Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the a...Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the aircraft is being tested, the specimen's safety mainly depends on monitoring and understanding the testing data by way of evaluating the coherence with the digital simulation data synchyononsly. The test digital simulation can aid realizing above requirements and improving the test efficiency significantly during test scheme design stage or testing stage respectively. The key technologies and the solving methods of test digital simulation are presented and the application example is given.展开更多
In this paper, the stability analysis for parallel real-time digital simulation models is discussed. The coupling coefficient perturbation method and the simulation stepsize perturbation method are established. For tw...In this paper, the stability analysis for parallel real-time digital simulation models is discussed. The coupling coefficient perturbation method and the simulation stepsize perturbation method are established. For two classes of systems of test equations, we construct the parallel simulation models and prove that they have the stability behaviour which is similar to the original continuous systems.展开更多
The protection based balance of energy is a new technique specially proposed for long transmission lines. This technique depends upon the calculation of net energy into the transmission line by two independent methods...The protection based balance of energy is a new technique specially proposed for long transmission lines. This technique depends upon the calculation of net energy into the transmission line by two independent methods and comparing them to indicate healthy and faulty conditions. In order to study the performance and feasibility of the protection based on balance of energy, the new protection has been extensively tested by using EMTP on a long transmission line with various configurations and operating conditions (including single pole line, double circuit lines and two phase operation). The results calculated by EMTP show that under any condition of a power system, the proposed technique has excellent performance,the viability even for high resistance ground faults and a short operation time.展开更多
The acceleration performance of a turbojet is one of its important characteristics. In terms of control system, the engine is a controlled object. The acceleration performance not only depends on the engine, but also ...The acceleration performance of a turbojet is one of its important characteristics. In terms of control system, the engine is a controlled object. The acceleration performance not only depends on the engine, but also on the controller; therefore both the engine and the controller must be combined in a control system to make research for this performance. This paper presents a mathematical model of the turbojet acceleration control system and digital simulation method. Because the engine acceleration is a large variation transient process, the models of the engine and the controller are described by nonlinear equations. The methods of solving nonlinear equations and iterative techniques of calculating acceleration control system are discussed in this paper. The calculated results, as compared with test results, show that the simulation for this system is satisfactory.展开更多
Dryden model is usually used in studying the response of flight vehicle to atmospheric turbulence. For a modern flight simulator,it is necessary to generate random winds ( in Dryden model or sometimes others) with a d...Dryden model is usually used in studying the response of flight vehicle to atmospheric turbulence. For a modern flight simulator,it is necessary to generate random winds ( in Dryden model or sometimes others) with a digital computer.In this paper,a theoretically strict new method to meet this purpose is proposed.By this method,we can acquire a three-dimensional atmospheric turbulence which contains three components of wind velocity and three components of wind velocity gradient.The reliability of this method is checked by comparing the obtained autocorrelation value with the theoretical one.A numerical example has shown a satisfactory result.Finally,some proposals about how to use this mathematical model in flight simulator are given.展开更多
To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as ...To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as technical feasibilities, and it relates to complex system simulation methods such as multi-disciplinary coupling, multi-language modeling as well as interactive simulation and virtual simulation technologies. This paper introduces the design of a digital simulation platform for satellite launch mission verification.The platform has the advantages of high generality and extensibility, being easy to build up. The Functional Mockup Interface(FMI) Standard is adopted to achieve integration of multi-source models. A WebGL based 3D visual simulation tool is also adopted to implement the virtual display system which could display the rocket launch process and rocket-satellite separation with high fidelity 3D virtual scenes. A configuration tool was developed to map the 3D objects in the visual scene with simulation physical variables for complex rocket flight control mechanisms, which greatly improves the platform's generality and extensibility. Finally the real-time performance had been tested and the YL-1 launch mission was adopted to demonstrate the functions of the platform.The platform will be used to construct a digital twin system for satellite launch missions in the future.展开更多
