High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the per...High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the performance of SRG are carried out.On the generator side,reactive and active powers are used as pulse width modulation(PWM)control variables.Further,the flux estimator is used.Three-phase PWM rectifier is used by applying space vector modulation(SVM)with a constant switching frequency for direct power control.Further,the paper also includes the experimental validation of the results.The paper also proposes that highly efficient power converters and synchronous reluctance generators are required to achieve high performance for hybrid renewable energy systems applications.展开更多
Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique wa...Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique was adopted to investigate integration with other complicated circuits.Using a unique XOR gate,the recommended circuit’s cell complexity has been decreased.The findings produced using the QCADesigner-2.0.3,a reliable simulation tool,prove the effectiveness of the current structure over earlier designs by considering the number of cells deployed,the area occupied,and the latency as design metrics.In addition,the popular tool QCAPro was used to estimate the energy dissipation of the proposed design.The proposed technique reduces the occupied space by∼40%,improves cell complexity by∼20%,and reduces energy dissipation by∼1.8 times(atγ=1.5EK)compared to the current scalable designs.This paper also studied the suggested structure’s energy dissipation and compared it to existing works for a better performance evaluation.展开更多
Terahertz wave is between microwave and infrared bands in the electromagnetic spectrum with the frequency range from 0.1 THz to 10 THz. Controlling and processing of the polarization state in terahertz wave are the fo...Terahertz wave is between microwave and infrared bands in the electromagnetic spectrum with the frequency range from 0.1 THz to 10 THz. Controlling and processing of the polarization state in terahertz wave are the focus due to its great influence on the characteristics. In this paper, a transmissive metasurface terahertz polarization converter is designed in 3D structure with an upper surface of ruler-like rectangular, an intermediate dielectric layer and a lower surface of metal grid wires. Numerical simulations of the converter show that the polarization conversion ratio(PCR) is above 99.9% at 0.288 THz–1.6 THz, the polarization rotation angle(PRA) is close to 90° at 0.06 THz–1.4 THz, and the ellipticity angle(EA) is close to 0° at 0.531 THz–1.49 THz. The origin of the efficient polarization conversion is explained by analyzing the electric field intensity, magnetic field intensity, surface current, electric field energy density, and magnetic field energy density distributions of the converter at 1.19 THz and 0.87 THz, which are consistent with the energy transmittance and transmittance coefficient. In addition, the effects of different thickness and material of intermediate layer, thickness of upper surface material, polarized wave incidence angle, and metasurface materials on the performance of the polarization converter are discussed, and how they affect the conversion performance of the polarization converter are also explained.Our results provide a strong theoretical basis and technical support to develop high performance transmission-type terahertz polarization converters, and play an important role to promote the development of terahertz science and technology.展开更多
Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly...Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm.展开更多
In this paper, the zero voltage switching (ZVS) region of a dual active bridge (DAB) converter with wide band-gap (WBG) power semiconductor device is analyzed. The ZVS region of a DAB converter varies depending on out...In this paper, the zero voltage switching (ZVS) region of a dual active bridge (DAB) converter with wide band-gap (WBG) power semiconductor device is analyzed. The ZVS region of a DAB converter varies depending on output power and voltage ratio. The DAB converters operate with hard switching at light loads, it is difficult to achieve high efficiency. Fortunately, WBG power semiconductor devices have excellent hard switching characteristics and can increase efficiency compared to silicon (Si) devices. In particular, WBG devices can achieve ZVS at low load currents due to their low parasitic output capacitance (C<sub>o,tr</sub>) characteristics. Therefore, in this paper, the ZVS operating resion is analyzed based on the characteristics of Si, silicon carbide (SiC) and gallium nitride (GaN). Power semiconductor devices. WBG devices with low C<sub>o,tr</sub> operate at ZVS at lower load currents compared to Si devices. To verify this, experiments are conducted and the results are analyzed using a 3 kW DAB converter. For Si devices, ZVS is achieved above 1.4 kW. For WBG devices, ZVS is achieved at 700 W. Due to the ZVS conditions depending on the switching device, the DAB converter using Si devices achieves a power conversion efficiency of 91% at 1.1 kW output. On the other hand, in the case of WBG devices, power conversion efficiency of more than 98% is achieved under 11 kW conditions. In conclusion, it is confirmed that the WBG device operates in ZVS at a lower load compared to the Si device, which is advantageous in increasing light load efficiency.展开更多
