This paper briefs the developmental course, manufacturing and applications, as well as future prospect of excitation systems of large size turbogenerators in China, emphatically expounds the advantages of seif-excitat...This paper briefs the developmental course, manufacturing and applications, as well as future prospect of excitation systems of large size turbogenerators in China, emphatically expounds the advantages of seif-excitation systems with potential source reetifiers and matters needing to be noted during dissemination and application of them.展开更多
The excitation system of the homopolar inductor machine(HIM)is analyzed and designed to establish the design approach and evaluation criteria of the excitation system.The finite element method is used to calculate the...The excitation system of the homopolar inductor machine(HIM)is analyzed and designed to establish the design approach and evaluation criteria of the excitation system.The finite element method is used to calculate the three-dimensional electromagnetic field in the HIM,and the distribution and characteristics of the magnetic field are described.The analytical method is applied to investigate the design process of the excitation winding.The ratio of the axial length of the armature winding to the excitation winding and the ratio of the axial length of the working air-gap to the non-working air-gap are investigated by the numerical calculation method.A prototype HIM is designed and manufactured,and some experiments are implemented to verify the correctness of the theoretical analysis and numerical calculation results.The research results show that the established design method of the excitation winding is practical and feasible.Under the conditions of constant excitation magnetomotive force or constant excitation power,the optimum range of the axial length ratio of the armature winding and the excitation winding is 0.45 to 0.5.The optimal axial length of the non-working air-gap can be determined by the ratio of the stator inner diameter and pole-pairs.展开更多
Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is desi...Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is designed.Firstly,the mechanism of the inter-turn short circuit of the rotor winding in the excitation system is modeled under the premise of stable working conditions,and electromagnetic decoupling and system simplification are carried out through Park Transform.An interval observer is designed based on the current residual in the two-phase coordinate system,and the sensitive and stable conditions of the observer is preset.The fault diagnosis process based on the interval observer is formulated,and the observer gain matrix is convexly optimized by linear matrix inequality.The numerical simulation and experimental results show that the inter-turn short circuit weak fault is hardly detected directly through the current signal,but the fault is quickly and accurately diagnosed through the residual internal observer.Compared with the traditional fault diagnosis method based on excitation current,the diagnosis speed and accuracy are greatly improved,and the probability of misdiagnosis also decreases.This method provides a theoretical basis for weak fault identification of excitation systems,and is of great significance for the operation and maintenance of excitation systems.展开更多
We first established the mathematical model of a marine synchronous generator and its controllable phase-compounding excitation system, and then made a simulation sketch with Saber simulation software. According to "...We first established the mathematical model of a marine synchronous generator and its controllable phase-compounding excitation system, and then made a simulation sketch with Saber simulation software. According to "Regulations for the Construction and Classification of Ocean-going Steel Ships" of the China Classification Society (CCS) , some experiments are designed to verify the property of the simulation model. Some experiments, such as free start, load sudden on and off, have been CO is mpleted, and the result indicates that the model conforms to the requirements of the rules very well. It qualified for a marine electrical propulsion simulation.展开更多
A new brushless excitation system with the modified microcomputer-based regulator developed by NARI was put into operation recently on a 300 MW #4 generator, Hanchuan plant, Hubei province. The hardware and software i...A new brushless excitation system with the modified microcomputer-based regulator developed by NARI was put into operation recently on a 300 MW #4 generator, Hanchuan plant, Hubei province. The hardware and software implementation of the regulator is briefly described in the paper. The onsite smooth operation of the generator with this excitation system proves that the system is quite展开更多
MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchr...MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchronous generator in the developed MHPP system is introduced. Proposed hybrid DC excitation system consists of solar & hydrogen energy based power generating systems. Hybrid renewable energy based system is used for the excitation of the synchronous generator in the MHPP test system. The renewables are used as a secondary energy source to provide the excitation current to a synchronous generator that generates energy in MHPP. A PV (photovoltaic) array is used as the main source of excitation, and a FC (fuel cell) stack is used for DC excitation in the lack of sunshine. In the experimental setup, an electrical control card is developed, and a microcontroller is used to perform the proposed excitation system. All experimental results obtained from 5 kW rated power MHHP test system. Experimental results show that, the proposed method provides the continuous excitation current, and the operation of the synchronous generator is uninterrupted. The proposed method is also practical and easily implemented for MHPP systems.展开更多
The fast excitation system of a composite magnetic controllable reactor is introduced. In this excitation system, a bidirectional function (i.e. fast forward excitation and backward forcible demagnetization) is avai...The fast excitation system of a composite magnetic controllable reactor is introduced. In this excitation system, a bidirectional function (i.e. fast forward excitation and backward forcible demagnetization) is available, which can significantly improve the response speed, performances, and application scope of magnetic controllable reactor.展开更多
In this paper,an optimal nonlinear robust sliding mode control(ONRSMC)based on mixed H_(2)/H_(∞)linear matrix inequalities(LMIs)is designed for the excitation system in a“one machine-infinite bus system”(OMIBS)to e...In this paper,an optimal nonlinear robust sliding mode control(ONRSMC)based on mixed H_(2)/H_(∞)linear matrix inequalities(LMIs)is designed for the excitation system in a“one machine-infinite bus system”(OMIBS)to enhance system stability.Initially,the direct feedback linearization method is used to establish a mathematical model of the OMIBS incorporating uncertainties.ONRSMC is then designed for this model,employing the mixed H_(2)/H_(∞)LMIs.The chaos mapping-based adaptive salp swarm algorithm(CASSA)is introduced to fully optimize the parameters of the sliding mode control,ensuring optimal performance under a specified condition.CASSA demonstrates rapid convergence and reduced like-lihood of falling into local optima during optimization.Finally,ONRSMC is obtained through inverse transformation,exhibiting the advantages of simple structure,high reliability,and independence from the accuracy of system models.Four simulation scenarios are employed to validate the effectiveness and robustness of ONRSMC,including mechanical power variation,generator three-phase short circuit,transmission line short circuit,and generator parameter uncertainty.The results indicate that ONRSMC achieves optimal dynamic performance in various operating conditions,facilitating the stable operation of power systems following faults.展开更多
This work presents a new design method based on differentialgeometry andthe nonlinear H∞approach which has verified thatthe H∞controlforthe feedback linearization system is equivalentto a nonlinear H∞control fort...This work presents a new design method based on differentialgeometry andthe nonlinear H∞approach which has verified thatthe H∞controlforthe feedback linearization system is equivalentto a nonlinear H∞control forthe primitive nonlinear controlsystem in the sense of differential game theory.In addition,this kind of design methodis usedfornonlinearrobust optimalexcitation controlofa multi machine system .The controllerconstructed isimplemented via purely local measurement. Moreover,itisindependent ofthe parameters of power networks. Simulations are performed on a single infinite system .It has been demonstrated thatthe nonlinear H∞excitation controlleris more effective than the other nonlinear excitation controllerin dynamic performance improvementfor variation of operationalstates and parametersin powersystems.展开更多
Starting from an improved mapping approach and a linear variable separation approach, a new family of exact solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with...Starting from an improved mapping approach and a linear variable separation approach, a new family of exact solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with arbitrary functions for a general (2+1)-dimensional Korteweg de solutions, we obtain some novel dromion-lattice solitons, system Vries system (GKdV) is derived. According to the derived complex wave excitations and chaotic patterns for the GKdV展开更多
By using a mapping approach and a linear variable separation approach, a new family of solitary wave solutions with arbitrary functions for the (2+1)-dimensional modified dispersive water-wave system (MDWW) is de...By using a mapping approach and a linear variable separation approach, a new family of solitary wave solutions with arbitrary functions for the (2+1)-dimensional modified dispersive water-wave system (MDWW) is derived. Based on the derived solutions and using some multi-valued functions, we obtain some novel folded localized excitations of the system.展开更多
