A study on the potential response of exponentially decaying polarizing current of electrode was car- ried out.The appearance of critical point of the potential-time response of exponentially decaying current was ensur...A study on the potential response of exponentially decaying polarizing current of electrode was car- ried out.The appearance of critical point of the potential-time response of exponentially decaying current was ensured from theoretical analysis,and this is the theoretical foundation of the critical point method for the measurement of corrosion current of metals.The comparison of the corrosion currents measured by the critical point and static methods for the system of 321 stainless steel in 0.5N HCI+0.5N NaCI solution at static state shows that the results agree very well.Finally.the tran- sient corrosion currents of 321 stainless steel in 0.5N HCI+0.5N NaCl solution at different strain level are listed.展开更多
Studies have been conducted on the corrosive behavior of magnesium in aqueous sulfate electrolytes(0.5 mol/L MgSO_(4);0.5 mol/L Na2SO_(4);0.5 mol/L MgSO_(4)+0.5 mol/L Na2SO_(4)).The composition structure and morpholog...Studies have been conducted on the corrosive behavior of magnesium in aqueous sulfate electrolytes(0.5 mol/L MgSO_(4);0.5 mol/L Na2SO_(4);0.5 mol/L MgSO_(4)+0.5 mol/L Na2SO_(4)).The composition structure and morphology of the surface of the samples were studied using scanning electron microscopy in combination with X-ray spectral microanalysis.The results of the experiments showed the formation of a surface film inhomogeneous in its structure and composition with the main components Mg(OH)_(2)and Mg O.An increase in the exposure time of the electrode in solution led to the formation of microcracks on the main film caused by internal stress because of hydration of magnesium oxide produced during corrosion.The salt composition of the electrolyte determines the morphology and thickness of corrosion films due to differences in the solubility of the products formed during the hydrolysis of magnesium oxide and the kinetics of this process.Applying the methods of scanning electron microscopy X-ray electron analysis gravimetry and voltammetry it has been established that at various stages of magnesium corrosion in different electrolytes the growth rates of corrosion films are determined by the kinetics of magnesium oxide formation its hydration and dissolution followed by crystallization in the form of a brucite phase of loose sediments on the surface.展开更多
A nonlinear finite element model (FEM) of the corrosion of steel reinforcement in concrete has been successfully developed on the basis of mathematical analysis of the electrochemical process of steel corrosion in c...A nonlinear finite element model (FEM) of the corrosion of steel reinforcement in concrete has been successfully developed on the basis of mathematical analysis of the electrochemical process of steel corrosion in concrete. The influences of the area ratio and the Tafel constants of the anode and cathode on the potential and corrosion current density have been examined with the model. It has been found that the finite element calculation is more suitable for assessing the corrosion condition of steel reinforcement than ordinary electrochemical techniques due to the fact that FEM can obtain the distributions of potential and corrosion current density on the steel surface. In addition, the local corrosion of steel reinforcement in concrete is strengthened with the decrease of both the area ratio and the Tafel constants. These results provide valuable information to the researchers who investigate steel corrosion.展开更多
Experiment was carried out to simulate different loading level elements under coupling of stray current and 5% chlorine salt solution. When calculating corrosion of reinforcement, the influence of loading should be co...Experiment was carried out to simulate different loading level elements under coupling of stray current and 5% chlorine salt solution. When calculating corrosion of reinforcement, the influence of loading should be considered based on the first law of Faraday electrolysis. The current density of the corrosion was measured by the linear polarization resistance method. The function of corrosion current density was obtained by nonlinear fitting method, and the influence coefficient of loading level to electrochemical equivalent was obtained base on the function of corrosion current density. The experimental results show that the corrosion current density increases with stress ratio of concrete structures. The reinforcement corrosion weight can be calculated through the influence coefficients of electrochemical equivalent and the result is in line with the actual situation.展开更多
