I. INTRODUCTIONLet S<sup>2n+1</sup> be the (2n+1)- dimensional standard sphere in complex (n+1) space C<sup>n+1</sup>. Let T: S<sup>2+1</sup>→S<sup>2n+1</sup> be th...I. INTRODUCTIONLet S<sup>2n+1</sup> be the (2n+1)- dimensional standard sphere in complex (n+1) space C<sup>n+1</sup>. Let T: S<sup>2+1</sup>→S<sup>2n+1</sup> be the transformation defined by T(z<sub>0</sub>, z<sub>1</sub>, …, z<sub>n</sub>) = (e (2πi)/p Z<sub>0</sub>, e (2πi)/p Z<sub>1</sub>, …, e (2πi)/p z<sub>n</sub>), where Z<sub>0</sub>, Z<sub>1</sub>, …, Z<sub>n</sub> are complex numbers with. T acts freely on S<sup>2n+1</sup> and generates a cyclic group Z<sub>p</sub> of order p, and the orbit space is a standard Lens space L<sup>n</sup>(p).展开更多
文摘I. INTRODUCTIONLet S<sup>2n+1</sup> be the (2n+1)- dimensional standard sphere in complex (n+1) space C<sup>n+1</sup>. Let T: S<sup>2+1</sup>→S<sup>2n+1</sup> be the transformation defined by T(z<sub>0</sub>, z<sub>1</sub>, …, z<sub>n</sub>) = (e (2πi)/p Z<sub>0</sub>, e (2πi)/p Z<sub>1</sub>, …, e (2πi)/p z<sub>n</sub>), where Z<sub>0</sub>, Z<sub>1</sub>, …, Z<sub>n</sub> are complex numbers with. T acts freely on S<sup>2n+1</sup> and generates a cyclic group Z<sub>p</sub> of order p, and the orbit space is a standard Lens space L<sup>n</sup>(p).