The planning,design,operation,control and scientific research of power systems all require a variety of simulation analysis.Thus power grid simulation analysis is a fundamental supporting technology of large-scale pow...The planning,design,operation,control and scientific research of power systems all require a variety of simulation analysis.Thus power grid simulation analysis is a fundamental supporting technology of large-scale power grids.In power grid simulation analysis,in addition to simulation calculations,there are many links for analysis and decision-making,relying on specialists.The introduction of advanced artificial intelligence technology provides a new method to improve the efficiency and accuracy of power grid simulation analysis.Nevertheless,the research of the related artificial intelligence technologies face a great deal of new challenges due to the complexity of the largescale power grid simulation data,including massive volumes,high dimensionality,strong coupling and complex correlations.Also a great deal of knowledge and experience need to be integrated in the process of analysis.In order to deal with these challenges,based on the existing works,this paper focuses on the core scientific problem of artificial intelligence analysis and decision making related to the massive simulation results of large-scale power grids,and proposes an artificial intelligence analysis method framework for large-scale power grids based on digital simulation,which includes the power grid simulation analysis knowledge model with application method,the power grid simulation knowledge mining method and the artificial intelligence models with transfer learning ability of diversified grids as well as analyzing and calculation adjusting for largescale power grid simulation results,etc.This work is expected to open up a new technical approach for large-scale power grid simulation analysis and provide strong technical support for the safe and stable operation of large-scale power grids.展开更多
A strategy for digital simulation methods was presented for solving partial differential equations, called as IPBFP which is to insert M points before the first time point of the usual way, to decrease simulation erro...A strategy for digital simulation methods was presented for solving partial differential equations, called as IPBFP which is to insert M points before the first time point of the usual way, to decrease simulation errors. The theoretical analysis and simulation results show that it can improve the fully implicit method with any dimensionless diffusion coefficient lambda, Crank-Nicolson method with large lambda and Saul'yev method with small lambda. The IPBFP is convenient to arrange the simulation time points flexibly and reduce calculation time and errors. This approach can combine the merits of non-uniform time grid and uniform time grid methods in simulation for electrochemical studies.展开更多
The four different schemes of Group Explicit Method (GEM): GER, GEL, SAGE andDAGE have been claimed to be unstable when employed for electrochemical digital simulations withlarge model diffusion coefficient D_M. Howev...The four different schemes of Group Explicit Method (GEM): GER, GEL, SAGE andDAGE have been claimed to be unstable when employed for electrochemical digital simulations withlarge model diffusion coefficient D_M. However, in this investigation, in spite of the conditionalstability of GER and GEL, the SAGE scheme, which is a combination of GEL and GER, was found to beunconditionally stable when used for simulations of electrochemical reaction-diffusions and had aperformance comparable with or even better than the Fast Quasi Explicit Finite Difference Method(FQEFD) in some aspects. Corresponding differential equations of SAGE scheme for digital simulationsof various electrochemical mechanisms with both uniform and exponentially expanded space units wereestablished. The effectiveness of the SAGE method was further demonstrated by the simulations of anEC and a catalytic mechanism with very large homogeneous rate constants.展开更多
This paper surveys a number of recent advances in the error analysis in the frequency domain for a digital simulation model. It is emphasized to discuss the errors in characteristic roots and transfer funcnon of the d...This paper surveys a number of recent advances in the error analysis in the frequency domain for a digital simulation model. It is emphasized to discuss the errors in characteristic roots and transfer funcnon of the digital simulation model, the frequency domain errors of the data transfers between thesimulation submodels, and some compensation methods for the errors. Some of the questions to be answered are also presented.展开更多
Based on wave digital filter(WDF) principles, this paper presents a digital model of cellular neural networks(CNNs). The model can precisely simulate the dynamic behavior of CNNs.