By improved projective equation approach and a linear variable separation approach, a new family of exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli (BLP) system is derived. Based on the derived sol...By improved projective equation approach and a linear variable separation approach, a new family of exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli (BLP) system is derived. Based on the derived solitary wave solution, some dromion and solitoff excitations and chaotic behaviours are investigated.展开更多
Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and t...Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and the stability of structures when the intensive seismic excitation,the intensity of which is larger than 7,acts in train-bridge system.Firstly,the motion equations of a two-dimensional train-bridge system under the vertical random excitation of track irregularity and the vertical seismic acceleration are established,where the train subsystem is composed of 8 mutually independent vehicle elements with 48 degrees of freedom,while the single-span simple supported bridge subsystem is composed of 102D beam elements with 20 degrees of freedom on beam and 2 large mass degrees of freedom at the support.Secondly,Monte Carlo method and pseudo excitation method are adopted to analyze the statistical parameters of the system.The power spectrum density of random excitation is used to define a series of non-stationary pseudo excitation in pseudo excitation method and the trigonometric series of random vibration history samples in Monte Carlo method,respectively solved by precise integral method and Newmark-βmethod through the inter-system iterative procedure.Finally,the results are compared with the case under the weak seismic excitation,and show that the samples of vertical acceleration response of bridge and the offload factor of train obeys the normal distribution.In a high probability,the intensive earthquakes pose a greater threat to the safety and stability of bridges and trains than the weak ones.展开更多
A bounded optimal control strategy for strongly non-linear systems under non-white wide-band random excitation with actuator saturation is proposed. First, the stochastic averaging method is introduced for controlled ...A bounded optimal control strategy for strongly non-linear systems under non-white wide-band random excitation with actuator saturation is proposed. First, the stochastic averaging method is introduced for controlled strongly non-linear systems under wide-band random excitation using generalized harmonic functions. Then, the dynamical programming equation for the saturated control problem is formulated from the partially averaged Itō equation based on the dynamical programming principle. The optimal control consisting of the unbounded optimal control and the bounded bang-bang control is determined by solving the dynamical programming equation. Finally, the response of the optimally controlled system is predicted by solving the reduced Fokker-Planck-Kolmogorov (FPK) equation associated with the completed averaged Itō equation. An example is given to illustrate the proposed control strategy. Numerical results show that the proposed control strategy has high control effectiveness and efficiency and the chattering is reduced significantly comparing with the bang-bang control strategy.展开更多
A new nonlinear variable structure excitation controller is proposed. Its design combines the differential geometry theory and the variable structure controlling theory. The mathematical model in the form of "an affm...A new nonlinear variable structure excitation controller is proposed. Its design combines the differential geometry theory and the variable structure controlling theory. The mathematical model in the form of "an affme nonlinear system" is set up for the control of a large-scale power system. The static and dynamic performances of the nonlinear variable structure controller are simulated. The response of system with the controller proposed is compared to that of the nonlinear optimal controller when the system is subjected to a variety of disturbances. Simulation results show that the nonlinear variable structure excitation controller gives more satisfactorily static and dynamic performance and better robustness.展开更多
Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic ...Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic characteristics,a single-disk rotor test rig,where mass imbalance and base excitation could be applied,is developed.Experimental research on the rotor system response under sinusoidal base excitation conditions with different frequencies and excitation forces is performed and the effect of ISFD on the dynamic characteristics of the rotor is investigated.The experimental results demonstrate that when the sinusoidal base excitation frequency approaches the first critical speed of the rotor system or the natural frequency of the rotor system base,strong vibration occurs in the rotor,indicating that the base excitation of the two frequencies has a greater impact on rotor system response.In addition,with the increase of the base excitation force,the vibration of the rotor will be increased.ISFDs can significantly inhibit the vibration due to unbalanced forces and sinusoidal base excitation in rotor systems.To a certain extent,ISFDs can improve the effect of sinusoidal base excitation with most frequencies on rotor system response,and they have a good vibration reduction effect for sinusoidal base excitation with different excitation forces.展开更多
