Design of control strategies for gene regulatory networks is a challenging and important topic in systems biology. In this paper, the problem of finding both a minimum set of control nodes (control inputs) and a contr...Design of control strategies for gene regulatory networks is a challenging and important topic in systems biology. In this paper, the problem of finding both a minimum set of control nodes (control inputs) and a controller is studied. A control node corresponds to a gene that expression can be controlled. Here, a Boolean network is used as a model of gene regulatory networks, and control specifications on attractors, which represent cell types or states of cells, are imposed. It is important to design a gene regulatory network that has desired attractors and has no undesired attractors. Using a matrix-based representation of BNs, this problem can be rewritten as an integer linear programming problem. Finally, the proposed method is demonstrated by a numerical example on a WNT5A network, which is related to melanoma.展开更多
Structural controllability is critical for operating and controlling large-scale complex networks. In real applications, for a given network, it is always desirable to have more selections for driver nodes which make ...Structural controllability is critical for operating and controlling large-scale complex networks. In real applications, for a given network, it is always desirable to have more selections for driver nodes which make the network structurally controllable. Different from the works in complex network field where structural controllability is often used to explore the emergence properties of complex networks at a macro level,in this paper, we investigate it for control design purpose at the application level and focus on describing and obtaining the solution space for all selections of driver nodes to guarantee structural controllability. In accord with practical applications,we define the complete selection rule set as the solution space which is composed of a series of selection rules expressed by intuitive algebraic forms. It explicitly indicates which nodes must be controlled and how many nodes need to be controlled in a node set and thus is particularly helpful for freely selecting driver nodes. Based on two algebraic criteria of structural controllability, we separately develop an input-connectivity algorithm and a relevancy algorithm to deduce selection rules for driver nodes. In order to reduce the computational complexity,we propose a pretreatment algorithm to reduce the scale of network's structural matrix efficiently, and a rearrangement algorithm to partition the matrix into several smaller ones. A general procedure is proposed to get the complete selection rule set for driver nodes which guarantee network's structural controllability. Simulation tests with efficiency analysis of the proposed algorithms are given and the result of applying the proposed procedure to some real networks is also shown, and these all indicate the validity of the proposed procedure.展开更多
This paper addresses the problem of the input design of large-scale complex networks.Two types of network components,redundant inaccessible strongly connected component(RISCC)and intermittent inaccessible strongly con...This paper addresses the problem of the input design of large-scale complex networks.Two types of network components,redundant inaccessible strongly connected component(RISCC)and intermittent inaccessible strongly connected component(IISCC)are defined,and a subnetwork called a driver network is developed.Based on these,an efficient method is proposed to find the minimum number of controlled nodes to achieve structural complete controllability of a network,in the case that each input can act on multiple state nodes.The range of the number of input nodes to achieve minimal control,and the configuration method(the connection between the input nodes and the controlled nodes)are presented.All possible input solutions can be obtained by this method.Moreover,we give an example and some experiments on real-world networks to illustrate the effectiveness of the method.展开更多
This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the...This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the satellite orbit design and the orbit injection deviation are the causes for the initial shift velocity, whereas the atmospheric drag and the sun gravitational perturbation produce the shift acceleration. To deal with these shift factors, a shift control method is put forward, through such methods as orbit variation design, orbit altitude, and inclination keeping control. The simulation experiment and practical application have proved the effectiveness of this control method.展开更多
Since wireless links in Ad hoc networks are more fragile than those in traditional wireless networks due to route flapping,multi-node cooperation plays an important role in ensuring the quality of service( QoS). Based...Since wireless links in Ad hoc networks are more fragile than those in traditional wireless networks due to route flapping,multi-node cooperation plays an important role in ensuring the quality of service( QoS). Based on the authors' previous work,this paper proposes a receiver-controlled multi-node cooperation routing protocol,known as AODV-RCC. In this protocol,nodes form a cooperation group based on signal power. In a cooperation group,signal power between a partner and a transmitter,as well as signal power between the partner and the receiver,must be larger than the signal power between the transmitter and the receiver. Otherwise,the transmission will not benefit from cooperation. To avoid collision or congestion,each cooperation group only contains one partner. This partner offers both data and ACK cooperative retransmission. Its retransmission time should be shorter than the internal retry time of the transmitter's MAC layer,because it is better for the partner to retransmit firstly,as it offers a more reliable cooperative link. In AODV-RCC,it is the receiver that chooses the partner,because the link between the partner and the receiver is the most important. According to our simulation results,AODV-RCC shortens the end-to-end delay and increases the packet delivery ratio.展开更多
文摘Design of control strategies for gene regulatory networks is a challenging and important topic in systems biology. In this paper, the problem of finding both a minimum set of control nodes (control inputs) and a controller is studied. A control node corresponds to a gene that expression can be controlled. Here, a Boolean network is used as a model of gene regulatory networks, and control specifications on attractors, which represent cell types or states of cells, are imposed. It is important to design a gene regulatory network that has desired attractors and has no undesired attractors. Using a matrix-based representation of BNs, this problem can be rewritten as an integer linear programming problem. Finally, the proposed method is demonstrated by a numerical example on a WNT5A network, which is related to melanoma.