The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ...The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.展开更多
Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter....Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells.展开更多
A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the line...A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the linear potential flow theory.A pneumatic model is employed to investigate the relationship between the air mass flux in the chamber and the turbine characteristics.The effects of chamber width,wall draft and wall thickness on the hydrodynamic performance of a dual-chamber OWC-WEC are investigated.The results demonstrate that the device,with a smaller front wall draft and a wider rear chamber exhibits a broader effective frequency bandwidth.The device with a chamber-width-ratio of 1:3 performs better in terms of power absorption.Additionally,results from the analysis of a triplechamber OWC-WEC demonstrate that reducing the front chamber width and increasing the rearward chamber width can improve the total performance of the device.Increasing the number of chambers from 1 to 2 or 3 can widen the effective frequency bandwidth.展开更多
In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effec...In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.展开更多
Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the...Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the internet of things(IoT)sensor nodes and energy harvesting[2].Mean-while,considering that capacitor has a much higher energy density than inductor,high-power applications.展开更多
The high-intensity heavy-ion accelerator facility(HIAF)is a scientific research facility complex composed of multiple cas-cade accelerators of different types,which pose a scheduling problem for devices distributed ov...The high-intensity heavy-ion accelerator facility(HIAF)is a scientific research facility complex composed of multiple cas-cade accelerators of different types,which pose a scheduling problem for devices distributed over a certain range of 2 km,involving over a hundred devices.The white rabbit,a technology-enhancing Gigabit Ethernet,has shown the capability of scheduling distributed timing devices but still faces the challenge of obtaining real-time synchronization calibration param-eters with high precision.This study presents a calibration system based on a time-to-digital converter implemented on an ARM-based System-on-Chip(SoC).The system consists of four multi-sample delay lines,a bubble-proof encoder,an edge controller for managing data from different channels,and a highly effective calibration module that benefits from the SoC architecture.The performance was evaluated with an average RMS precision of 5.51 ps by measuring the time intervals from 0 to 24,000 ps with 120,000 data for every test.The design presented in this study refines the calibration precision of the HIAF timing system.This eliminates the errors caused by manual calibration without efficiency loss and provides data support for fault diagnosis.It can also be easily tailored or ported to other devices for specific applications and provides more space for developing timing systems for particle accelerators,such as white rabbits on HIAF.展开更多
Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challeng...Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challenge, we have designed an on-chip TE0–TE1mode converter based on topologically protected waveguide arrays. The simulation results demonstrate that the converter exhibits a mode coupling efficiency of 93.5% near 1550 nm and can tolerate a relative fabrication error of 30%. Our design approach can be extended to enhance the robustness for other integrated photonic devices, beneficial for future development of optical network systems.展开更多
The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the e...The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the edge convergence layer and the end sensing layer,with the former using intelligent fusion terminals for real-time data collection and processing.However,the influx of multiple low-voltage in the smart grid raises higher demands for the performance,energy efficiency,and response speed of the substation fusion terminals.Simultaneously,it brings significant security risks to the entire distribution substation,posing a major challenge to the smart grid.In response to these challenges,a proposed dynamic and energy-efficient trust measurement scheme for smart grids aims to address these issues.The scheme begins by establishing a hierarchical trust measurement model,elucidating the trust relationships among smart IoT terminals.It then incorporates multidimensional measurement factors,encompassing static environmental factors,dynamic behaviors,and energy states.This comprehensive approach reduces the impact of subjective factors on trust measurements.Additionally,the scheme incorporates a detection process designed for identifying malicious low-voltage end sensing units,ensuring the prompt identification and elimination of any malicious terminals.This,in turn,enhances the security and reliability of the smart grid environment.The effectiveness of the proposed scheme in pinpointing malicious nodes has been demonstrated through simulation experiments.Notably,the scheme outperforms established trust metric models in terms of energy efficiency,showcasing its significant contribution to the field.展开更多