This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computatio...This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computational cost required by a random response analysis. To reduce the computational burden involved in the coupled random analysis, an iterative procedure based on the Pseudo excitation method has been developed. It is found that this algorithm has an overwhelming advantage in computing efficiency over traditional methods, as demonstrated by some numerical examples given in this paper.展开更多
A strategy for time-delayed feedback control optimization of quasi linear systems with random excitation is proposed. First, the stochastic averaging method is used to reduce the dimension of the state space and to de...A strategy for time-delayed feedback control optimization of quasi linear systems with random excitation is proposed. First, the stochastic averaging method is used to reduce the dimension of the state space and to derive the stationary response of the system. Secondly, the control law is assumed to be velocity feedback control with time delay and the unknown control gains are determined by the performance indices. The response of the controlled system is predicted through solving the Fokker-Plank-Kolmogorov equation associated with the averaged Ito equation. Finally, numerical examples are used to illustrate the proposed control method, and the numerical results are confirmed by Monte Carlo simulation .展开更多
By means of variable separation approach, quite a general excitation of the new (2 + 1)-dimensional long dispersive wave system: is derived. Some types of the usual localized excitations such as dromions, lumps, ring...By means of variable separation approach, quite a general excitation of the new (2 + 1)-dimensional long dispersive wave system: is derived. Some types of the usual localized excitations such as dromions, lumps, rings, and oscillating soliton excitations can be easily constructed by selecting the arbitrary functions appropriately. Besides these usual localized structures, some new localized excitations like fractal-dromion, fractal-lump, and multi-peakon excitations of this new system are found by selecting appropriate functions.展开更多
In most earlier ferroresonance studies the traditional excitation characteristic of iron core, in which the traditional excitation characteristic contains harmonic voltages or currents, has been used as if it were mad...In most earlier ferroresonance studies the traditional excitation characteristic of iron core, in which the traditional excitation characteristic contains harmonic voltages or currents, has been used as if it were made up of pure fundamental voltage or current. However, this is not always true. In comparison with traditional excitation characteristics, this paper introduces the power frequency excitation characteristic of the iron core, which contains no harmonics. The power frequency excitation characteristic of iron core has been obtained by Elector Magnetic Transient Program, resulting in discrete voltage and current pairs. Extensive simulations are carried out to analyse the effect of power frequency excitation characteristic on potential transformer ferroresonance. A detailed analysis of simulation results demonstrates that with power frequency excitation characteristic of iron core inclusion at certain excitation voltage the ferroresonance may happen, conversely it may not happen with traditional excitation characteristic inclusion.展开更多
文摘This paper briefs the developmental course, manufacturing and applications, as well as future prospect of excitation systems of large size turbogenerators in China, emphatically expounds the advantages of seif-excitation systems with potential source reetifiers and matters needing to be noted during dissemination and application of them.
基金The National Natural Science Foundation of China(No.51977035)。
文摘The excitation system of the homopolar inductor machine(HIM)is analyzed and designed to establish the design approach and evaluation criteria of the excitation system.The finite element method is used to calculate the three-dimensional electromagnetic field in the HIM,and the distribution and characteristics of the magnetic field are described.The analytical method is applied to investigate the design process of the excitation winding.The ratio of the axial length of the armature winding to the excitation winding and the ratio of the axial length of the working air-gap to the non-working air-gap are investigated by the numerical calculation method.A prototype HIM is designed and manufactured,and some experiments are implemented to verify the correctness of the theoretical analysis and numerical calculation results.The research results show that the established design method of the excitation winding is practical and feasible.Under the conditions of constant excitation magnetomotive force or constant excitation power,the optimum range of the axial length ratio of the armature winding and the excitation winding is 0.45 to 0.5.The optimal axial length of the non-working air-gap can be determined by the ratio of the stator inner diameter and pole-pairs.
基金supports from National Science Foundation of China(Grant No.51777121).
