡ photochemical efficiency (F v/F m) and photochemical quenching (qP) of PEPC and PPDK+PEPC transgenic rice plants decreased by about 20%-30% while the non-photochemical quenching (qN) increased by approximately 30%. But F v/F m and qP of untransformed rice decreased by over 50% while qN increased by less than 10%. The result suggested that transgenic rice plants were more tolerant to photoinhibition.展开更多
[Objective] The aim was to explore effects of environmental factors on the content of Chlorophyll a in ShaHu Lake.[Method] Based on the data in Shahu Lake from November in 2007 to September in 2008,the relationship be...[Objective] The aim was to explore effects of environmental factors on the content of Chlorophyll a in ShaHu Lake.[Method] Based on the data in Shahu Lake from November in 2007 to September in 2008,the relationship between chlorophyll a and environmental factors like water temperature,pH,secchi-depth (SD),total nitrogen,total phosphorus and potassium permanganate index was studied by grey relational analysis method.[Result] The main environmental factors affecting the content of Chlorophyll a in ShaHu Lake were in order of water temperature potassium permanganate index 〉total nitrogen 〉pH〉 total phosphorus 〉SD.[Conclusion] The research provides reference for the control of eutrophication and the reasonable development and utilization of Shahu Lake.展开更多
Using various high-yield rices (Oryza sativa L.) such as japonica cultivar 9516, two parental line hybrid rice between subspecies with more japonica element Peiai 64/E32, Liangyoupeijiu (Peiai 64/9311), and indica hyb...Using various high-yield rices (Oryza sativa L.) such as japonica cultivar 9516, two parental line hybrid rice between subspecies with more japonica element Peiai 64/E32, Liangyoupeijiu (Peiai 64/9311), and indica hybrid rices X07S/Zihui 100, Gangyou 881, Shanyou 63 as the materials, the characteristics of chlorophyll fluorescence and membrane-lipid peroxidation of detached leaves at booting stage under photooxidation conditions were studied. In comparison with indica hybrid rice, after the photooxidation treatment, the primary photochemical efficiency of PS II (F-v/F-m), quantum yield of linear electron transport of PS II (Phi(PSII)) and photochemical quenching coefficient (qP) in japonica cultivar and hybrid rice with japonica decreased less. This indicated that high-yield rice with japonica was able to maintain higher capability of light energy conversion, resulting in the alleviation of photoinhibition. Meanwhile, the higher activities of protective enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) led to the less accumulation of endogenous active oxygen (O-(2)(radical anion), H2O2) and less content of the malondialdehyde (MDA) and the less decline of chlorophyll and protein contents, indicating a stronger tolerance to photooxidation. The changes in contents of chlorophyll and protein among various nee cultivars during photooxidation treatment were consistent with the decline of chlorophyll content from heading stage to maturation stage under natural conditions. Statistical analysis showed that there was a significant correlation between the indexes of tolerance to photooxidation and the rate of seed setting, implying that the cultivar tolerated to photooxidation had higher resistance to early aging of leaf. These results suggested that from a view of superhigh-yield breeding, considering both the utilization of heterosis and the resistance to early aging of leaf, introduction of japonica element tolerating to photooxidation into the rice sterile line (maternal plant) is a breeding strategy worthy to pay great attention to.展开更多
The chlorophyll fluorescence kinetics of marine red alga Grateloupia turutunt Yamada, green alga Ulva pertusa Kjellm and brown alga Laminaria japonica Aresch during natural sustained dehydration were monitored and inv...The chlorophyll fluorescence kinetics of marine red alga Grateloupia turutunt Yamada, green alga Ulva pertusa Kjellm and brown alga Laminaria japonica Aresch during natural sustained dehydration were monitored and investigated. The pulse amplified modulation (PAM) system was used to analyze the distinct fluorescence parameters during thallus dehydration. Results proved that the fluorescence kinetics of different seaweed all showed three patterns of transformation with sustained water loss. These were: 1) peak kinetic pattern (at the early stage of dehydration fluorescence enhanced and quenched subsequently, representing a normal physiological state). 2) plateau kinetic pattern (with sustained water loss fluorescence enhanced continuously but quenching became slower, finally reaching its maximum). 