US Vice President Al Gore's vision of Digital Earth applies us with prospects for brand-new ways of solving problems the earth is facing such as seismic disaster. ms paper first briefly introduces the concept of ...US Vice President Al Gore's vision of Digital Earth applies us with prospects for brand-new ways of solving problems the earth is facing such as seismic disaster. ms paper first briefly introduces the concept of Digital Earth. Then in the context of Digital Earth. the Origin, concept and application of Virtual Reality technology are reviewed. After that we present in detail our preliminary case study--CVR-USD (Computer Virtual Reality for Urban Seismic Disaster Simulation) System which aims to simulate and manage seismic disaster through integrating RS, GIS and VR technologies. For this system, we've built USD subsystem, developed SMVR software to implement CVR. and also developed a Spatial Dare Analysis Package to handle spatial data related to earthquake disaster.展开更多
In order to effectively imitate the dynamic operation characteristics of the HVDC (high voltage direct current) power transmission system at a real ±500kV HVDC transmission project, the electromechanical-electr...In order to effectively imitate the dynamic operation characteristics of the HVDC (high voltage direct current) power transmission system at a real ±500kV HVDC transmission project, the electromechanical-electromagnetic transient hybrid simulation was carried out based on advanced digital power system simulator (ADPSS). In the simulation analysis, the built hybrid model's dynamic response outputs under three different fault conditions are considered, and by comparing with the selected fault recording waveforms, the validities of the simulation waveforms are estimated qualitatively. It can be ascertained that the hybrid simulation model has the ability to describe the HVDC system's dynamic change trends well under some special fault conditions.展开更多
The discrete element method(DEM) has been widely used to simulate microscopic interactions between particles.Screening is a deeply complicated process when considering the law of motion for the particles,themselves.In...The discrete element method(DEM) has been widely used to simulate microscopic interactions between particles.Screening is a deeply complicated process when considering the law of motion for the particles,themselves.In this paper,a numerical model for the study of a particle screening process using the DEM is presented.Special attention was paid to the modeling of a vibrating screen that allows particles to pass through,or to rebound,when approaching the screen surface.Inferences concerning screen length and vibrating frequency as they relate to screening efficiency were studied.The conclusions were:three-dimensional simulation of screening efficiency along the screen length follows an exponential distribution;when the sieve vibrates over a certain frequency range the screening efficiency is stable;and,higher vibration frequencies can improve the handling capacity of the screening machine.展开更多
Electro-hydraulic screw down servo system(HSDS) is widely used in seamless tube rolling mill in western companies.But in Chinese companies,mechanical screw down system(MSDS) is popularly equipped and has a serious...Electro-hydraulic screw down servo system(HSDS) is widely used in seamless tube rolling mill in western companies.But in Chinese companies,mechanical screw down system(MSDS) is popularly equipped and has a serious disadvantage that the roller would often be locked when it is overloaded.For the purpose of designing the first set of domestic twin-roller,four-cylinder and six-framework electro-hydraulic HSDS of seamless tube rolling mill,an experiment system that can simulate the process of seamless tube rolling is constructed.A digital simulation model of the experiment system is built with AMESim software and validated by comparing the simulation results with experiment results.The sudden load response of the screw piston position is studied with the built model and the experiment system.To improve the HSDS's positioning accuracy with large load,a hybrid control scheme of combining load disturbance feedforward compensation(LDFC) method based on servo valve's pressure-stroke feature and anti-saturation integral control(ASIC) is proposed.Both results of simulation and experiment indicate that the transient response time of the single-roller HSDS with the proposed scheme decreases from 0.65 s to less than 0.2 s without static error.To improve the system dynamic stiffness and production qualified rate,a flow rate feedforward compensation(FFC) control strategy based on oil compressibility to dynamic position error is proposed.This FFC strategy is validated with experiments in which the transient error caused by sudden load is reduced to less than 25% of that without FFC.By extending the simulation model to HSDS of a twin-roller,four-cylinder rolling mill,analyzing the mill deformation,and applying the LDFC,ASIC and FFC to the HSDS,the dynamic performance and positioning accuracy of compensated multi-roller HSDS at biting moment are predicted.The research results provide a theoretical and experimental basis for the design of HSDS of seamless steel tube rolling mill.展开更多
The max collision force of ship-bridge collision is one of the most importantreferences for bridge design. By mean linear digital simulation method, the collision forces ofthe collisions between rigid bridge pier and ...The max collision force of ship-bridge collision is one of the most importantreferences for bridge design. By mean linear digital simulation method, the collision forces ofthe collisions between rigid bridge pier and ship bow were calculated out for four different ships,whose tonnages are 5 000,10 000,50 000 and 60 000 DWT respectively. Curves of collisionforce-penetration and absorbed energy-penetration are obtained, and the data of the max loads arethen summarized. On the basis of these curves and data, a set of curves describing therelationships between max collision forces and tonnages of the ships are successfully presented, bywhich the max collision forces of the ships-bridge with different tonnages and in differentvelocities can be estimated easily and reliably.展开更多