文摘Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is designed.Firstly,the mechanism of the inter-turn short circuit of the rotor winding in the excitation system is modeled under the premise of stable working conditions,and electromagnetic decoupling and system simplification are carried out through Park Transform.An interval observer is designed based on the current residual in the two-phase coordinate system,and the sensitive and stable conditions of the observer is preset.The fault diagnosis process based on the interval observer is formulated,and the observer gain matrix is convexly optimized by linear matrix inequality.The numerical simulation and experimental results show that the inter-turn short circuit weak fault is hardly detected directly through the current signal,but the fault is quickly and accurately diagnosed through the residual internal observer.Compared with the traditional fault diagnosis method based on excitation current,the diagnosis speed and accuracy are greatly improved,and the probability of misdiagnosis also decreases.This method provides a theoretical basis for weak fault identification of excitation systems,and is of great significance for the operation and maintenance of excitation systems.
基金The paper is supported by the National Research Foundation of China for Doctoral Program of Higher Education under Grant No20040497012
文摘We first established the mathematical model of a marine synchronous generator and its controllable phase-compounding excitation system, and then made a simulation sketch with Saber simulation software. According to "Regulations for the Construction and Classification of Ocean-going Steel Ships" of the China Classification Society (CCS) , some experiments are designed to verify the property of the simulation model. Some experiments, such as free start, load sudden on and off, have been CO is mpleted, and the result indicates that the model conforms to the requirements of the rules very well. It qualified for a marine electrical propulsion simulation.
文摘A new brushless excitation system with the modified microcomputer-based regulator developed by NARI was put into operation recently on a 300 MW #4 generator, Hanchuan plant, Hubei province. The hardware and software implementation of the regulator is briefly described in the paper. The onsite smooth operation of the generator with this excitation system proves that the system is quite
文摘MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchronous generator in the developed MHPP system is introduced. Proposed hybrid DC excitation system consists of solar & hydrogen energy based power generating systems. Hybrid renewable energy based system is used for the excitation of the synchronous generator in the MHPP test system. The renewables are used as a secondary energy source to provide the excitation current to a synchronous generator that generates energy in MHPP. A PV (photovoltaic) array is used as the main source of excitation, and a FC (fuel cell) stack is used for DC excitation in the lack of sunshine. In the experimental setup, an electrical control card is developed, and a microcontroller is used to perform the proposed excitation system. All experimental results obtained from 5 kW rated power MHHP test system. Experimental results show that, the proposed method provides the continuous excitation current, and the operation of the synchronous generator is uninterrupted. The proposed method is also practical and easily implemented for MHPP systems.
文摘The fast excitation system of a composite magnetic controllable reactor is introduced. In this excitation system, a bidirectional function (i.e. fast forward excitation and backward forcible demagnetization) is available, which can significantly improve the response speed, performances, and application scope of magnetic controllable reactor.
基金supported by the National Natural Science Foundation of China(No.51979204 and No.52009096)the Fundamental Research Funds for the Central Universities(No.2042022kf1022)the Hubei Provincial Natural Science Foundation of China(No.2022CFD165).
文摘In this paper,an optimal nonlinear robust sliding mode control(ONRSMC)based on mixed H_(2)/H_(∞)linear matrix inequalities(LMIs)is designed for the excitation system in a“one machine-infinite bus system”(OMIBS)to enhance system stability.Initially,the direct feedback linearization method is used to establish a mathematical model of the OMIBS incorporating uncertainties.ONRSMC is then designed for this model,employing the mixed H_(2)/H_(∞)LMIs.The chaos mapping-based adaptive salp swarm algorithm(CASSA)is introduced to fully optimize the parameters of the sliding mode control,ensuring optimal performance under a specified condition.CASSA demonstrates rapid convergence and reduced like-lihood of falling into local optima during optimization.Finally,ONRSMC is obtained through inverse transformation,exhibiting the advantages of simple structure,high reliability,and independence from the accuracy of system models.Four simulation scenarios are employed to validate the effectiveness and robustness of ONRSMC,including mechanical power variation,generator three-phase short circuit,transmission line short circuit,and generator parameter uncertainty.The results indicate that ONRSMC achieves optimal dynamic performance in various operating conditions,facilitating the stable operation of power systems following faults.