3) Platform kinetic pattern (fluorescence fell and the shape of kinetic curve was similar to plateau kinetic pattern). A critical water content (CWC) could be found and defined as the percentage of water content just prior to the fluorescence drop and to be a significant physiological index for evaluation of plant drought tolerance. Once thallus water content became lower than this value the normal peak pattern can not be recovered even through rehydration, indicating an irreversible damage to the thylakoid membrane. The CWC value corresponding to different marine species were varied and negatively correlated with their desiccation tolerance, for example. Laminaria japonica had the highest CWC value (around 90%) and the lowest dehydration tolerance of the three. In addition, a fluorescence 'burst' was found only in red algae during rehydration. The different fluorescence parameters F-o, F-v and F-v, F-m were measured and compared during water loss. Both F-o and F-v increased in the first stage of dehydration but F-v/F-m. kept almost constant. So the immediate response of in vivo chlorophyll fluorescence to dehydration was an enhancement. Later with sustained dehydration F-o increased continuously while F-v decreased and tended to become smaller and smaller. The major changes in fluorescence (including fluorescence drop during dehydration and the burst during rehydration) were all attributed to the change in F-o instead of F-v This significance of F-o indicates that it is necessary to do more research on F-o as well as on its relationship with the state of thylakoid membrane.展开更多
The uncertainty in the estimatation of chlorophyll content with the use of normalized difference vegetation index (NDVI) has been described. To determine the chlorophyll content, model 1 for LANDSAT and model 2 for NO...The uncertainty in the estimatation of chlorophyll content with the use of normalized difference vegetation index (NDVI) has been described. To determine the chlorophyll content, model 1 for LANDSAT and model 2 for NOAA AVHRR wavebands were presented and have been verified by field experiments. Model 1 was also validated by the distribution of chlorophyll content using LANDSAT images around the Yucheng remote sensing experimental station. Using these models to estimate the chlorophyll content in the vegetation community is benefitiated by the increased precision and decreased uncertainty.展开更多
Effects of water and heat stress treatments on chlorophyll fluorescence of Chinese fir (Cunninghamia lanceolata), Masson pine (Pinus massoniana) and western redcedar (Thuja plicata D. Don)_seedlings were monitored dur...Effects of water and heat stress treatments on chlorophyll fluorescence of Chinese fir (Cunninghamia lanceolata), Masson pine (Pinus massoniana) and western redcedar (Thuja plicata D. Don)_seedlings were monitored during a three-cycle stress period. It was shown that ratio of variable to maximal chlorophyll fluorescence (Fv/Fm) of these three species responded differently to water stress treatments. The Fv/Fm ratio of western redcedar decreased dramatically after water stress, while that of Chinese fir had only a slight reduction and that of Masson pine had no significant change. The experiment also showed that the Fv/Fm ratio of all three species differed significantly under heat stress treatments. Concerning three different water plus heat stress cycles, it was found that the Fv/Fm ratios of Chinese fir and Masson pine measured at the end of each water plus heat stress cycle were not significantly different. However, the Fv/Fm ratio of western redcedar was diminished significantly in response to an increase of stress time. Keywords Chinese fir - Chlorophyll fluorescence - Heat stress - Masson pine - Water stress - Western redcedar CLC number Q945.17 - S791.248 Document code A Biography: Yu Fang-yuan (1965-), male, Ph. Doctor. Associate professor in College of Forest Resources and Environment, Nanjing, Forestry University, Nanjing 210037, P. R. China.Responsible editor: Zhu Hong展开更多
[Objective] This study aimed to test whether salicylic acid (SA) can im-prove the physiological functions of flue-cured tobacco under subdued light condition, and to determine the mechanism of its action. [Method] T...[Objective] This study aimed to test whether salicylic acid (SA) can im-prove the physiological functions of flue-cured tobacco under subdued light condition, and to determine the mechanism of its action. [Method] The tobacco plants under subdued light were foliar-sprayed with 100 mg/L of SA. Then, the physiological in-dices such as plant fresh weight and dry weight, chlorophyl content, photosynthetic parameters and chlorophyl fluorescence parameters were measured. SPSS17.0 and Excellwere adopted for variance analysis and significance test. [Result] The leaf photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of tobacco plants in subdued light were al decreased while the intercellular CO2 con-centration (Ci) was increased, suggesting that non-stomatal limitation led to the de-crease of Pn under weak light intensity stress. SA released the inhibition of tobacco plant growth in weak light, as it elevated the leaf photosynthetic rate, the maximum photochemical efficiency of PSⅡ, potential activity of PSⅡ, effective photochemical efficiency of PSⅡ and photochemical quenching coefficient in weak light significant-ly, and reduced the non-photochemical quenching coefficient. [Conclusion] SA has significant effects on the photosynthetic characteristics of flue-cured tobacco in weak light, and it can improve the synthesis or distribution of photosynthesis product, and the efficiency of light energy, conducive to plant growth and development.展开更多