On the basis of analyzing the influencing factors and harmfulness of stray current, and discussing the existing problems of monitoring and prevention system for stray current, the integrated monitoring and prevention ...On the basis of analyzing the influencing factors and harmfulness of stray current, and discussing the existing problems of monitoring and prevention system for stray current, the integrated monitoring and prevention system for stray current in metro was developed. A net system of distributed computers for monitoring was set up. It can monitor the distribution of stray current in metro and the corrosion of the metal structure in the whole line. According to the situation of monitoring it can also control the drainage of its tank to reach the best effect and eliminate the negative effect of polarity drainage. By using the new type unilateral electric device, the problem of burning the rail by electric arc can be avoided. The unilateral electric device can be connected with the monitoring net system directly to realize the monitor in line and improve the reliability of the device.展开更多
To investigate the corrosion degradation law and service life of reinforced concrete in various salt solution environments,reinforced concrete specimens were semi-immersed in 3%Na_(2)CO_(3)(N3-0-0),3%Na_(2)CO_(3)+3%Na...To investigate the corrosion degradation law and service life of reinforced concrete in various salt solution environments,reinforced concrete specimens were semi-immersed in 3%Na_(2)CO_(3)(N3-0-0),3%Na_(2)CO_(3)+3%NaCl(N3-Cl3-0)and 3%Na_(2)CO_(3)+3%NaCl+3%Na_(2)SO_(4)(N3-Cl3-S3)salt solutions.The electrochemical workstation was used for regular non-destructive testing,and the polarization curve and related electrochemical parameters were used as the macroscopic durability evaluation indicators,while microscopic analysis of steel bar corrosion products was performed in combination with SEM and EDS.In addition,the corrosion current density degradation model of GM(1,1)was established and compared with the modified GM(1,1)-Markov degradation model.The results showed that the prediction error of the GM(1,1)-Markov model was smaller and more accurate than that of GM(1,1).The reinforced concrete specimens in the N3-0-0,N3-Cl3-0 and N3-Cl3-S3 solutions reached the failure state in 3.08,1.67,and 2.30 years,respectively,as predicted by the GM(1,1)-Markov model.According to ESM and EDS microscopic analysis of reinforcement,carbonate had no significant effect on reinforcement corrosion,chloride ions played a dominant role in reinforcement corrosion,and sulfate ion improved concrete's resistance to chloride ion corrosion.Based on GM(1,1)-Markov model,the failure and damage of reinforced concrete in saline soil areas can be quantitatively evaluated in the whole life cycle,which provides a theoretical basis for the early maintenance or reinforcing of reinforced concrete.展开更多
Phytic acid (PA) conversion coating on AZ31 magnesium alloy is prepared by a deposition method. pH influences on the formation process, microstructure and properties of the conversion coating are investigated. Elect...Phytic acid (PA) conversion coating on AZ31 magnesium alloy is prepared by a deposition method. pH influences on the formation process, microstructure and properties of the conversion coating are investigated. Electrochemical tests including polarization curve and electrochemical impedance spectroscopy are used to examine the corrosion resistance, and scanning electron microscopy is used to observe the microstructure. The chemical nature of conversion coating is investigated by energy dispersive spectroscopy. And thermodynamic method is used to analyze the optimum pH. The results show that PA conversion coating can improve the corrosion resistance of AZ31 Mg alloy. The maximum efficiency achieves 89.19% when the AZ31 Mg alloy is treated by PA solution with pH=5. It makes the corrosion potential of sample shift positively about 156 mV and corrosion current density is nearly an order of magnitude less than that of the untreated sample. The thermodynamic analysis shows that the corrosion resistance of PA coatings is affected by not only the concentration of PA ion and Mg2+ but also the release rate of hydrogen.展开更多
Cyclic voltammetry and potentiodynamic polarization analyses were utilized to investigate the mechanism and kinetics of glycine leaching reactions for chalcopyrite.The effects of pH(9−12),temperature(30−90℃)and glyci...Cyclic voltammetry and potentiodynamic polarization analyses were utilized to investigate the mechanism and kinetics of glycine leaching reactions for chalcopyrite.The effects of pH(9−12),temperature(30−90℃)and glycine concentration(0−2 mol/L)on corrosion current density,corrosion potential and cyclic voltammograms were investigated using chalcopyrite concentrate−carbon paste electrodes.Results showed that an increase in the glycine concentration from 0 to 2 mol/L led to an increased oxidation peak current density.Under the same conditions,corrosion current density was found to change from approximately 28 to 89μA/cm2,whereas corrosion potential was decreased from−80 to−130 mV.Elevated temperatures enhanced the measured current densities up to 60℃;however,above this level,current density was observed to decrease.A similar current density behavior was determined with pH.A pH change from 9 to 10.5 resulted in an increase in current density and pH higher than 10.5 gave rise to a reduced current density.In addition,the thermodynamic stability of copper and iron oxides was found to increase at higher temperatures.展开更多