Energy is the driving force behind all economic and industrial development. Africa is the least advanced continent in terms of energy consumption and production. Paradoxically, it is the sunniest continent, which is w...Energy is the driving force behind all economic and industrial development. Africa is the least advanced continent in terms of energy consumption and production. Paradoxically, it is the sunniest continent, which is why our objective is to exploit this energy potential in order to produce and use sufficient energy. To achieve this, we are carrying out a series of studies aimed at developing a device capable of converting solar photovoltaic energy into electrical energy. This device is a two-stage converter, the first of which is a quadratic boost and the second a full bridge. Initially, this paper is devoted to studying the performance of the quadratic boost.展开更多
Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentia...Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentially be addressed by adopting a negative stiffness mechanism(NSM)in WEC devices to enhance system efficiency,even in highly nonlinear and steep 3D waves.A weakly nonlinear model was developed which incorporated a nonlinear restoring moment and NSM into the linear formulations and was applied to an asymmetric WEC using a time domain potential flow model.The model was initially validated by comparing it with published experimental and numerical computational fluid dynamics results.The current results were in good agreement with the published results.It was found that the energy extraction increased in the range of 6%to 17%during the evaluation of the effectiveness of the NSM in regular waves.Under irregular wave conditions,specifically at the design wave conditions for the selected test site,the energy extraction increased by 2.4%,with annual energy production increments of approximately 0.8MWh.The findings highlight the potential of NSM in enhancing the performance of asymmetric WEC devices,indicating more efficient energy extraction under various wave conditions.展开更多
The building sector plays a crucial role in the worldwide shift toward achieving net-zero emissions.Building energy efficiency standards(BEESs)are highly effective policies for reducing carbon emissions.Therefore,expl...The building sector plays a crucial role in the worldwide shift toward achieving net-zero emissions.Building energy efficiency standards(BEESs)are highly effective policies for reducing carbon emissions.Therefore,exploring the provincial variations in carbon emission efficiency(CEE)in the building sector and identifying the effect of BEESs on CEE is crucial.This study focuses on commercial buildings in China and applies a difference in differences model to evaluate the impact of BEESs on the CEE of commercial buildings.The slacks-based measure–data envelopment analysis model is employed to assess the CEE of commercial buildings in 30 Chinese provinces from 2000 to 2019.Furthermore,heterogeneous tests are used to explore how climate characteristics and economic conditions affect the efficiency of BEESs.The results indicate that BEESs positively influence the CEE of commercial buildings.Specifically,a 1%increase in the intensity of BEESs causes a 0.1484%increase in the CEE of commercial buildings.Moreover,the impact of BEESs is particularly pronounced in the southern and western provinces.This study provides valuable scientific evidence for governments to enhance BEESs implementation.展开更多
Port and terminal efficiency are of utmost importance to the container shipping industry due to their significance in enhancing the competitive advantage of ports within a region. Consequently, there have always been ...Port and terminal efficiency are of utmost importance to the container shipping industry due to their significance in enhancing the competitive advantage of ports within a region. Consequently, there have always been notable variations of studies around it. This paper analyzes the impact of privatization on terminal efficiency using the Port of Tema as a Case Study. The main objective of this paper is to analyze the efficiency trends of the public and private terminals in the port over the years. To achieve this objective, DEA-CCR methodology was employed to calculate the annual technical efficiency trends of the private and public terminals using four input variables and three output variables. The main results of the paper indicated that the public and private terminals were efficient for multiple years. However, the efficiency scores over the years demonstrated inconsistency, exhibiting notable fluctuations. The findings of this study will aid policymakers across the region on policies relating to the efficiency and ownership structure of ports and terminals.展开更多