[Objective] This study aimed to explore the heterogeneity of chlorophyll flu- orescence of Phyllostachys edulis cv. Pachyloen leaves. [Method] Using the chloro- phyll fluorescence system and fluorescence imaging syste...[Objective] This study aimed to explore the heterogeneity of chlorophyll flu- orescence of Phyllostachys edulis cv. Pachyloen leaves. [Method] Using the chloro- phyll fluorescence system and fluorescence imaging system in the Mini-IMAGING- PAM, the chlorophyll fluorescence of Phyllostachys edulis cv. Pachyloen leaves were measured and the fluorescence parameters were calculated. [Result] The homo- geneities of the maximal quantum yield of PS II (Fv/Fm) and the leaf absorptivity (Abs) were higher, with CVs (Coefficient of Variation) of 1.58%-1.68% and 1.75%- 2.12% respectively, while the heterogeneities of the actual quantum yield (Y), non- photochemical quenching (NPQ/4), photochemical quenching(qP) and relative photo- synthetic rate (PS/50) were higher, with CVs of 9.60%-14.23%, 10.23%-13.02%, 11.92%-13.02% and 11.15%-17.74% respectively. The trends of heterogeneity change in Y, qP and PSI50 were basically the same with transversely higher het- erogeneity at two sides and lower heterogeneity in the middle, namely with larger CVs at the edges of leaves and smaller ones around the midrib. Longitudinally, the coefficients of variation of Y, qP and PS/50 decreased gradually (from top to bot- tom), which indicated that the heterogeneity declined from the leaf tip to the base. The trends of heterogeneity change in PS/50 and NPQ/4 were opposite. [Conclusion] The fluorescence parameters of Phyllostachys edulis cv. Pachyloen leaves revealed different heterogeneity.展开更多
[ Objective ] Study on the changes of chlorophyll fluorescence parameters in Cinnamomumjaponicum var. chenii under NaCl stress. [ Method ] The seedling growth increment, chlorophyll content and chlorophyll fluorescenc...[ Objective ] Study on the changes of chlorophyll fluorescence parameters in Cinnamomumjaponicum var. chenii under NaCl stress. [ Method ] The seedling growth increment, chlorophyll content and chlorophyll fluorescence parameters in leaves of 1-year old Cinnamomum japonicum var. chenii were investigated in field experiment. [ Result] Under NaC1 stress, seedling growth increment reduced and the chlorophyll content decreased to a stable value ; changes of Fv/Fm and Fv/Fo showed identical increasing trend and double peak type. With the aggravation of salt stress, most variations were observed in Fo, correlations among chlorophyll fluorescence parameters presented "rise-drop" trend (in.the treatment of 7 g/L NaCl). [ Conclusion] Cirmamomum japonicum vat. chenii is endowed with strong salt resistance and wide adaptability.展开更多
Drought is a major abiotic stress that severely affects food production worldwide. Agronomic and physiological traits associated with drought tolerance are suitable indicators for selection of drought tolerance genoty...Drought is a major abiotic stress that severely affects food production worldwide. Agronomic and physiological traits associated with drought tolerance are suitable indicators for selection of drought tolerance genotypes to reduce the impact of water deficit on crop yield in breeding program. The objective of this study was to identify indicators related to drought tolerance through analysis of photosynthetic traits in barley (Hordeum vulgare L.). These traits included chlorophyll content, initial fluorescence (Fo), maximum primary yield of photochemistry of photosystem Ⅱ (Fv /Fo) and maximum quantum yield of photosystem Ⅱ (Fv/Fm). Four genotypes (Tadmor, Arta, Morocco9-75 and WI2291) variable in drought tolerance were used to investigate the correlation between these traits and drought tolerance. The results reflected that all of these traits were affected negatively in the four genotypes at different levels of post-anthesis drought stress, but the decrease in drought tolerant genotypes was much less than that of drought sensitive genotypes. The results further revealed that the components of the photosynthetic apparatus could be damaged significantly in drought sensitive genotypes, while drought tolerant genotypes were relatively less affected. On the other hand, the values of chlorophyll content, Fo, Fv/Fo and Fv/Fm in drought tolerance genotypes were significantly higher than those in drought sensitive genotypes under drought stress. It was concluded that chlorophyll content, Fo, Fv/Fo and Fv/Fm could be considered as reliable indicators in screening barley germplasm for drought tolerance.展开更多
Heavy metal contamination is one of the most important abiotic stresses affecting physiological activities of plants.We investigated the effects of cadmium(Cd) and lead(Pb) on chlorophyll fluorescence(Fv/Fm,Fo,an...Heavy metal contamination is one of the most important abiotic stresses affecting physiological activities of plants.We investigated the effects of cadmium(Cd) and lead(Pb) on chlorophyll fluorescence(Fv/Fm,Fo,and Fm),photosynthetic pigments(chlorophyll a and b),and proline in one-year-old seedlings of Robinia pseudoacacia.The seedlings were treated twice over a period of 10 days with Cd and Pb at concentrations of 0,250,500,1000 and2000 mg L-1.Saline solution containing Cd and Pb was sprayed on the leaves.Chlorophyll and proline contents were measured after 10 days.Chlorophyll fluorescence of R.pseudoacacia was affected slightly by high concentrations(1000,2000 mg L-1) of Cd and Pb.Chlorophyll a and a/b increased at 1000 and 2000 mg L-1of Cd and proline content of leaves was similar in all treatments of Cd and Pb.Our results indicated that photosynthetic sensitivity of R.pseudoacacia to Cd and Pb contamination was weak.Photosystem II chlorophyll pigments were not damaged by Pb and Cd stress.We conclude that chlorophyll fluorescence along with chlorophyll and proline contents are useful indicators of Cd and Pb stresses in R.pseudoacacia which widely planted in urban polluted regions in Iran.展开更多