文摘This work presents a new design method based on differentialgeometry andthe nonlinear H∞approach which has verified thatthe H∞controlforthe feedback linearization system is equivalentto a nonlinear H∞control forthe primitive nonlinear controlsystem in the sense of differential game theory.In addition,this kind of design methodis usedfornonlinearrobust optimalexcitation controlofa multi machine system .The controllerconstructed isimplemented via purely local measurement. Moreover,itisindependent ofthe parameters of power networks. Simulations are performed on a single infinite system .It has been demonstrated thatthe nonlinear H∞excitation controlleris more effective than the other nonlinear excitation controllerin dynamic performance improvementfor variation of operationalstates and parametersin powersystems.
基金Project supported by the National Natural Science Foundation of China (Grant No 10172056), the Natural Science Foundation of Zhejiang Province, China (Grant No Y604106), the Foundation of New Century 151 Talent Engineering of Zhejiang Province, the Scientific Research Foundation of Zhejiang Provincial Education Department of China (Grant No 20070568) and the Natural Science Foundation of Zhejiang Lishui University (Grant No KZ04008).
文摘Starting from an improved mapping approach and a linear variable separation approach, a new family of exact solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with arbitrary functions for a general (2+1)-dimensional Korteweg de solutions, we obtain some novel dromion-lattice solitons, system Vries system (GKdV) is derived. According to the derived complex wave excitations and chaotic patterns for the GKdV
基金Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y6100257 and Y6110140)
文摘By using a mapping approach and a linear variable separation approach, a new family of solitary wave solutions with arbitrary functions for the (2+1)-dimensional modified dispersive water-wave system (MDWW) is derived. Based on the derived solutions and using some multi-valued functions, we obtain some novel folded localized excitations of the system.
基金Project supported by the Natural Science Foundation of Zhejiang Province of China (Grant Nos. Y6100257, Y6110140, and Y6090681)the Natural Science Foundation of Zhejiang Lishui University, China (Grant Nos. KZ09005 and KY08003)
文摘By improved projective equation approach and a linear variable separation approach, a new family of exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli (BLP) system is derived. Based on the derived solitary wave solution, some dromion and solitoff excitations and chaotic behaviours are investigated.
基金Project(52178101) supported by the National Natural Science Foundation of China。
文摘Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and the stability of structures when the intensive seismic excitation,the intensity of which is larger than 7,acts in train-bridge system.Firstly,the motion equations of a two-dimensional train-bridge system under the vertical random excitation of track irregularity and the vertical seismic acceleration are established,where the train subsystem is composed of 8 mutually independent vehicle elements with 48 degrees of freedom,while the single-span simple supported bridge subsystem is composed of 102D beam elements with 20 degrees of freedom on beam and 2 large mass degrees of freedom at the support.Secondly,Monte Carlo method and pseudo excitation method are adopted to analyze the statistical parameters of the system.The power spectrum density of random excitation is used to define a series of non-stationary pseudo excitation in pseudo excitation method and the trigonometric series of random vibration history samples in Monte Carlo method,respectively solved by precise integral method and Newmark-βmethod through the inter-system iterative procedure.Finally,the results are compared with the case under the weak seismic excitation,and show that the samples of vertical acceleration response of bridge and the offload factor of train obeys the normal distribution.In a high probability,the intensive earthquakes pose a greater threat to the safety and stability of bridges and trains than the weak ones.
基金the National Natural Science Foundation of China(Nos.10332030 and 10772159)Research Fund for Doctoral Program of Higher Education of China(No.20060335125).
文摘A bounded optimal control strategy for strongly non-linear systems under non-white wide-band random excitation with actuator saturation is proposed. First, the stochastic averaging method is introduced for controlled strongly non-linear systems under wide-band random excitation using generalized harmonic functions. Then, the dynamical programming equation for the saturated control problem is formulated from the partially averaged Itō equation based on the dynamical programming principle. The optimal control consisting of the unbounded optimal control and the bounded bang-bang control is determined by solving the dynamical programming equation. Finally, the response of the optimally controlled system is predicted by solving the reduced Fokker-Planck-Kolmogorov (FPK) equation associated with the completed averaged Itō equation. An example is given to illustrate the proposed control strategy. Numerical results show that the proposed control strategy has high control effectiveness and efficiency and the chattering is reduced significantly comparing with the bang-bang control strategy.