The construction of high-efficiency and low-cost non-noble metal bifunctional electrocatalysts for water electrolysis is crucial for commercial large-scale application of hydrogen energy.Here,we report a novel strateg...The construction of high-efficiency and low-cost non-noble metal bifunctional electrocatalysts for water electrolysis is crucial for commercial large-scale application of hydrogen energy.Here,we report a novel strategy with erbiumdoped NiCoP nanowire arrays in situ grown on conductive nickel foam(Er-NiCoP/NF).Significantly,the developed electrode shows exceptional bifunctional catalytic activity,which only requires overpotentials of 46 and 225 mV to afford a current density of 10 mAcm^(−2) for the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER),respectively.Density functional theory calculations reveal that the appropriate Er incorporation into the NiCoP lattice can significantly modulate the electronic structure with the d-band centers of Ni and Co atoms by shifting to lower energies with respect to the Fermi level,and optimize the Gibbs free energies of HER/OER intermediates,thereby accelerating water-splitting kinetics.When assembled as a solar-driven overall water-splitting electrolyzer,the as-prepared electrode shows a high and stable solar-to-hydrogen efficiency of 19.6%,indicating its potential for practical storage of intermittent energy.展开更多
Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone ...Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.展开更多
Increasing the urban tree cover percentage(TCP) is widely recognized as an efficient way to mitigate the urban heat island effect. The cooling efficiency of urban trees can be either enhanced or attenuated on hotter d...Increasing the urban tree cover percentage(TCP) is widely recognized as an efficient way to mitigate the urban heat island effect. The cooling efficiency of urban trees can be either enhanced or attenuated on hotter days, depending on the physiological response of urban trees to rising ambient temperature. However, the response of urban trees' cooling efficiency to rising urban temperature remains poorly quantified for China's cities. In this study, we quantify the response of urban trees' cooling efficiency to rising urban temperature at noontime [~1330 LT(local time), LT=UTC+8] in 17summers(June, July, and August) from 2003–19 in 70 economically developed cities of China based on satellite observations. The results show that urban trees have stronger cooling efficiency with increasing temperature, suggesting additional cooling benefits provided by urban trees on hotter days. The enhanced cooling efficiency values of urban trees range from 0.002 to 0.055℃ %-1 per 1℃ increase in temperature across the selected cities, with larger values for the lowTCP-level cities. The response is also regulated by background temperature and precipitation, as the additional cooling benefit tends to be larger in warmer and wetter cities at the same TCP level. The positive response of urban trees' cooling efficiency to rising urban temperature is explained mainly by the stronger evapotranspiration of urban trees on hotter days.These results have important implications for alleviating urban heat risk by utilizing urban trees, particularly considering that extreme hot days are becoming more frequent in cities under global warming.展开更多
文摘High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the performance of SRG are carried out.On the generator side,reactive and active powers are used as pulse width modulation(PWM)control variables.Further,the flux estimator is used.Three-phase PWM rectifier is used by applying space vector modulation(SVM)with a constant switching frequency for direct power control.Further,the paper also includes the experimental validation of the results.The paper also proposes that highly efficient power converters and synchronous reluctance generators are required to achieve high performance for hybrid renewable energy systems applications.
文摘Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique was adopted to investigate integration with other complicated circuits.Using a unique XOR gate,the recommended circuit’s cell complexity has been decreased.The findings produced using the QCADesigner-2.0.3,a reliable simulation tool,prove the effectiveness of the current structure over earlier designs by considering the number of cells deployed,the area occupied,and the latency as design metrics.In addition,the popular tool QCAPro was used to estimate the energy dissipation of the proposed design.The proposed technique reduces the occupied space by∼40%,improves cell complexity by∼20%,and reduces energy dissipation by∼1.8 times(atγ=1.5EK)compared to the current scalable designs.This paper also studied the suggested structure’s energy dissipation and compared it to existing works for a better performance evaluation.