Phytochromes in rice are encoded by a gene family composed of three members, PHYA, PHYB, and PHYC. Through characterizing the phytochrome mutants and wild type (WT) in terms of photomorphogenesis, roles of individua...Phytochromes in rice are encoded by a gene family composed of three members, PHYA, PHYB, and PHYC. Through characterizing the phytochrome mutants and wild type (WT) in terms of photomorphogenesis, roles of individual phytochromes have been preliminarily explored in regulating rice de-etiolation, flowering time and fertility. However, little information has been reported about whether or how phytochromes affect chlorophyll biosynthesis and chloroplast development in rice. In this study, we compared the chlorophyll contents of wild type and the phyA, phyB and phyAphyB mutants grown under either white light (WL) or red light (R). The results suggest that phyB perceives R to positively regulate chlorophyll biosynthesis, while the role of phyA can be detected only in the phyB-deficient mutant. Analyses of the expression levels of genes involved in chlorophyll biosynthesis revealed that phytochromes affected the chlorophyll biosynthesis by regulating protochlorophyll oxidoreductase A (PORA) expression. The role of phyB in chloroplast development was also analyzed, and the results suggest that phyB perceives R to regulate chloroplast development by affecting the numbers of chloroplasts and grana, as well as the chloroplast membrane system.展开更多
基金funded by the National Natural Science Foundation of China (31871546)China Postdoctoral Science Foundation (2022M720418)。
文摘Leaf senescence is an orderly and highly coordinated process,and finely regulated by ethylene and nitrogen(N),ultimately affecting grain yield and nitrogen-use efficiency(NUE).However,the underlying regulatory mechanisms on the crosstalk between ethylene-and N-regulated leaf senescence remain a mystery in maize.In this study,ethylene biosynthesis gene ZmACS7 overexpressing(OE-ZmACS7)plants were used to study the role of ethylene regulating leaf senescence in response to N deficiency,and they exhibited the premature leaf senescence accompanied by increased ethylene release,decreased chlorophyll content and F_v/F_m ratio,and accelerated chloroplast degradation.Then,we investigated the dynamics changes of transcriptome reprogramming underlying ethylene-accelerated leaf senescence in response to N deficiency.The differentially expressed genes(DEGs)involved in chlorophyll biosynthesis were significantly down-regulated,while DEGs involved in chlorophyll degradation and autophagy processes were significantly up-regulated,especially in OE-ZmACS7 plants in response to N deficiency.A gene regulatory network(GRN)was predicted during ethylene-accelerated leaf senescence in response to N deficiency.Three transcription factors(TFs)ZmHSF4,Zmb HLH106,and ZmEREB147 were identified as the key regulatory genes,which targeted chlorophyll biosynthesis gene ZmLES22,chlorophyll degradation gene ZmNYC1,and autophagy-related gene ZmATG5,respectively.Furthermore,ethylene signaling key genes might be located upstream of these TFs,generating the signaling cascade networks during ethylene-accelerated leaf senescence in response to N deficiency.Collectively,these findings improve our molecular knowledge of ethylene-accelerated maize leaf senescence in response to N deficiency,which is promising to improve NUE by manipulating the progress of leaf senescence in maize.
基金This work was supported by the National Natural Science Foundation of China(32171765).
文摘Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.
基金Supported by the Key Research and Development Program of 14 th Five year Plan of China(No.2021YFC3200401-04)the Major Scientific and Technological Projects of Tianjin(No.18 ZXRHSF00270)。
文摘Based on the reconstructed MODIS data and ECMWF reanalysis data from 2003 to 2021,spatial correlations between chlorophyll a(Chl a)and sea surface temperature(SST),photosynthetically available radiation(PAR),aerosol optical thickness(AOT),and wind speed(WS)in the Bohai Sea were analyzed from the perspective of time domain and frequency domain.Results indicate that the frequency domain analysis was more conducive to revealing the correlations between Chl a and environmental factors.The spatial pattern of time-domain correlations was similar to the isobaths of the Bohai Sea,which was positive in shallow waters and negative in deep waters for SST,PAR,and AOT,and was reversed for WS.Frequency-domain correlations were obtained by performing Fourier Transform and were higher than correlations in time domain.The spatial distributions indicated that the effects of SST and PAR on Chl a were greater than AOT and WS in the Bohai Sea.Additionally,cross-spectrum analysis was applied to explore the response relationships.A depth-dependent pattern was shown in correlations and time lags,indicating that the influential mechanism of environmental factors on Chl-a concentration is related to seawater depth.
基金Supported by the Fundamental Research Funds for the Central Universities(Nos.202341017,202313024)。
文摘Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO).