The half cell potential (HCP) and corrosion current of reinforced concrete specimens doped with sodium chloride were determined after electrochemical chloride extraction (ECE). The experimental results show that w...The half cell potential (HCP) and corrosion current of reinforced concrete specimens doped with sodium chloride were determined after electrochemical chloride extraction (ECE). The experimental results show that when ECE treatment is removed, HCP becomes more negative and corrosion current becomes larger in comparison to those before ECE treatment, then HCP shifts positively and corrosion current decreases with time. After 30 days ECE treatment, the HCP of cored specimens turn to about -100 mV due to the existence of sufficient oxygen around the exposed steel bars, but for un-cored specimens, longer time, about two months, is to be taken. The non-homogeneous HCP distribution at different layers of the same specimen after ECE treatment might induce secondary corrosion of steels.展开更多
The impact of phytic acid concentration,immersion time and soaking temperature on phytic acid conversion coating of the Mg-Li alloy are studied.The surface morphology and the corrosion of the phytic acid conversion co...The impact of phytic acid concentration,immersion time and soaking temperature on phytic acid conversion coating of the Mg-Li alloy are studied.The surface morphology and the corrosion of the phytic acid conversion coating are tested by using scanning electron microscopy and the electrochemical analyzer.The results show that phytic acid concentration and immersion time,soaking temperature affects the microstructure and corrosion resistance of the phytic acid conversion coating.There is a passivation interval with a smaller capacitor and larger resistor in the phytic acid conversion coating.The phytic acid conversion coating is made up of white particle and flake film.展开更多
Xiamen Xiangan Subsea Tunnel is the first undersea tunnel constructed in China. It has become the major undersea pathway connecting Xiamen Island and Xiangan District since its operation in 2010. The total length is 6...Xiamen Xiangan Subsea Tunnel is the first undersea tunnel constructed in China. It has become the major undersea pathway connecting Xiamen Island and Xiangan District since its operation in 2010. The total length is 6.05 km with the undersea length of 4.2 km. In an effort to onsite-monitor reinforcement corrosion in concrete structures, the commercially available CorroWatch multiprobe sensors and ERE-20 reference electrodes were pre-embedded in the selected locations and positions of supporting structures during the tunnel constructions. The real-time data have been collected annually by onsite measurements for 6 years. In this paper, the feasibility of the onsite corrosion monitoring system and suitability of the measured parameters including corrosion current, potential and temperature are discussed based on the preliminary results. The measured typical cyclic-type variations in corrosion current and temperature with monitoring time might be related to the seasonal changes during the annual routine measurements. The widely scattered corrosion potentials that are fluctuated complicatedly reflected localized differences in the vicinity of rebar and concrete. These findings, along with the progressively ongoing research, will provide valuable information in structural durability for service life prediction of reinforced concrete structures exposed to marine environments.展开更多
Potentiodynamic polarization measurement was used to investigate the effects of temperature, dissolved ox- ygen concentration and pH on the electrochemical behavior of X70 pipeline steel in simulated solution accordin...Potentiodynamic polarization measurement was used to investigate the effects of temperature, dissolved ox- ygen concentration and pH on the electrochemical behavior of X70 pipeline steel in simulated solution according to the orthogonal testing method. The results showed that temperature, dissolved oxygen concentration and pH had great influence on corrosion current density (icorr) of X70 steel. Corrosion current density of X70 steel was most influenced by dissolved oxygen concentration in simulated solution. The corrosion degree of X70 steel was the least under the environment of low temperature, deficient oxygen and weak acid.展开更多
文摘A study on the potential response of exponentially decaying polarizing current of electrode was car- ried out.The appearance of critical point of the potential-time response of exponentially decaying current was ensured from theoretical analysis,and this is the theoretical foundation of the critical point method for the measurement of corrosion current of metals.The comparison of the corrosion currents measured by the critical point and static methods for the system of 321 stainless steel in 0.5N HCI+0.5N NaCI solution at static state shows that the results agree very well.Finally.the tran- sient corrosion currents of 321 stainless steel in 0.5N HCI+0.5N NaCl solution at different strain level are listed.