基金supported by the National Natural Science Fundation (Grant Nos. 12134016 and 61625505)Chinese Academy of Sciences (Grant No. ZDBS-LY-JSC025)+1 种基金Sino– Russia International Joint Laboratory of Terahertz Materials and Devices (Grant No. 18590750500)Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01)。
文摘Terahertz wave is between microwave and infrared bands in the electromagnetic spectrum with the frequency range from 0.1 THz to 10 THz. Controlling and processing of the polarization state in terahertz wave are the focus due to its great influence on the characteristics. In this paper, a transmissive metasurface terahertz polarization converter is designed in 3D structure with an upper surface of ruler-like rectangular, an intermediate dielectric layer and a lower surface of metal grid wires. Numerical simulations of the converter show that the polarization conversion ratio(PCR) is above 99.9% at 0.288 THz–1.6 THz, the polarization rotation angle(PRA) is close to 90° at 0.06 THz–1.4 THz, and the ellipticity angle(EA) is close to 0° at 0.531 THz–1.49 THz. The origin of the efficient polarization conversion is explained by analyzing the electric field intensity, magnetic field intensity, surface current, electric field energy density, and magnetic field energy density distributions of the converter at 1.19 THz and 0.87 THz, which are consistent with the energy transmittance and transmittance coefficient. In addition, the effects of different thickness and material of intermediate layer, thickness of upper surface material, polarized wave incidence angle, and metasurface materials on the performance of the polarization converter are discussed, and how they affect the conversion performance of the polarization converter are also explained.Our results provide a strong theoretical basis and technical support to develop high performance transmission-type terahertz polarization converters, and play an important role to promote the development of terahertz science and technology.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62075173 and 12274478)the National Key Research and Development Program of China(Grant Nos.2021YFB2800302 and 2021YFB2800604).
文摘Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm.
文摘In this paper, the zero voltage switching (ZVS) region of a dual active bridge (DAB) converter with wide band-gap (WBG) power semiconductor device is analyzed. The ZVS region of a DAB converter varies depending on output power and voltage ratio. The DAB converters operate with hard switching at light loads, it is difficult to achieve high efficiency. Fortunately, WBG power semiconductor devices have excellent hard switching characteristics and can increase efficiency compared to silicon (Si) devices. In particular, WBG devices can achieve ZVS at low load currents due to their low parasitic output capacitance (C<sub>o,tr</sub>) characteristics. Therefore, in this paper, the ZVS operating resion is analyzed based on the characteristics of Si, silicon carbide (SiC) and gallium nitride (GaN). Power semiconductor devices. WBG devices with low C<sub>o,tr</sub> operate at ZVS at lower load currents compared to Si devices. To verify this, experiments are conducted and the results are analyzed using a 3 kW DAB converter. For Si devices, ZVS is achieved above 1.4 kW. For WBG devices, ZVS is achieved at 700 W. Due to the ZVS conditions depending on the switching device, the DAB converter using Si devices achieves a power conversion efficiency of 91% at 1.1 kW output. On the other hand, in the case of WBG devices, power conversion efficiency of more than 98% is achieved under 11 kW conditions. In conclusion, it is confirmed that the WBG device operates in ZVS at a lower load compared to the Si device, which is advantageous in increasing light load efficiency.
基金funded by the National key R&D Program of China(No.2023YFE0120700)the National Natural Science Foundation of China(No.51934005)+2 种基金the Shaanxi Province 2023 Innovation Capability Support Plan(No.2023KJXX-122)the Technology Innovation Leading Program of Shaanxi(No.2022 PT-08)the Project of Youth Innovation Team of Shaanxi Universities(No.22JP063).
文摘The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.