文摘Angiosperms need light to synthesize chlorophyll, but lotus (Nelumbo nucifera Gaertn.) embryo was suspected to have the ability to form chlorophyll in the dark because lotus embryo can turn into green under the coverage of four layers of integuments (cotyledon, seed coat, pericarp, lotus pod) which were thought impossible for light to pass through. The authors excluded this possibility based on two experimental results: First, enclosing the young lotus pod with aluminium foil, the growth of louts embryo continued, but the chlorophyll formation was seriously inhibited. A lot of protochlorophyllide, chlorophyll precursor, were accumulated, most of which were combined with LPOR (light dependent protochlorophyllide oxidoreductase). Second, DPOR (dark or light-independent protochlorophyllide oxidoreductase) was the enzyme necessary for chlorophyll synthesis in the dark. The genes encoding DPOR were conservative in many species, but no homologues could be found in lotus genome. Taken together, authers' results clearly demonstrated that lotus embryo synthesizes chlorophyll only through the light-dependent pathway.
文摘A high yielding rice mutant ( Oryza sativa L. cv. Zhenhui 249) with low chlorophyll b was recently discovered in the field. The mutant was mainly characterized by the decrease of the content of extrinsic antennae complex. This variation was shown in the stage when the leaves were expanding. When the leaves are at the final developmental stage, the content would approach to that of the wild type. It was discovered that only moderate amount of chlorophyll b decreased in this mutant. The photosynthetic apparatus of the mutant was rather stable in the whole life span of the leaf. The extrinsic antennae complex of the mutant might make efficient use of light and meanwhile reduce the production of O -· 2.
文摘[Objective] The mitigative effect of antioxidase system of a rice mutant with low chlorophyll b on photooxidative damage was studied.[Method] A rice mutant with low chlorophyll b and its wild type were taken as experimental materials to comparatively research their peroxide (H2O2) contents, the activity and isozymes of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in chloroplast.[Result] Compared with the wild type, there were many kinds of SOD, POD and CAT isozymes in leaf cells and chloroplast cell of mutant, and the activity of SOD, POD and CAT isozymes in leaf cells and chloroplast cell of mutant was also correspondingly higher. Under intense light condition, the H2O2 content of chloroplast in mutant was less than that in the wild type. [Conclusion] The higher activity of scavenging active oxygen can relieve the photooxidative damage made by excessive light energy of intense light on photosynthetic membrane, which is an important reason for higher photosystem Ⅱ (PS II) stability of this mutant.
基金Supported by Jiangsu Support-Plan(BE2012327)Jiangsu Agricultural"Three New Engineering"Project(SXG2013006)~~
文摘[Objective] The aim was to compare differences of SPAD value, chloro- phyll content, agronomic characters, economic characters and yield traits to analyze correlation of SPAD value with other indices and establish regression functions. [Method] Based on 34 Brassica napus L. varieties, SPAD value, chlorophyll content, agronomic characters, economic characters and yield traits were measured and re- gression functions were established according to correlations. [Result] SPAD value, chlorophyll content, agronomic and economic characters and yield traits all achieved significant level in differences among 34 varieties. Specifically, SPAD value was of extremely significant correlation with chlorophyll a and b, total chlorophyll and carotenoid, and the correlation from high to low was chl-b〉chl-z〉chl-a〉chl-x. SPAD value was of significantly positive correlation with total pod number per plant, plant height, seed number per pod, yield per plant and harvest yield, and of insignificant correlation with branch point height, effective branch number, pod density of main stem, and pod length. [Conclusion] It is simple and rapid to predict chlorophyll con- tent, economic characters and yields of Brassica napus L. with SPAD value and re- gression functions.
文摘The responses of photosynthesis of phosphoenopyruvate carboxylase (PEPC), pyrurate dikinase (PPDK), NADP-malic enzyme (NADP-ME) and PPDK+PEPC transgenic rice (Oryza saltiva L.) plant to light, temperature, CO 2 and the characteristics of chlorophyll fluorescence under photoinhibition conditions were studied. The results were as follows: 1. The light-saturated photosynthetic rates of transgenic rice plants were higher than that of wild type, in which the light-saturated point of PEPC and PPDK+PEPC transgenic rice plants was 200 μmol·m -2·s -1 higher than that of untransformed rice and the light-saturated photosynthetic rates were 51.6% and 58.5% respectively. The carboxylation efficiency of PEPC transgenic rice plant increased by 49.3% and the CO 2 compensation point decreased by 26.2% than that of untransformed rice. Under high temperature (35 ℃), the photosynthetic rate of PEPC transgenic rice plant was higher over 17.5% than that of untransformed rice. 2. On the 8th day after photoinhibition treatment, the PSⅡ photochemical efficiency (F v/F m) and photochemical quenching (qP) of PEPC and PPDK+PEPC transgenic rice plants decreased by about 20%-30% while the non-photochemical quenching (qN) increased by approximately 30%. But F v/F m and qP of untransformed rice decreased by over 50% while qN increased by less than 10%. The result suggested that transgenic rice plants were more tolerant to photoinhibition.