文摘Studies have been conducted on the corrosive behavior of magnesium in aqueous sulfate electrolytes(0.5 mol/L MgSO_(4);0.5 mol/L Na2SO_(4);0.5 mol/L MgSO_(4)+0.5 mol/L Na2SO_(4)).The composition structure and morphology of the surface of the samples were studied using scanning electron microscopy in combination with X-ray spectral microanalysis.The results of the experiments showed the formation of a surface film inhomogeneous in its structure and composition with the main components Mg(OH)_(2)and Mg O.An increase in the exposure time of the electrode in solution led to the formation of microcracks on the main film caused by internal stress because of hydration of magnesium oxide produced during corrosion.The salt composition of the electrolyte determines the morphology and thickness of corrosion films due to differences in the solubility of the products formed during the hydrolysis of magnesium oxide and the kinetics of this process.Applying the methods of scanning electron microscopy X-ray electron analysis gravimetry and voltammetry it has been established that at various stages of magnesium corrosion in different electrolytes the growth rates of corrosion films are determined by the kinetics of magnesium oxide formation its hydration and dissolution followed by crystallization in the form of a brucite phase of loose sediments on the surface.
基金supported by the Opening Project of Key Laboratory of Coastal Disaster and Defence of Ministry of Education, Hohai Universitythe Natural Science Fund of Hohai University (No. 2008432111).
文摘A nonlinear finite element model (FEM) of the corrosion of steel reinforcement in concrete has been successfully developed on the basis of mathematical analysis of the electrochemical process of steel corrosion in concrete. The influences of the area ratio and the Tafel constants of the anode and cathode on the potential and corrosion current density have been examined with the model. It has been found that the finite element calculation is more suitable for assessing the corrosion condition of steel reinforcement than ordinary electrochemical techniques due to the fact that FEM can obtain the distributions of potential and corrosion current density on the steel surface. In addition, the local corrosion of steel reinforcement in concrete is strengthened with the decrease of both the area ratio and the Tafel constants. These results provide valuable information to the researchers who investigate steel corrosion.
基金Funded by the National Natural Science Foundation of China(No.50808005)the National "11-5" Science and Technology Supporting Program(No.2006BAJ27B04)the Major Program of Beijing Municipal Natural Sci-ence Foundation(No.8100001)and Beijing talent innovation
文摘Experiment was carried out to simulate different loading level elements under coupling of stray current and 5% chlorine salt solution. When calculating corrosion of reinforcement, the influence of loading should be considered based on the first law of Faraday electrolysis. The current density of the corrosion was measured by the linear polarization resistance method. The function of corrosion current density was obtained by nonlinear fitting method, and the influence coefficient of loading level to electrochemical equivalent was obtained base on the function of corrosion current density. The experimental results show that the corrosion current density increases with stress ratio of concrete structures. The reinforcement corrosion weight can be calculated through the influence coefficients of electrochemical equivalent and the result is in line with the actual situation.