基金the financial support from the National Natural Science Foundation of China(grant numbers 11922507,12050005,52002140)Fundamental Research Funds for the Central Universities(2020kfyXJJS008)+1 种基金Major State Basic Research Development Program of China(2021YFB3201000)Young Elite Scientists Sponsorship Program by CAST
文摘Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U22A20242,52271260,52001054)Natural Science Foundation of Liaoning Province(Grant No.2021-BS-060)Fundamental Research Funds for the Central Universities(Grant No.DUT23RC(3)017)。
文摘A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the linear potential flow theory.A pneumatic model is employed to investigate the relationship between the air mass flux in the chamber and the turbine characteristics.The effects of chamber width,wall draft and wall thickness on the hydrodynamic performance of a dual-chamber OWC-WEC are investigated.The results demonstrate that the device,with a smaller front wall draft and a wider rear chamber exhibits a broader effective frequency bandwidth.The device with a chamber-width-ratio of 1:3 performs better in terms of power absorption.Additionally,results from the analysis of a triplechamber OWC-WEC demonstrate that reducing the front chamber width and increasing the rearward chamber width can improve the total performance of the device.Increasing the number of chambers from 1 to 2 or 3 can widen the effective frequency bandwidth.
基金This work was supported by China Railway Corporation Science and Technology Research and Development Project(P2021J038).
文摘In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.
基金This work is supported by the Macao Science and Technology Development Fund(FDCT)under Grant 0041/2022/A1by the Research Committee of University of Macao under Grant MYRG2022-00004-IME.
文摘Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the internet of things(IoT)sensor nodes and energy harvesting[2].Mean-while,considering that capacitor has a much higher energy density than inductor,high-power applications.
基金supported by high-intensity heavy-ion accelerator facility(HIAF)approved by the National Development and Reform Commission of China(2017-000052-73-01-002107)。
文摘The high-intensity heavy-ion accelerator facility(HIAF)is a scientific research facility complex composed of multiple cas-cade accelerators of different types,which pose a scheduling problem for devices distributed over a certain range of 2 km,involving over a hundred devices.The white rabbit,a technology-enhancing Gigabit Ethernet,has shown the capability of scheduling distributed timing devices but still faces the challenge of obtaining real-time synchronization calibration param-eters with high precision.This study presents a calibration system based on a time-to-digital converter implemented on an ARM-based System-on-Chip(SoC).The system consists of four multi-sample delay lines,a bubble-proof encoder,an edge controller for managing data from different channels,and a highly effective calibration module that benefits from the SoC architecture.The performance was evaluated with an average RMS precision of 5.51 ps by measuring the time intervals from 0 to 24,000 ps with 120,000 data for every test.The design presented in this study refines the calibration precision of the HIAF timing system.This eliminates the errors caused by manual calibration without efficiency loss and provides data support for fault diagnosis.It can also be easily tailored or ported to other devices for specific applications and provides more space for developing timing systems for particle accelerators,such as white rabbits on HIAF.
基金Project supported by the National Undergraduate Training Projects for Innovation and Entrepreneurship (Grant No. 5003182007)the National Natural Science Foundation of China (Grant No. 12074137)+1 种基金the National Key Research and Development Project of China (Grant No. 2021YFB2801903)the Natural Science Foundation from the Science,Technology,and Innovation Commission of Shenzhen Municipality (Grant No. JCYJ20220530161010023)。
文摘Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challenge, we have designed an on-chip TE0–TE1mode converter based on topologically protected waveguide arrays. The simulation results demonstrate that the converter exhibits a mode coupling efficiency of 93.5% near 1550 nm and can tolerate a relative fabrication error of 30%. Our design approach can be extended to enhance the robustness for other integrated photonic devices, beneficial for future development of optical network systems.
基金This project is partly funded by Science and Technology Project of State Grid Zhejiang Electric Power Co.,Ltd.“Research on active Security Defense Strategies for Distribution Internet of Things Based on Trustworthy,under Grant No.5211DS22000G”.