文摘A new nonlinear variable structure excitation controller is proposed. Its design combines the differential geometry theory and the variable structure controlling theory. The mathematical model in the form of "an affme nonlinear system" is set up for the control of a large-scale power system. The static and dynamic performances of the nonlinear variable structure controller are simulated. The response of system with the controller proposed is compared to that of the nonlinear optimal controller when the system is subjected to a variety of disturbances. Simulation results show that the nonlinear variable structure excitation controller gives more satisfactorily static and dynamic performance and better robustness.
基金the National Basic Research Program of China(No.2012CB026000)Key Laboratory Fund for Ship Vibration and Noise(No.614220406020717)National Science and Technology Major Project(No.2017-IV-0010-0047).
文摘Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic characteristics,a single-disk rotor test rig,where mass imbalance and base excitation could be applied,is developed.Experimental research on the rotor system response under sinusoidal base excitation conditions with different frequencies and excitation forces is performed and the effect of ISFD on the dynamic characteristics of the rotor is investigated.The experimental results demonstrate that when the sinusoidal base excitation frequency approaches the first critical speed of the rotor system or the natural frequency of the rotor system base,strong vibration occurs in the rotor,indicating that the base excitation of the two frequencies has a greater impact on rotor system response.In addition,with the increase of the base excitation force,the vibration of the rotor will be increased.ISFDs can significantly inhibit the vibration due to unbalanced forces and sinusoidal base excitation in rotor systems.To a certain extent,ISFDs can improve the effect of sinusoidal base excitation with most frequencies on rotor system response,and they have a good vibration reduction effect for sinusoidal base excitation with different excitation forces.
基金supported by the National Natural Science Foundation of China (11072049,10772038)the Key Project of Chinese National Programs for Fundamental Research and Development (2010CB832703)+1 种基金the National Key Technology Support Program (2009BAG12A04)the Program for New Century Excellent Talents in University
文摘This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computational cost required by a random response analysis. To reduce the computational burden involved in the coupled random analysis, an iterative procedure based on the Pseudo excitation method has been developed. It is found that this algorithm has an overwhelming advantage in computing efficiency over traditional methods, as demonstrated by some numerical examples given in this paper.
基金the National Natural Science Foundation of China (10772159)Specialized Research Fund for the Doctoral Program of Higher Education of China (20060335125)
文摘A strategy for time-delayed feedback control optimization of quasi linear systems with random excitation is proposed. First, the stochastic averaging method is used to reduce the dimension of the state space and to derive the stationary response of the system. Secondly, the control law is assumed to be velocity feedback control with time delay and the unknown control gains are determined by the performance indices. The response of the controlled system is predicted through solving the Fokker-Plank-Kolmogorov equation associated with the averaged Ito equation. Finally, numerical examples are used to illustrate the proposed control method, and the numerical results are confirmed by Monte Carlo simulation .
文摘By means of variable separation approach, quite a general excitation of the new (2 + 1)-dimensional long dispersive wave system: is derived. Some types of the usual localized excitations such as dromions, lumps, rings, and oscillating soliton excitations can be easily constructed by selecting the arbitrary functions appropriately. Besides these usual localized structures, some new localized excitations like fractal-dromion, fractal-lump, and multi-peakon excitations of this new system are found by selecting appropriate functions.
文摘In most earlier ferroresonance studies the traditional excitation characteristic of iron core, in which the traditional excitation characteristic contains harmonic voltages or currents, has been used as if it were made up of pure fundamental voltage or current. However, this is not always true. In comparison with traditional excitation characteristics, this paper introduces the power frequency excitation characteristic of the iron core, which contains no harmonics. The power frequency excitation characteristic of iron core has been obtained by Elector Magnetic Transient Program, resulting in discrete voltage and current pairs. Extensive simulations are carried out to analyse the effect of power frequency excitation characteristic on potential transformer ferroresonance. A detailed analysis of simulation results demonstrates that with power frequency excitation characteristic of iron core inclusion at certain excitation voltage the ferroresonance may happen, conversely it may not happen with traditional excitation characteristic inclusion.