文摘On the basis of analyzing the influencing factors and harmfulness of stray current, and discussing the existing problems of monitoring and prevention system for stray current, the integrated monitoring and prevention system for stray current in metro was developed. A net system of distributed computers for monitoring was set up. It can monitor the distribution of stray current in metro and the corrosion of the metal structure in the whole line. According to the situation of monitoring it can also control the drainage of its tank to reach the best effect and eliminate the negative effect of polarity drainage. By using the new type unilateral electric device, the problem of burning the rail by electric arc can be avoided. The unilateral electric device can be connected with the monitoring net system directly to realize the monitor in line and improve the reliability of the device.
基金Funded by National Natural Science Foundation of China(No.52178216)Gansu Provincial Science and Technology Programme(No.23JRRA813)。
文摘To investigate the corrosion degradation law and service life of reinforced concrete in various salt solution environments,reinforced concrete specimens were semi-immersed in 3%Na_(2)CO_(3)(N3-0-0),3%Na_(2)CO_(3)+3%NaCl(N3-Cl3-0)and 3%Na_(2)CO_(3)+3%NaCl+3%Na_(2)SO_(4)(N3-Cl3-S3)salt solutions.The electrochemical workstation was used for regular non-destructive testing,and the polarization curve and related electrochemical parameters were used as the macroscopic durability evaluation indicators,while microscopic analysis of steel bar corrosion products was performed in combination with SEM and EDS.In addition,the corrosion current density degradation model of GM(1,1)was established and compared with the modified GM(1,1)-Markov degradation model.The results showed that the prediction error of the GM(1,1)-Markov model was smaller and more accurate than that of GM(1,1).The reinforced concrete specimens in the N3-0-0,N3-Cl3-0 and N3-Cl3-S3 solutions reached the failure state in 3.08,1.67,and 2.30 years,respectively,as predicted by the GM(1,1)-Markov model.According to ESM and EDS microscopic analysis of reinforcement,carbonate had no significant effect on reinforcement corrosion,chloride ions played a dominant role in reinforcement corrosion,and sulfate ion improved concrete's resistance to chloride ion corrosion.Based on GM(1,1)-Markov model,the failure and damage of reinforced concrete in saline soil areas can be quantitatively evaluated in the whole life cycle,which provides a theoretical basis for the early maintenance or reinforcing of reinforced concrete.
文摘Phytic acid (PA) conversion coating on AZ31 magnesium alloy is prepared by a deposition method. pH influences on the formation process, microstructure and properties of the conversion coating are investigated. Electrochemical tests including polarization curve and electrochemical impedance spectroscopy are used to examine the corrosion resistance, and scanning electron microscopy is used to observe the microstructure. The chemical nature of conversion coating is investigated by energy dispersive spectroscopy. And thermodynamic method is used to analyze the optimum pH. The results show that PA conversion coating can improve the corrosion resistance of AZ31 Mg alloy. The maximum efficiency achieves 89.19% when the AZ31 Mg alloy is treated by PA solution with pH=5. It makes the corrosion potential of sample shift positively about 156 mV and corrosion current density is nearly an order of magnitude less than that of the untreated sample. The thermodynamic analysis shows that the corrosion resistance of PA coatings is affected by not only the concentration of PA ion and Mg2+ but also the release rate of hydrogen.
文摘Cyclic voltammetry and potentiodynamic polarization analyses were utilized to investigate the mechanism and kinetics of glycine leaching reactions for chalcopyrite.The effects of pH(9−12),temperature(30−90℃)and glycine concentration(0−2 mol/L)on corrosion current density,corrosion potential and cyclic voltammograms were investigated using chalcopyrite concentrate−carbon paste electrodes.Results showed that an increase in the glycine concentration from 0 to 2 mol/L led to an increased oxidation peak current density.Under the same conditions,corrosion current density was found to change from approximately 28 to 89μA/cm2,whereas corrosion potential was decreased from−80 to−130 mV.Elevated temperatures enhanced the measured current densities up to 60℃;however,above this level,current density was observed to decrease.A similar current density behavior was determined with pH.A pH change from 9 to 10.5 resulted in an increase in current density and pH higher than 10.5 gave rise to a reduced current density.In addition,the thermodynamic stability of copper and iron oxides was found to increase at higher temperatures.