文摘The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the edge convergence layer and the end sensing layer,with the former using intelligent fusion terminals for real-time data collection and processing.However,the influx of multiple low-voltage in the smart grid raises higher demands for the performance,energy efficiency,and response speed of the substation fusion terminals.Simultaneously,it brings significant security risks to the entire distribution substation,posing a major challenge to the smart grid.In response to these challenges,a proposed dynamic and energy-efficient trust measurement scheme for smart grids aims to address these issues.The scheme begins by establishing a hierarchical trust measurement model,elucidating the trust relationships among smart IoT terminals.It then incorporates multidimensional measurement factors,encompassing static environmental factors,dynamic behaviors,and energy states.This comprehensive approach reduces the impact of subjective factors on trust measurements.Additionally,the scheme incorporates a detection process designed for identifying malicious low-voltage end sensing units,ensuring the prompt identification and elimination of any malicious terminals.This,in turn,enhances the security and reliability of the smart grid environment.The effectiveness of the proposed scheme in pinpointing malicious nodes has been demonstrated through simulation experiments.Notably,the scheme outperforms established trust metric models in terms of energy efficiency,showcasing its significant contribution to the field.
文摘Energy is the driving force behind all economic and industrial development. Africa is the least advanced continent in terms of energy consumption and production. Paradoxically, it is the sunniest continent, which is why our objective is to exploit this energy potential in order to produce and use sufficient energy. To achieve this, we are carrying out a series of studies aimed at developing a device capable of converting solar photovoltaic energy into electrical energy. This device is a two-stage converter, the first of which is a quadratic boost and the second a full bridge. Initially, this paper is devoted to studying the performance of the quadratic boost.
基金financially supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(Grant No.2022R1I1A1A01069442)the 2024 Hongik University Research Fund。
文摘Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentially be addressed by adopting a negative stiffness mechanism(NSM)in WEC devices to enhance system efficiency,even in highly nonlinear and steep 3D waves.A weakly nonlinear model was developed which incorporated a nonlinear restoring moment and NSM into the linear formulations and was applied to an asymmetric WEC using a time domain potential flow model.The model was initially validated by comparing it with published experimental and numerical computational fluid dynamics results.The current results were in good agreement with the published results.It was found that the energy extraction increased in the range of 6%to 17%during the evaluation of the effectiveness of the NSM in regular waves.Under irregular wave conditions,specifically at the design wave conditions for the selected test site,the energy extraction increased by 2.4%,with annual energy production increments of approximately 0.8MWh.The findings highlight the potential of NSM in enhancing the performance of asymmetric WEC devices,indicating more efficient energy extraction under various wave conditions.
基金funded by the National Social Science Foundation of China[Grant No.23CJY018]the Fundamental Research Funds for the Central Universities[Grant No.JBK2406049]+2 种基金the National Natural Science Foundation of China[Grant No.72003151],[Grant No.72173100]the Soft Science Research Program of Sichuan Province[Grant No.2022JDR0227]Projects from the Research Center on Xi Jinping’s Economic Thought,and the Fundamental Research Funds for the“Guanghua Talent Program”of the Southwestern University of Finance and Economics.
文摘The building sector plays a crucial role in the worldwide shift toward achieving net-zero emissions.Building energy efficiency standards(BEESs)are highly effective policies for reducing carbon emissions.Therefore,exploring the provincial variations in carbon emission efficiency(CEE)in the building sector and identifying the effect of BEESs on CEE is crucial.This study focuses on commercial buildings in China and applies a difference in differences model to evaluate the impact of BEESs on the CEE of commercial buildings.The slacks-based measure–data envelopment analysis model is employed to assess the CEE of commercial buildings in 30 Chinese provinces from 2000 to 2019.Furthermore,heterogeneous tests are used to explore how climate characteristics and economic conditions affect the efficiency of BEESs.The results indicate that BEESs positively influence the CEE of commercial buildings.Specifically,a 1%increase in the intensity of BEESs causes a 0.1484%increase in the CEE of commercial buildings.Moreover,the impact of BEESs is particularly pronounced in the southern and western provinces.This study provides valuable scientific evidence for governments to enhance BEESs implementation.
