The construction of geochemical disciplines has brought new vitality to the development of traditional geology.In the new round of“Double First-Class”discipline construction at Central South University,the course of...The construction of geochemical disciplines has brought new vitality to the development of traditional geology.In the new round of“Double First-Class”discipline construction at Central South University,the course of Advanced Geochemistry has effectively stimulated students’interest in learning and further improved their scientific thinking and research innovation skills through the implementation of“Guiding Interactive”teaching reform measures,which has important theoretical significance and practical value.展开更多
Rubidium(Rb)deposits mostly occur in the South China and Central Asia orogenic belts and are often closely associated with highly differentiated granites.This study investigates a newly-discovered giant Rb deposit at ...Rubidium(Rb)deposits mostly occur in the South China and Central Asia orogenic belts and are often closely associated with highly differentiated granites.This study investigates a newly-discovered giant Rb deposit at Gariatong in the Central Lhasa terrane in Tibet.Detailed field studies and logging data revealed that the Rb mineralization mainly occurs in monzogranite and is related to greisenization.LA-ICP-MS U-Pb dating of zircon yielded ages of 19.1±0.2 Ma and 19.0±0.2 Ma for greisenized monzogranite and fresh monzogranite,respectively.The monzogranites are characterized as strongly peraluminous,with high contents of SiO2,Al2O3,K2O and Na2O as well as a high differentiation index.They are enriched in light rare earth and large ion lithophile elements with significant negative Eu anomalies and depleted high fieldstrength elements.Petrological and geochemical features of these ore-related monzogranites suggest that they are highly fractionated S-type granites,derived from remelting of crustal materials in a post-collisional setting.The geochemistry of zircon and apatite points to a low oxygen fugacity of the ore-related monzogranite during the magma’s evolution.The discovery of the Gariatong Rb deposit suggests that the Central Lhasa terrane may be an important region for rare metal mineralization.展开更多
The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemi...The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemistry of its accessory minerals remains under-examined,posing challenges for resource assessment and ore prospecting.Utilizing electron microprobe analysis and LA-ICP-MS analysis,this study investigated the geochemical characteristics of apatite in ore-bearing granite and monzogranite porphyries,as well as granodiorite,quartz diorite,and dark diorite porphyries in the deposit.It also delved into the diagenetic and metallogenic information from these geochemical signatures.Key findings include:(1)The SiO_(2) content,rare earth element(REE)contents,and REE partition coefficients of apatite indicate that the dark diorite porphyry possibly does not share a cogenetic magma source with the other four types of porphyries;(2)the volatile F and Cl contents in apatite,along with their ratio,indicate the Jiama deposit,formed in a collisional setting,demonstrates lower Cl/F ratios in apatite than the same type of deposits formed in a subduction environment;(3)compared to non-ore-bearing rock bodies in other deposits formed in a collisional setting,apatite in the Jiama deposit exhibits lower Ce and Ga contents.This might indicate that rock bodies in the Jiama deposit have higher oxygen fugacity.Nevertheless,the marginal variation in oxygen fugacity between ore-bearing and non-ore-bearing rock bodies within the deposit suggests oxygen fugacity may not serve as the decisive factor in the ore-hosting potential of rock bodies in the Jiama deposit.展开更多
Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkali...Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed in ca. 480 Ma. The Nansa granites have εHf(t) values ranging from-16.04 to 4.36 with corresponding TC DMages of 2.10–0.81 Ga, which suggests the magmas derived from the partial melting of ancient metasedimentary with minor involvement of mantle-derived components. A synthesis of data for the Early Paleozoic igneous rocks in the Baoshan block and adjacent(Tengchong,Qiangtang, Sibumasu, Himalaya, etc.) blocks indicates that these blocks were all aligned along the proto-Tethyan margin of East Gondwana in the Early Paleozoic. The Early Paleozoic S-type granites from Nansa were generated in a high-temperature and low-pressure(HTLP) extensional tectonic setting, which resulted from Andean-type orogeny instead of the final assembly of Gondwana or crustal extension in a non-arc environment. In certain places, an expanding environment may exist in opposition to the tectonic backdrop of the lithosphere’s thickening and shortening, leading the crust to melt and decompress,mantle-derived materials to mix, and a small quantity of peraluminous granite to emerge.展开更多
Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The str...Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The stratigraphy is arranged as LF1,PDC1,LF2,LF3,LF4,LF5,LF6,LF7,LD1,and LD2;furthermore,these rocks were divided into two types.TypeⅠ,observed in the oldest(LF1)sample,has poor MgO and high Ba/Nb,Th/Yb and Sr.The remaining samples(PDC1–LD2)represent typeⅡ,characterized by high MgO and low Ba/Nb,Th/Yb and Sr values.We suggest that type I is derived from AOC(altered oceanic crust)-rich melts that underwent significant crustal assimilation,while typeⅡoriginates from mantle-rich melts with less significant crustal assimilation.The early stage of typeⅡmagma(PDC1–LF3)was considered a closed system,evolving basaltic andesite into andesite(55.0–60.2 wt%SiO_(2))with a progressively increasing phenocryst(0.30–0.48φ_(PC))and decreasing crystal size distribution(CSD)slope(from-3.9 to-2.9).The evidence of fluctuating silica and phenocryst contents(between 55.9–59.7 wt%and 0.25–0.41φ_(PC),respectively),coupled with the kinked and steep(from-5.0 to-3.3)CSD curves imply the interchanging condition between open(i.e.,magma mixing)and closed magmatic systems during the middle stage(LF4–LF6).Finally,it underwent to closed system again during the final stage(LF7–LD2)because the magma reached dacitic composition(at most 68.9 wt%SiO_(2))with abundant phenocryst(0.38–0.45φ_(PC))and gentle CSD slope(from-4.1 to-1.2).展开更多
The petrographic and geochemical attributes of the Oligocene Barail Group of rocks are used to decipher the likely source area(s)or tectonic domains,as this sequence of rocks was deposited in a foreland basin governed...The petrographic and geochemical attributes of the Oligocene Barail Group of rocks are used to decipher the likely source area(s)or tectonic domains,as this sequence of rocks was deposited in a foreland basin governed by orogenic domain,namely the North-east Arunachal Himalayas.The river system that gave rise to the Brahmaputra River(Yarlung-Tsangpo),which flowed through several tectonic domains of the Himalayan ranges,primarily from BomiChayu,Gangadese Granitoid,Higher Himalayan Leucogranites,and Namche Barwa into the proto Bengal Basin now a part of Assam Arakan Basin and Naga Schuppen Belt,was the main source of the sandstone formation of the Barail Group.The purpose of sandstone petrography,which combines modal analysis with XRF(Major Oxides)and HR-ICPMS(Trace&Rare Earth Elements)research,is to identify the type of source rock(s),their weathering pattern,and its paleo-environmental circumstances.These sandstones were formed from recycled orogen and include lithic and sublithic arenite variants with advanced texture and chemical maturity.The sediments were felsic(Th/Co:1.38,Cr/Th:9.78,La/Lu:11.58,Th/Sc:0.99,Eu/Eu*:0.66,La/Sc:3.05,La/Co:4.18),with contributions from intermediate source rocks and low-rank metamorphics deposited in an active continental margin to a continental island arc setting.Climatic conditions impacted the sediments of Barails,characterised by being warm and semi-humid to humid which resulted in moderate to a high degree of chemical weathering,as shown by weathering indices like CIA(79.14),PIA(85.47),CIW(86.9),WIP(32.50),ICV(0.71),and Th/U(6.03),which were further additionally supported by C-Value(1.01),PF(1.20),Sr/Cu(2.04),and Rb/Sr(0.97).展开更多
Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore d...Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.展开更多
Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace ...Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace element and Sr isotope analyses of Mamupu scheelite samples,undertaken in order to better constrain the mechanism of W mineralization and the sources of the ore-forming fluids.Three different types of scheelite are identified in the Mamupu deposit:scheelite A(Sch A)mainly occurs in breccias during the prograde stage,scheelite B(Sch B)forms in the chlorite-epidote alteration zone in the retrograde stage,while scheelite C(Sch C)occurs in distal quartz sulfide veins.The extremely high Mo content and negative Eu anomaly in Sch A represent high oxygen fugacity in the prograde stage.Compared with ore-related porphyries,Sch A has a similar REE pattern,but with higher ΣREE,more depleted HREE and slightly lower(^(87)Sr/^(86)Sr)i ratios.These