This paper discusses some techniques for treating discontinuities of the right-hand functions of ordinary differential equations (ODEs) in real-time digital simulation (RTDS). The numericalexperiments show that these ...This paper discusses some techniques for treating discontinuities of the right-hand functions of ordinary differential equations (ODEs) in real-time digital simulation (RTDS). The numericalexperiments show that these techniques are effective.展开更多
With the aim of visualizing the real-time simulation calculation of water delivery system (WDS), a structural drawing-oriented (SDO) simulation technique was presented, and applied to Zhangjiuhe Diversion Project, whi...With the aim of visualizing the real-time simulation calculation of water delivery system (WDS), a structural drawing-oriented (SDO) simulation technique was presented, and applied to Zhangjiuhe Diversion Project, which is a long-distance water delivery system constructed for draw- ing water from the Zhangjiuhe River to Kunming city. Taking SIMULINK software as simulating plat-form, the technique established a visual dynamic simulation model for the system. The simulation procedure of the system was simplified,and the efficiency of modeling was also enhanced according to the modularization and reutilization of the simulation program. Furthermore, a self-optimization model was presented. Based on the digital simulation models, the on line controlled optimization link was added, and the input data can be continually optimized according to the feedback information of simulating output. The system was thus optimized automatically. Built upon MATLAB software, simulation optimization of the Zhangjiuhe Diversion Project was achieved, which provides a new way for the research of optimal operation of WDS.展开更多
The tactical assumption of antiaircraft gun system to intercept cruising missile is researched with method of digital simulation. At first the problem of target creation is discussed, Then the modeling of each part of...The tactical assumption of antiaircraft gun system to intercept cruising missile is researched with method of digital simulation. At first the problem of target creation is discussed, Then the modeling of each part of antiaircraft gun system including fire control system, tracking system, shootable zone and calculation of external trajectory is dissertated detailedly. After establishment of simulation database, the forward relevant software design project is presented. The simulation system can be used to evaluate the effect of intercept missile by single gun, and integrate with other simulation system.展开更多
Quantum simulation,as a practical application of noisy quantum computing,has aided the study of exotic quantum matters and the implementation of algorithms that outperform classical approaches.Superconducting qubits,o...Quantum simulation,as a practical application of noisy quantum computing,has aided the study of exotic quantum matters and the implementation of algorithms that outperform classical approaches.Superconducting qubits,one of the most promising candidates for realizing universal quantum computing,possess state-of-the-art features like easy integration of qubits,long coherence time,and high-fidelity single-and two-qubit gates.These characteristics have enabled applications of digital quantum simulation in the fields of physics,chemistry,and computer science.In this review,we first present the basic concepts of superconducting qubits,quantum gates,and digital quantum simulations.We also explore recent progress in digital quantum simulations using superconducting qubits,especially in relation to quantum chemistry,quantum matters,combinatorial optimization,and quantum machine learning.Finally,we address the current challenges of digital quantum simulation with superconducting qubits,and provide a perspective on the future of the field.展开更多
文摘Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the aircraft is being tested, the specimen's safety mainly depends on monitoring and understanding the testing data by way of evaluating the coherence with the digital simulation data synchyononsly. The test digital simulation can aid realizing above requirements and improving the test efficiency significantly during test scheme design stage or testing stage respectively. The key technologies and the solving methods of test digital simulation are presented and the application example is given.
基金This work is supported partly by the National Natural Science Foundation of China
文摘In this paper, the stability analysis for parallel real-time digital simulation models is discussed. The coupling coefficient perturbation method and the simulation stepsize perturbation method are established. For two classes of systems of test equations, we construct the parallel simulation models and prove that they have the stability behaviour which is similar to the original continuous systems.
文摘The protection based balance of energy is a new technique specially proposed for long transmission lines. This technique depends upon the calculation of net energy into the transmission line by two independent methods and comparing them to indicate healthy and faulty conditions. In order to study the performance and feasibility of the protection based on balance of energy, the new protection has been extensively tested by using EMTP on a long transmission line with various configurations and operating conditions (including single pole line, double circuit lines and two phase operation). The results calculated by EMTP show that under any condition of a power system, the proposed technique has excellent performance,the viability even for high resistance ground faults and a short operation time.