基金Supported by Natural Science Foundation of Ningxia (NZ0829)~~
文摘[Objective] The aim was to explore effects of environmental factors on the content of Chlorophyll a in ShaHu Lake.[Method] Based on the data in Shahu Lake from November in 2007 to September in 2008,the relationship between chlorophyll a and environmental factors like water temperature,pH,secchi-depth (SD),total nitrogen,total phosphorus and potassium permanganate index was studied by grey relational analysis method.[Result] The main environmental factors affecting the content of Chlorophyll a in ShaHu Lake were in order of water temperature potassium permanganate index 〉total nitrogen 〉pH〉 total phosphorus 〉SD.[Conclusion] The research provides reference for the control of eutrophication and the reasonable development and utilization of Shahu Lake.
文摘Using various high-yield rices (Oryza sativa L.) such as japonica cultivar 9516, two parental line hybrid rice between subspecies with more japonica element Peiai 64/E32, Liangyoupeijiu (Peiai 64/9311), and indica hybrid rices X07S/Zihui 100, Gangyou 881, Shanyou 63 as the materials, the characteristics of chlorophyll fluorescence and membrane-lipid peroxidation of detached leaves at booting stage under photooxidation conditions were studied. In comparison with indica hybrid rice, after the photooxidation treatment, the primary photochemical efficiency of PS II (F-v/F-m), quantum yield of linear electron transport of PS II (Phi(PSII)) and photochemical quenching coefficient (qP) in japonica cultivar and hybrid rice with japonica decreased less. This indicated that high-yield rice with japonica was able to maintain higher capability of light energy conversion, resulting in the alleviation of photoinhibition. Meanwhile, the higher activities of protective enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) led to the less accumulation of endogenous active oxygen (O-(2)(radical anion), H2O2) and less content of the malondialdehyde (MDA) and the less decline of chlorophyll and protein contents, indicating a stronger tolerance to photooxidation. The changes in contents of chlorophyll and protein among various nee cultivars during photooxidation treatment were consistent with the decline of chlorophyll content from heading stage to maturation stage under natural conditions. Statistical analysis showed that there was a significant correlation between the indexes of tolerance to photooxidation and the rate of seed setting, implying that the cultivar tolerated to photooxidation had higher resistance to early aging of leaf. These results suggested that from a view of superhigh-yield breeding, considering both the utilization of heterosis and the resistance to early aging of leaf, introduction of japonica element tolerating to photooxidation into the rice sterile line (maternal plant) is a breeding strategy worthy to pay great attention to.
文摘The chlorophyll fluorescence kinetics of marine red alga Grateloupia turutunt Yamada, green alga Ulva pertusa Kjellm and brown alga Laminaria japonica Aresch during natural sustained dehydration were monitored and investigated. The pulse amplified modulation (PAM) system was used to analyze the distinct fluorescence parameters during thallus dehydration. Results proved that the fluorescence kinetics of different seaweed all showed three patterns of transformation with sustained water loss. These were: 1) peak kinetic pattern (at the early stage of dehydration fluorescence enhanced and quenched subsequently, representing a normal physiological state). 2) plateau kinetic pattern (with sustained water loss fluorescence enhanced continuously but quenching became slower, finally reaching its maximum). 3) Platform kinetic pattern (fluorescence fell and the shape of kinetic curve was similar to plateau kinetic pattern). A critical water content (CWC) could be found and defined as the percentage of water content just prior to the fluorescence drop and to be a significant physiological index for evaluation of plant drought tolerance. Once thallus water content became lower than this value the normal peak pattern can not be recovered even through rehydration, indicating an irreversible damage to the thylakoid membrane. The CWC value corresponding to different marine species were varied and negatively correlated with their desiccation tolerance, for example. Laminaria japonica had the highest CWC value (around 90%) and the lowest dehydration tolerance of the three. In addition, a fluorescence 'burst' was found only in red algae during rehydration. The different fluorescence parameters F-o, F-v and F-v, F-m were measured and compared during water loss. Both F-o and F-v increased in the first stage of dehydration but F-v/F-m. kept almost constant. So the immediate response of in vivo chlorophyll fluorescence to dehydration was an enhancement. Later with sustained dehydration F-o increased continuously while F-v decreased and tended to become smaller and smaller. The major changes in fluorescence (including fluorescence drop during dehydration and the burst during rehydration) were all attributed to the change in F-o instead of F-v This significance of F-o indicates that it is necessary to do more research on F-o as well as on its relationship with the state of thylakoid membrane.