基金the National Natural Science Foundation of China(No.50602016)the Science and Technology Promotion Project of Guangdong Province(No.2005B3280100)+1 种基金Research Fund of Key Laboratory of Specially Functional Materials and Advanced Manufacturing Technology of Ministry of Education(No.200500A)Silicate Material Engineering of Ministry of Education(No.SYSJJ2006-07)
文摘The half cell potential (HCP) and corrosion current of reinforced concrete specimens doped with sodium chloride were determined after electrochemical chloride extraction (ECE). The experimental results show that when ECE treatment is removed, HCP becomes more negative and corrosion current becomes larger in comparison to those before ECE treatment, then HCP shifts positively and corrosion current decreases with time. After 30 days ECE treatment, the HCP of cored specimens turn to about -100 mV due to the existence of sufficient oxygen around the exposed steel bars, but for un-cored specimens, longer time, about two months, is to be taken. The non-homogeneous HCP distribution at different layers of the same specimen after ECE treatment might induce secondary corrosion of steels.
基金Funded by the Key Laboratory of Superlight Materials and Surface Technology,Ministry of Education
文摘The impact of phytic acid concentration,immersion time and soaking temperature on phytic acid conversion coating of the Mg-Li alloy are studied.The surface morphology and the corrosion of the phytic acid conversion coating are tested by using scanning electron microscopy and the electrochemical analyzer.The results show that phytic acid concentration and immersion time,soaking temperature affects the microstructure and corrosion resistance of the phytic acid conversion coating.There is a passivation interval with a smaller capacitor and larger resistor in the phytic acid conversion coating.The phytic acid conversion coating is made up of white particle and flake film.
基金financial support and onsite assistance from the Xiamen Road and Bridge Construction Group Co.,Ltd.,China
文摘Xiamen Xiangan Subsea Tunnel is the first undersea tunnel constructed in China. It has become the major undersea pathway connecting Xiamen Island and Xiangan District since its operation in 2010. The total length is 6.05 km with the undersea length of 4.2 km. In an effort to onsite-monitor reinforcement corrosion in concrete structures, the commercially available CorroWatch multiprobe sensors and ERE-20 reference electrodes were pre-embedded in the selected locations and positions of supporting structures during the tunnel constructions. The real-time data have been collected annually by onsite measurements for 6 years. In this paper, the feasibility of the onsite corrosion monitoring system and suitability of the measured parameters including corrosion current, potential and temperature are discussed based on the preliminary results. The measured typical cyclic-type variations in corrosion current and temperature with monitoring time might be related to the seasonal changes during the annual routine measurements. The widely scattered corrosion potentials that are fluctuated complicatedly reflected localized differences in the vicinity of rebar and concrete. These findings, along with the progressively ongoing research, will provide valuable information in structural durability for service life prediction of reinforced concrete structures exposed to marine environments.
基金Item Sponsored by National Science and Technology Infrastructure Platforms Construction Projects of China (2005DKA10400)National Science and Technology Support 11th Five-Year Plan of China(2006BAK02B01)
文摘Potentiodynamic polarization measurement was used to investigate the effects of temperature, dissolved ox- ygen concentration and pH on the electrochemical behavior of X70 pipeline steel in simulated solution according to the orthogonal testing method. The results showed that temperature, dissolved oxygen concentration and pH had great influence on corrosion current density (icorr) of X70 steel. Corrosion current density of X70 steel was most influenced by dissolved oxygen concentration in simulated solution. The corrosion degree of X70 steel was the least under the environment of low temperature, deficient oxygen and weak acid.