文摘The acceleration performance of a turbojet is one of its important characteristics. In terms of control system, the engine is a controlled object. The acceleration performance not only depends on the engine, but also on the controller; therefore both the engine and the controller must be combined in a control system to make research for this performance. This paper presents a mathematical model of the turbojet acceleration control system and digital simulation method. Because the engine acceleration is a large variation transient process, the models of the engine and the controller are described by nonlinear equations. The methods of solving nonlinear equations and iterative techniques of calculating acceleration control system are discussed in this paper. The calculated results, as compared with test results, show that the simulation for this system is satisfactory.
文摘Dryden model is usually used in studying the response of flight vehicle to atmospheric turbulence. For a modern flight simulator,it is necessary to generate random winds ( in Dryden model or sometimes others) with a digital computer.In this paper,a theoretically strict new method to meet this purpose is proposed.By this method,we can acquire a three-dimensional atmospheric turbulence which contains three components of wind velocity and three components of wind velocity gradient.The reliability of this method is checked by comparing the obtained autocorrelation value with the theoretical one.A numerical example has shown a satisfactory result.Finally,some proposals about how to use this mathematical model in flight simulator are given.
文摘To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as technical feasibilities, and it relates to complex system simulation methods such as multi-disciplinary coupling, multi-language modeling as well as interactive simulation and virtual simulation technologies. This paper introduces the design of a digital simulation platform for satellite launch mission verification.The platform has the advantages of high generality and extensibility, being easy to build up. The Functional Mockup Interface(FMI) Standard is adopted to achieve integration of multi-source models. A WebGL based 3D visual simulation tool is also adopted to implement the virtual display system which could display the rocket launch process and rocket-satellite separation with high fidelity 3D virtual scenes. A configuration tool was developed to map the 3D objects in the visual scene with simulation physical variables for complex rocket flight control mechanisms, which greatly improves the platform's generality and extensibility. Finally the real-time performance had been tested and the YL-1 launch mission was adopted to demonstrate the functions of the platform.The platform will be used to construct a digital twin system for satellite launch missions in the future.
基金This work was supported by the National Natural Science Foundation of China(No:U1866602).
文摘The planning,design,operation,control and scientific research of power systems all require a variety of simulation analysis.Thus power grid simulation analysis is a fundamental supporting technology of large-scale power grids.In power grid simulation analysis,in addition to simulation calculations,there are many links for analysis and decision-making,relying on specialists.The introduction of advanced artificial intelligence technology provides a new method to improve the efficiency and accuracy of power grid simulation analysis.Nevertheless,the research of the related artificial intelligence technologies face a great deal of new challenges due to the complexity of the largescale power grid simulation data,including massive volumes,high dimensionality,strong coupling and complex correlations.Also a great deal of knowledge and experience need to be integrated in the process of analysis.In order to deal with these challenges,based on the existing works,this paper focuses on the core scientific problem of artificial intelligence analysis and decision making related to the massive simulation results of large-scale power grids,and proposes an artificial intelligence analysis method framework for large-scale power grids based on digital simulation,which includes the power grid simulation analysis knowledge model with application method,the power grid simulation knowledge mining method and the artificial intelligence models with transfer learning ability of diversified grids as well as analyzing and calculation adjusting for largescale power grid simulation results,etc.This work is expected to open up a new technical approach for large-scale power grid simulation analysis and provide strong technical support for the safe and stable operation of large-scale power grids.
基金Project supported by the National Natural Science Foundation of China.
文摘A strategy for digital simulation methods was presented for solving partial differential equations, called as IPBFP which is to insert M points before the first time point of the usual way, to decrease simulation errors. The theoretical analysis and simulation results show that it can improve the fully implicit method with any dimensionless diffusion coefficient lambda, Crank-Nicolson method with large lambda and Saul'yev method with small lambda. The IPBFP is convenient to arrange the simulation time points flexibly and reduce calculation time and errors. This approach can combine the merits of non-uniform time grid and uniform time grid methods in simulation for electrochemical studies.