文摘The uncertainty in the estimatation of chlorophyll content with the use of normalized difference vegetation index (NDVI) has been described. To determine the chlorophyll content, model 1 for LANDSAT and model 2 for NOAA AVHRR wavebands were presented and have been verified by field experiments. Model 1 was also validated by the distribution of chlorophyll content using LANDSAT images around the Yucheng remote sensing experimental station. Using these models to estimate the chlorophyll content in the vegetation community is benefitiated by the increased precision and decreased uncertainty.
文摘Effects of water and heat stress treatments on chlorophyll fluorescence of Chinese fir (Cunninghamia lanceolata), Masson pine (Pinus massoniana) and western redcedar (Thuja plicata D. Don)_seedlings were monitored during a three-cycle stress period. It was shown that ratio of variable to maximal chlorophyll fluorescence (Fv/Fm) of these three species responded differently to water stress treatments. The Fv/Fm ratio of western redcedar decreased dramatically after water stress, while that of Chinese fir had only a slight reduction and that of Masson pine had no significant change. The experiment also showed that the Fv/Fm ratio of all three species differed significantly under heat stress treatments. Concerning three different water plus heat stress cycles, it was found that the Fv/Fm ratios of Chinese fir and Masson pine measured at the end of each water plus heat stress cycle were not significantly different. However, the Fv/Fm ratio of western redcedar was diminished significantly in response to an increase of stress time. Keywords Chinese fir - Chlorophyll fluorescence - Heat stress - Masson pine - Water stress - Western redcedar CLC number Q945.17 - S791.248 Document code A Biography: Yu Fang-yuan (1965-), male, Ph. Doctor. Associate professor in College of Forest Resources and Environment, Nanjing, Forestry University, Nanjing 210037, P. R. China.Responsible editor: Zhu Hong
基金Suported by the Special Fund of China National Flue-Cured Tobacco Corporation for Development of Specifc and High-quality Tobbaco Leaf[110201101001(TS-01)]~~
文摘[Objective] This study aimed to test whether salicylic acid (SA) can im-prove the physiological functions of flue-cured tobacco under subdued light condition, and to determine the mechanism of its action. [Method] The tobacco plants under subdued light were foliar-sprayed with 100 mg/L of SA. Then, the physiological in-dices such as plant fresh weight and dry weight, chlorophyl content, photosynthetic parameters and chlorophyl fluorescence parameters were measured. SPSS17.0 and Excellwere adopted for variance analysis and significance test. [Result] The leaf photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of tobacco plants in subdued light were al decreased while the intercellular CO2 con-centration (Ci) was increased, suggesting that non-stomatal limitation led to the de-crease of Pn under weak light intensity stress. SA released the inhibition of tobacco plant growth in weak light, as it elevated the leaf photosynthetic rate, the maximum photochemical efficiency of PSⅡ, potential activity of PSⅡ, effective photochemical efficiency of PSⅡ and photochemical quenching coefficient in weak light significant-ly, and reduced the non-photochemical quenching coefficient. [Conclusion] SA has significant effects on the photosynthetic characteristics of flue-cured tobacco in weak light, and it can improve the synthesis or distribution of photosynthesis product, and the efficiency of light energy, conducive to plant growth and development.
基金Supported by the Special Fund for Basic Research of International Center for Bamboo and Rattan(1632011005)~~
文摘[Objective] This study aimed to explore the heterogeneity of chlorophyll flu- orescence of Phyllostachys edulis cv. Pachyloen leaves. [Method] Using the chloro- phyll fluorescence system and fluorescence imaging system in the Mini-IMAGING- PAM, the chlorophyll fluorescence of Phyllostachys edulis cv. Pachyloen leaves were measured and the fluorescence parameters were calculated. [Result] The homo- geneities of the maximal quantum yield of PS II (Fv/Fm) and the leaf absorptivity (Abs) were higher, with CVs (Coefficient of Variation) of 1.58%-1.68% and 1.75%- 2.12% respectively, while the heterogeneities of the actual quantum yield (Y), non- photochemical quenching (NPQ/4), photochemical quenching(qP) and relative photo- synthetic rate (PS/50) were higher, with CVs of 9.60%-14.23%, 10.23%-13.02%, 11.92%-13.02% and 11.15%-17.74% respectively. The trends of heterogeneity change in Y, qP and PSI50 were basically the same with transversely higher het- erogeneity at two sides and lower heterogeneity in the middle, namely with larger CVs at the edges of leaves and smaller ones around the midrib. Longitudinally, the coefficients of variation of Y, qP and PS/50 decreased gradually (from top to bot- tom), which indicated that the heterogeneity declined from the leaf tip to the base. The trends of heterogeneity change in PS/50 and NPQ/4 were opposite. [Conclusion] The fluorescence parameters of Phyllostachys edulis cv. Pachyloen leaves revealed different heterogeneity.