基金supported by the National Science Foundation of China(61333009,61473317,61433002,61521063,61590924,61673366)the National High Technology Research and Development Program of China(2015AA043102)
文摘Structural controllability is critical for operating and controlling large-scale complex networks. In real applications, for a given network, it is always desirable to have more selections for driver nodes which make the network structurally controllable. Different from the works in complex network field where structural controllability is often used to explore the emergence properties of complex networks at a macro level,in this paper, we investigate it for control design purpose at the application level and focus on describing and obtaining the solution space for all selections of driver nodes to guarantee structural controllability. In accord with practical applications,we define the complete selection rule set as the solution space which is composed of a series of selection rules expressed by intuitive algebraic forms. It explicitly indicates which nodes must be controlled and how many nodes need to be controlled in a node set and thus is particularly helpful for freely selecting driver nodes. Based on two algebraic criteria of structural controllability, we separately develop an input-connectivity algorithm and a relevancy algorithm to deduce selection rules for driver nodes. In order to reduce the computational complexity,we propose a pretreatment algorithm to reduce the scale of network's structural matrix efficiently, and a rearrangement algorithm to partition the matrix into several smaller ones. A general procedure is proposed to get the complete selection rule set for driver nodes which guarantee network's structural controllability. Simulation tests with efficiency analysis of the proposed algorithms are given and the result of applying the proposed procedure to some real networks is also shown, and these all indicate the validity of the proposed procedure.
基金supported in part by the National Natural Science Foundation of China(U1808205,62173079)the Natural Science Foundation of Hebei Province of China(F2000501005)。
文摘This paper addresses the problem of the input design of large-scale complex networks.Two types of network components,redundant inaccessible strongly connected component(RISCC)and intermittent inaccessible strongly connected component(IISCC)are defined,and a subnetwork called a driver network is developed.Based on these,an efficient method is proposed to find the minimum number of controlled nodes to achieve structural complete controllability of a network,in the case that each input can act on multiple state nodes.The range of the number of input nodes to achieve minimal control,and the configuration method(the connection between the input nodes and the controlled nodes)are presented.All possible input solutions can be obtained by this method.Moreover,we give an example and some experiments on real-world networks to illustrate the effectiveness of the method.
基金supported by the China Postdotoral Science Foundation(20060401004)
文摘This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the satellite orbit design and the orbit injection deviation are the causes for the initial shift velocity, whereas the atmospheric drag and the sun gravitational perturbation produce the shift acceleration. To deal with these shift factors, a shift control method is put forward, through such methods as orbit variation design, orbit altitude, and inclination keeping control. The simulation experiment and practical application have proved the effectiveness of this control method.
基金Sponsored by the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.2013029)the National Science and Technology Major Project(Grant No.2012ZX03004003)+1 种基金the National Basic Research Development Program of China(973 Program)(Grant No.2013CB329003)the National Natural Science Foundation of China(Grant No.61201148 and No.61101123)
文摘Since wireless links in Ad hoc networks are more fragile than those in traditional wireless networks due to route flapping,multi-node cooperation plays an important role in ensuring the quality of service( QoS). Based on the authors' previous work,this paper proposes a receiver-controlled multi-node cooperation routing protocol,known as AODV-RCC. In this protocol,nodes form a cooperation group based on signal power. In a cooperation group,signal power between a partner and a transmitter,as well as signal power between the partner and the receiver,must be larger than the signal power between the transmitter and the receiver. Otherwise,the transmission will not benefit from cooperation. To avoid collision or congestion,each cooperation group only contains one partner. This partner offers both data and ACK cooperative retransmission. Its retransmission time should be shorter than the internal retry time of the transmitter's MAC layer,because it is better for the partner to retransmit firstly,as it offers a more reliable cooperative link. In AODV-RCC,it is the receiver that chooses the partner,because the link between the partner and the receiver is the most important. According to our simulation results,AODV-RCC shortens the end-to-end delay and increases the packet delivery ratio.