文摘The four different schemes of Group Explicit Method (GEM): GER, GEL, SAGE andDAGE have been claimed to be unstable when employed for electrochemical digital simulations withlarge model diffusion coefficient D_M. However, in this investigation, in spite of the conditionalstability of GER and GEL, the SAGE scheme, which is a combination of GEL and GER, was found to beunconditionally stable when used for simulations of electrochemical reaction-diffusions and had aperformance comparable with or even better than the Fast Quasi Explicit Finite Difference Method(FQEFD) in some aspects. Corresponding differential equations of SAGE scheme for digital simulationsof various electrochemical mechanisms with both uniform and exponentially expanded space units wereestablished. The effectiveness of the SAGE method was further demonstrated by the simulations of anEC and a catalytic mechanism with very large homogeneous rate constants.
文摘This paper surveys a number of recent advances in the error analysis in the frequency domain for a digital simulation model. It is emphasized to discuss the errors in characteristic roots and transfer funcnon of the digital simulation model, the frequency domain errors of the data transfers between thesimulation submodels, and some compensation methods for the errors. Some of the questions to be answered are also presented.
文摘Based on wave digital filter(WDF) principles, this paper presents a digital model of cellular neural networks(CNNs). The model can precisely simulate the dynamic behavior of CNNs.
基金National Natural Science Foundation of China (NSFC)!project No. 69896250 Basic Research Project of CAS !project No. KJ951-B1
文摘US Vice President Al Gore's vision of Digital Earth applies us with prospects for brand-new ways of solving problems the earth is facing such as seismic disaster. ms paper first briefly introduces the concept of Digital Earth. Then in the context of Digital Earth. the Origin, concept and application of Virtual Reality technology are reviewed. After that we present in detail our preliminary case study--CVR-USD (Computer Virtual Reality for Urban Seismic Disaster Simulation) System which aims to simulate and manage seismic disaster through integrating RS, GIS and VR technologies. For this system, we've built USD subsystem, developed SMVR software to implement CVR. and also developed a Spatial Dare Analysis Package to handle spatial data related to earthquake disaster.
基金supported by the General Program of Chinese Postdoctoral Science Foundation under Grant No.2012M511595
文摘In order to effectively imitate the dynamic operation characteristics of the HVDC (high voltage direct current) power transmission system at a real ±500kV HVDC transmission project, the electromechanical-electromagnetic transient hybrid simulation was carried out based on advanced digital power system simulator (ADPSS). In the simulation analysis, the built hybrid model's dynamic response outputs under three different fault conditions are considered, and by comparing with the selected fault recording waveforms, the validities of the simulation waveforms are estimated qualitatively. It can be ascertained that the hybrid simulation model has the ability to describe the HVDC system's dynamic change trends well under some special fault conditions.
基金Project 2006HZ0002-2 supported by the Special Topic Fund of Key Science and Technology of Fujian Province
文摘The discrete element method(DEM) has been widely used to simulate microscopic interactions between particles.Screening is a deeply complicated process when considering the law of motion for the particles,themselves.In this paper,a numerical model for the study of a particle screening process using the DEM is presented.Special attention was paid to the modeling of a vibrating screen that allows particles to pass through,or to rebound,when approaching the screen surface.Inferences concerning screen length and vibrating frequency as they relate to screening efficiency were studied.The conclusions were:three-dimensional simulation of screening efficiency along the screen length follows an exponential distribution;when the sieve vibrates over a certain frequency range the screening efficiency is stable;and,higher vibration frequencies can improve the handling capacity of the screening machine.