文摘Port and terminal efficiency are of utmost importance to the container shipping industry due to their significance in enhancing the competitive advantage of ports within a region. Consequently, there have always been notable variations of studies around it. This paper analyzes the impact of privatization on terminal efficiency using the Port of Tema as a Case Study. The main objective of this paper is to analyze the efficiency trends of the public and private terminals in the port over the years. To achieve this objective, DEA-CCR methodology was employed to calculate the annual technical efficiency trends of the private and public terminals using four input variables and three output variables. The main results of the paper indicated that the public and private terminals were efficient for multiple years. However, the efficiency scores over the years demonstrated inconsistency, exhibiting notable fluctuations. The findings of this study will aid policymakers across the region on policies relating to the efficiency and ownership structure of ports and terminals.
基金supported by the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University(2019FY003025)the National Natural Science Foundation of China(U2002213 and 51621001)+2 种基金the East-Land Middle-aged and Young Backbone Teacher of Yunnan University(No.C176220200)Yunnan Applied Basic Research Projects(202001BB050006,202001BB050007)the Double-First Class University Plan(C176220100042).
文摘The construction of high-efficiency and low-cost non-noble metal bifunctional electrocatalysts for water electrolysis is crucial for commercial large-scale application of hydrogen energy.Here,we report a novel strategy with erbiumdoped NiCoP nanowire arrays in situ grown on conductive nickel foam(Er-NiCoP/NF).Significantly,the developed electrode shows exceptional bifunctional catalytic activity,which only requires overpotentials of 46 and 225 mV to afford a current density of 10 mAcm^(−2) for the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER),respectively.Density functional theory calculations reveal that the appropriate Er incorporation into the NiCoP lattice can significantly modulate the electronic structure with the d-band centers of Ni and Co atoms by shifting to lower energies with respect to the Fermi level,and optimize the Gibbs free energies of HER/OER intermediates,thereby accelerating water-splitting kinetics.When assembled as a solar-driven overall water-splitting electrolyzer,the as-prepared electrode shows a high and stable solar-to-hydrogen efficiency of 19.6%,indicating its potential for practical storage of intermittent energy.
基金supported by the the Guizhou Provincial Excellent Young Talents Project of Science and Technology,China(YQK(2023)002)the Guizhou Provincial Science and Technology Projects,China((2022)Key 008)+2 种基金the Guizhou Provincial Science and Technology Support Plan,China((2022)Key 026)the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province,China((2023)008)the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions,China((2023)007)。
文摘Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.
基金supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20240170)Open fund by Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (KHK2203)+2 种基金the Jiangsu Meteorological Bureau Youth Fund (KQ202314)the Fundamental Research Funds for the Central Universities (2024300330)Jiangsu Collaborative Innovation Center for Climate Change。
文摘Increasing the urban tree cover percentage(TCP) is widely recognized as an efficient way to mitigate the urban heat island effect. The cooling efficiency of urban trees can be either enhanced or attenuated on hotter days, depending on the physiological response of urban trees to rising ambient temperature. However, the response of urban trees' cooling efficiency to rising urban temperature remains poorly quantified for China's cities. In this study, we quantify the response of urban trees' cooling efficiency to rising urban temperature at noontime [~1330 LT(local time), LT=UTC+8] in 17summers(June, July, and August) from 2003–19 in 70 economically developed cities of China based on satellite observations. The results show that urban trees have stronger cooling efficiency with increasing temperature, suggesting additional cooling benefits provided by urban trees on hotter days. The enhanced cooling efficiency values of urban trees range from 0.002 to 0.055℃ %-1 per 1℃ increase in temperature across the selected cities, with larger values for the lowTCP-level cities. The response is also regulated by background temperature and precipitation, as the additional cooling benefit tends to be larger in warmer and wetter cities at the same TCP level. The positive response of urban trees' cooling efficiency to rising urban temperature is explained mainly by the stronger evapotranspiration of urban trees on hotter days.These results have important implications for alleviating urban heat risk by utilizing urban trees, particularly considering that extreme hot days are becoming more frequent in cities under global warming.