基金Key Scientific Research Project of Zhejiang Province (2005G12004)~~
文摘[ Objective ] Study on the changes of chlorophyll fluorescence parameters in Cinnamomumjaponicum var. chenii under NaCl stress. [ Method ] The seedling growth increment, chlorophyll content and chlorophyll fluorescence parameters in leaves of 1-year old Cinnamomum japonicum var. chenii were investigated in field experiment. [ Result] Under NaC1 stress, seedling growth increment reduced and the chlorophyll content decreased to a stable value ; changes of Fv/Fm and Fv/Fo showed identical increasing trend and double peak type. With the aggravation of salt stress, most variations were observed in Fo, correlations among chlorophyll fluorescence parameters presented "rise-drop" trend (in.the treatment of 7 g/L NaCl). [ Conclusion] Cirmamomum japonicum vat. chenii is endowed with strong salt resistance and wide adaptability.
文摘Drought is a major abiotic stress that severely affects food production worldwide. Agronomic and physiological traits associated with drought tolerance are suitable indicators for selection of drought tolerance genotypes to reduce the impact of water deficit on crop yield in breeding program. The objective of this study was to identify indicators related to drought tolerance through analysis of photosynthetic traits in barley (Hordeum vulgare L.). These traits included chlorophyll content, initial fluorescence (Fo), maximum primary yield of photochemistry of photosystem Ⅱ (Fv /Fo) and maximum quantum yield of photosystem Ⅱ (Fv/Fm). Four genotypes (Tadmor, Arta, Morocco9-75 and WI2291) variable in drought tolerance were used to investigate the correlation between these traits and drought tolerance. The results reflected that all of these traits were affected negatively in the four genotypes at different levels of post-anthesis drought stress, but the decrease in drought tolerant genotypes was much less than that of drought sensitive genotypes. The results further revealed that the components of the photosynthetic apparatus could be damaged significantly in drought sensitive genotypes, while drought tolerant genotypes were relatively less affected. On the other hand, the values of chlorophyll content, Fo, Fv/Fo and Fv/Fm in drought tolerance genotypes were significantly higher than those in drought sensitive genotypes under drought stress. It was concluded that chlorophyll content, Fo, Fv/Fo and Fv/Fm could be considered as reliable indicators in screening barley germplasm for drought tolerance.
基金supported by Iran Research Institute of Forests and Rangelandsthe Laboratory of Horticultural Sciences of the University of Tehran
文摘Heavy metal contamination is one of the most important abiotic stresses affecting physiological activities of plants.We investigated the effects of cadmium(Cd) and lead(Pb) on chlorophyll fluorescence(Fv/Fm,Fo,and Fm),photosynthetic pigments(chlorophyll a and b),and proline in one-year-old seedlings of Robinia pseudoacacia.The seedlings were treated twice over a period of 10 days with Cd and Pb at concentrations of 0,250,500,1000 and2000 mg L-1.Saline solution containing Cd and Pb was sprayed on the leaves.Chlorophyll and proline contents were measured after 10 days.Chlorophyll fluorescence of R.pseudoacacia was affected slightly by high concentrations(1000,2000 mg L-1) of Cd and Pb.Chlorophyll a and a/b increased at 1000 and 2000 mg L-1of Cd and proline content of leaves was similar in all treatments of Cd and Pb.Our results indicated that photosynthetic sensitivity of R.pseudoacacia to Cd and Pb contamination was weak.Photosystem II chlorophyll pigments were not damaged by Pb and Cd stress.We conclude that chlorophyll fluorescence along with chlorophyll and proline contents are useful indicators of Cd and Pb stresses in R.pseudoacacia which widely planted in urban polluted regions in Iran.
基金supported by the grants from the National Natural Science Foundations of China(Grant Nos.30870192 and 30971744)the National Major Science and Technology Project to Create New Crop Varieties Using Gene Transfer Technology,China(Grant No.2009ZX08001-029B)the Shandong Natural Science Funds for Distinguished Young Scholar,China(Grant No.JQ200911)
文摘Phytochromes in rice are encoded by a gene family composed of three members, PHYA, PHYB, and PHYC. Through characterizing the phytochrome mutants and wild type (WT) in terms of photomorphogenesis, roles of individual phytochromes have been preliminarily explored in regulating rice de-etiolation, flowering time and fertility. However, little information has been reported about whether or how phytochromes affect chlorophyll biosynthesis and chloroplast development in rice. In this study, we compared the chlorophyll contents of wild type and the phyA, phyB and phyAphyB mutants grown under either white light (WL) or red light (R). The results suggest that phyB perceives R to positively regulate chlorophyll biosynthesis, while the role of phyA can be detected only in the phyB-deficient mutant. Analyses of the expression levels of genes involved in chlorophyll biosynthesis revealed that phytochromes affected the chlorophyll biosynthesis by regulating protochlorophyll oxidoreductase A (PORA) expression. The role of phyB in chloroplast development was also analyzed, and the results suggest that phyB perceives R to regulate chloroplast development by affecting the numbers of chloroplasts and grana, as well as the chloroplast membrane system.