It’s necessary to forecast the shortest spontaneous combustion period for preventing and controlling the coal spontaneous combustion.During the experimental process,a calculating model of the SSCP is established on t...It’s necessary to forecast the shortest spontaneous combustion period for preventing and controlling the coal spontaneous combustion.During the experimental process,a calculating model of the SSCP is established on the basis of the oxidative heat release intensity and thermal capacity at different temperatures.According to the basic parameters of spontaneous combustion,heat of water evaporation and gas desorption,the SSCPs of different coals are further predicted.Finally,this study analyzed the relationships of the SSCP and the judging indexes of the self-ignite tendency.The result shows that the SSCP non-linearly increases with the decrease of dynamic oxygen adsorption and increase of activation energy.Compared with the practical fire situation of mine,this reliable method can meet the actual requirement of mine production.展开更多
Based on heterogeneous and porous medium seepage of air leakage-diffusion equation, as well as, gas and porous medium synthesis heat transferring equation, a spontaneous combustion non-steady numerical model of nitrog...Based on heterogeneous and porous medium seepage of air leakage-diffusion equation, as well as, gas and porous medium synthesis heat transferring equation, a spontaneous combustion non-steady numerical model of nitrogen injection goaf was established, which can be solved by upwind finite element numerical simulation method si- multaneously. Taking the working face for example; air leakage seepage, nitrogen flow and gas distribution can be described in visual display in nitrogen injection goaf and the oxygen (O2), carbon monoxide (CO) concentration and temperature distribution, as well as, their change were described in theory during the coal left behind combustion in goaf, which above reveals the complex mechanics course (mechanism) of seepage, diffusion and oxidation heat releasing during coal spontaneous combustion and its restraining. During the calculation, the effect factors of gas springing out and working face advancing were considered fully, and the spontaneous combustion course under different amount of nitrogen injection was simulated. The conclusions were obtained that under nitrogen injection condition, the high spontaneous combustion temperature area lean to the inlet air, but the shape becomes narrower, with the amount of nitrogen rising, the spontaneous combustion period becomes longer till to it does not happen. Meanwhile the nitrogen injection accelerates gas springing out in goaf. The result that turns out in theory simulation fits to practical nitrogen injection.展开更多
The characteristic of coal spontaneous combustion includes oxidative property and exothermic capacity. It can really simulate the process of coal spontaneous combustion to use the large scale experimental unit loading...The characteristic of coal spontaneous combustion includes oxidative property and exothermic capacity. It can really simulate the process of coal spontaneous combustion to use the large scale experimental unit loading coal 1 000 kg. According to the field change of gas concentration and coal temperature determined through experiment of coal self ignite at low temperature stage, and on the basis of hydromechanics and heat transfer theory, some parameters can be calculated at different low temperature stage, such as, oxygen consumption rate, heat liberation intensity. It offers a theoretic criterion for quantitatively analyzing characteristic of coal self ignite and forecasting coal spontaneous combustion. According to coal exothermic capability and its thermal storage surroundings, thermal equilibrium is applied to deduce the computational method of limit parameter of coal self ignite. It offers a quantitative theoretic criterion for coal self ignite forecasting and preventing. According to the measurement and test of spontaneous combustion of Haibei coal, some token parameter of Haibei coal spontaneous combustion is quantitatively analyzed, such as, spontaneous combustion period of coal, critical temperature, oxygen consumption rate, heat liberation intensity, and limit parameter of coal self ignite.展开更多
基金supported by China National Science Foundation of China (Nos.51074158 and 51304189)the Youth Science and Research Fund of China University of Mining and Technology of China (No.2009A006)
文摘It’s necessary to forecast the shortest spontaneous combustion period for preventing and controlling the coal spontaneous combustion.During the experimental process,a calculating model of the SSCP is established on the basis of the oxidative heat release intensity and thermal capacity at different temperatures.According to the basic parameters of spontaneous combustion,heat of water evaporation and gas desorption,the SSCPs of different coals are further predicted.Finally,this study analyzed the relationships of the SSCP and the judging indexes of the self-ignite tendency.The result shows that the SSCP non-linearly increases with the decrease of dynamic oxygen adsorption and increase of activation energy.Compared with the practical fire situation of mine,this reliable method can meet the actual requirement of mine production.
文摘Based on heterogeneous and porous medium seepage of air leakage-diffusion equation, as well as, gas and porous medium synthesis heat transferring equation, a spontaneous combustion non-steady numerical model of nitrogen injection goaf was established, which can be solved by upwind finite element numerical simulation method si- multaneously. Taking the working face for example; air leakage seepage, nitrogen flow and gas distribution can be described in visual display in nitrogen injection goaf and the oxygen (O2), carbon monoxide (CO) concentration and temperature distribution, as well as, their change were described in theory during the coal left behind combustion in goaf, which above reveals the complex mechanics course (mechanism) of seepage, diffusion and oxidation heat releasing during coal spontaneous combustion and its restraining. During the calculation, the effect factors of gas springing out and working face advancing were considered fully, and the spontaneous combustion course under different amount of nitrogen injection was simulated. The conclusions were obtained that under nitrogen injection condition, the high spontaneous combustion temperature area lean to the inlet air, but the shape becomes narrower, with the amount of nitrogen rising, the spontaneous combustion period becomes longer till to it does not happen. Meanwhile the nitrogen injection accelerates gas springing out in goaf. The result that turns out in theory simulation fits to practical nitrogen injection.
基金ThearticlesupportedfinanciallybyNationalNaturalScienceFoundationofChina (No .5 99740 2 0 )andSpecialFoundationofShaanxiEdu cationCommittee (No .99Jk2 2 0 )
文摘The characteristic of coal spontaneous combustion includes oxidative property and exothermic capacity. It can really simulate the process of coal spontaneous combustion to use the large scale experimental unit loading coal 1 000 kg. According to the field change of gas concentration and coal temperature determined through experiment of coal self ignite at low temperature stage, and on the basis of hydromechanics and heat transfer theory, some parameters can be calculated at different low temperature stage, such as, oxygen consumption rate, heat liberation intensity. It offers a theoretic criterion for quantitatively analyzing characteristic of coal self ignite and forecasting coal spontaneous combustion. According to coal exothermic capability and its thermal storage surroundings, thermal equilibrium is applied to deduce the computational method of limit parameter of coal self ignite. It offers a quantitative theoretic criterion for coal self ignite forecasting and preventing. According to the measurement and test of spontaneous combustion of Haibei coal, some token parameter of Haibei coal spontaneous combustion is quantitatively analyzed, such as, spontaneous combustion period of coal, critical temperature, oxygen consumption rate, heat liberation intensity, and limit parameter of coal self ignite.