基金supported by National Natural Science Foundation of China(Grant No.50575156)Open Fund of the State Key Laboratory of Fluid Power Transmission and Control of Zhejiang University,China(Grant No.GZKF-2008006)
文摘Electro-hydraulic screw down servo system(HSDS) is widely used in seamless tube rolling mill in western companies.But in Chinese companies,mechanical screw down system(MSDS) is popularly equipped and has a serious disadvantage that the roller would often be locked when it is overloaded.For the purpose of designing the first set of domestic twin-roller,four-cylinder and six-framework electro-hydraulic HSDS of seamless tube rolling mill,an experiment system that can simulate the process of seamless tube rolling is constructed.A digital simulation model of the experiment system is built with AMESim software and validated by comparing the simulation results with experiment results.The sudden load response of the screw piston position is studied with the built model and the experiment system.To improve the HSDS's positioning accuracy with large load,a hybrid control scheme of combining load disturbance feedforward compensation(LDFC) method based on servo valve's pressure-stroke feature and anti-saturation integral control(ASIC) is proposed.Both results of simulation and experiment indicate that the transient response time of the single-roller HSDS with the proposed scheme decreases from 0.65 s to less than 0.2 s without static error.To improve the system dynamic stiffness and production qualified rate,a flow rate feedforward compensation(FFC) control strategy based on oil compressibility to dynamic position error is proposed.This FFC strategy is validated with experiments in which the transient error caused by sudden load is reduced to less than 25% of that without FFC.By extending the simulation model to HSDS of a twin-roller,four-cylinder rolling mill,analyzing the mill deformation,and applying the LDFC,ASIC and FFC to the HSDS,the dynamic performance and positioning accuracy of compensated multi-roller HSDS at biting moment are predicted.The research results provide a theoretical and experimental basis for the design of HSDS of seamless steel tube rolling mill.
文摘The max collision force of ship-bridge collision is one of the most importantreferences for bridge design. By mean linear digital simulation method, the collision forces ofthe collisions between rigid bridge pier and ship bow were calculated out for four different ships,whose tonnages are 5 000,10 000,50 000 and 60 000 DWT respectively. Curves of collisionforce-penetration and absorbed energy-penetration are obtained, and the data of the max loads arethen summarized. On the basis of these curves and data, a set of curves describing therelationships between max collision forces and tonnages of the ships are successfully presented, bywhich the max collision forces of the ships-bridge with different tonnages and in differentvelocities can be estimated easily and reliably.
文摘This paper discusses some techniques for treating discontinuities of the right-hand functions of ordinary differential equations (ODEs) in real-time digital simulation (RTDS). The numericalexperiments show that these techniques are effective.
基金National Natural Science Foundation of China(No.50179032)Natural Science Foundation of Tianjin(No.000345)
文摘With the aim of visualizing the real-time simulation calculation of water delivery system (WDS), a structural drawing-oriented (SDO) simulation technique was presented, and applied to Zhangjiuhe Diversion Project, which is a long-distance water delivery system constructed for draw- ing water from the Zhangjiuhe River to Kunming city. Taking SIMULINK software as simulating plat-form, the technique established a visual dynamic simulation model for the system. The simulation procedure of the system was simplified,and the efficiency of modeling was also enhanced according to the modularization and reutilization of the simulation program. Furthermore, a self-optimization model was presented. Based on the digital simulation models, the on line controlled optimization link was added, and the input data can be continually optimized according to the feedback information of simulating output. The system was thus optimized automatically. Built upon MATLAB software, simulation optimization of the Zhangjiuhe Diversion Project was achieved, which provides a new way for the research of optimal operation of WDS.
文摘The tactical assumption of antiaircraft gun system to intercept cruising missile is researched with method of digital simulation. At first the problem of target creation is discussed, Then the modeling of each part of antiaircraft gun system including fire control system, tracking system, shootable zone and calculation of external trajectory is dissertated detailedly. After establishment of simulation database, the forward relevant software design project is presented. The simulation system can be used to evaluate the effect of intercept missile by single gun, and integrate with other simulation system.
基金supported by the National Natural Science Foundation of China(No.12304559)the Zhejiang Provincial Natural Science Foundation of China(No.LDQ23A040001).
文摘Quantum simulation,as a practical application of noisy quantum computing,has aided the study of exotic quantum matters and the implementation of algorithms that outperform classical approaches.Superconducting qubits,one of the most promising candidates for realizing universal quantum computing,possess state-of-the-art features like easy integration of qubits,long coherence time,and high-fidelity single-and two-qubit gates.These characteristics have enabled applications of digital quantum simulation in the fields of physics,chemistry,and computer science.In this review,we first present the basic concepts of superconducting qubits,quantum gates,and digital quantum simulations.We also explore recent progress in digital quantum simulations using superconducting qubits,especially in relation to quantum chemistry,quantum matters,combinatorial optimization,and quantum machine learning.Finally,we address the current challenges of digital quantum simulation with superconducting qubits,and provide a perspective on the future of the field.