features suggest that Sch A is genetically related to ore-related porphyries,but extensive interaction with carbonate surrounding rocks affects the final REE and Sr isotopic composition.Sch B shows dark(Sch B-I)and light(Sch B-II)domains under CL imaging.From Sch B-I to Sch B-II,LREEs are gradually depleted,with MREEs being gradually enriched.Sch C has the highest LREE/HREE ratio,which indicates that it inherited the geochemical characteristics of fluids after the precipitation of HREE-rich minerals,such as diopside and garnet,in the early prograde stage.The Mo content in Sch B and Sch C gradually decreased,indicating that the oxygen fugacity of the fluids changed from oxidative in the early stages to reductive in the later,the turbulent Eu anomaly in Sch B and Sch C indicating that the Eu anomaly in the Mamupu scheelite is not solely controlled by oxygen fugacity.The extensive interaction of magmatic-hydrothermal fluids and carbonate provides the necessary Ca^(2+)for the precipitation of scheelite in the Mamupu deposit.展开更多
The ultramafic massif of Feragen,which belongs to the eastern ophiolitic belt of Norway,has abundant amounts of chromite ores.Recent studies have revealed a complex melt evolution in a supra-subduction zone(SSZ)enviro...The ultramafic massif of Feragen,which belongs to the eastern ophiolitic belt of Norway,has abundant amounts of chromite ores.Recent studies have revealed a complex melt evolution in a supra-subduction zone(SSZ)environment.This study presents new whole-rock major element,trace element,and platinum-group element chemistry to evaluate their petrogenesis and tectonic evolution.Harzburgites have high CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to abyssal peridotites,whereas dunites have low CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to SSZ peridotites.The Cr^(#)and TiO_(2) of chromian spinels in the harzburgites suggest as much as about 15%–20%melting and the dunites are more depleted with>40%melting.The harzburgites and the dunites and high-Cr chromitites represent,respectively,the products of low-degree partial melting in a back-arc setting,and the products of melt-rock interaction in a SSZ environment.The calculated fO_(2) values for dunites and high-Cr chromitites(-0.17–+0.23 and+2.78–+5.65,respectively and generally above the FMQ buffer)are also consistent with the interaction between back-arc ophiolites with oxidized boninitic melts in a SSZ setting.展开更多
The Huozhou complex in the Trans-North China Orogen exhibits two events of mafic magmatism(separated by ca.700 Ma):Neoproterozoic(920±15 Ma)Shimenyu diabase and Late Triassic(217±2.5 Ma)Xingtangsi diabase.In...The Huozhou complex in the Trans-North China Orogen exhibits two events of mafic magmatism(separated by ca.700 Ma):Neoproterozoic(920±15 Ma)Shimenyu diabase and Late Triassic(217±2.5 Ma)Xingtangsi diabase.Investigations have focused on systematic petrology,zircon U-Pb dating,Lu-Hf isotopes,and lithogeochemistry.The research findings indicate that the Late Triassic Xingtangsi diabase of the Huozhou complex can be classified as a transitional type between intermediate and mafic rocks based on their SiO_(2)content.This classification is supported by an average SiO_(2)content of 53.94%,ranging from 53.33%to 54.28%.In the Zr/TiO_(2)vs.Ce diagram,all samples lie within the range of basalt.The zircons from the Late Triassic Xingtangsi diabase have lowε_(Hf)(t)values ranging from-12.7 to-8.7,with an average of-11.1.Additionally,the single-stage model age T_(DM1)is estimated to be between 1207 and 1701 Ma.These findings suggest that the magma responsible for the dyke originated from either partial melting or an enriched mantle source inside the Meso-Proterozoic lithospheric mantle.The elevated concentrations of Th(thorium)and LREEs(light rare earth elements),as well as the Th/Yb and Th/Nb ratios,suggest the potential incorporation of subducted sediments within the magma source region.The rock displays negative Nb,Ta,Zr,Hf,and Ti anomalies.These geochemical attributes align with the distinctive traits observed in volcanic rocks found within island arcs.The formation of the Late Triassic Xingtangsi diabase is likely associated with the geological context of an arc setting,which arises from the collision between the Yangtze plate and the North China Craton.展开更多
The understanding of the spatial distribution of soil organic carbon(SOC)and its influencing factors is crucial for comprehending the global carbon cycle.However,the impact of soil geochemical and climatic conditions ...The understanding of the spatial distribution of soil organic carbon(SOC)and its influencing factors is crucial for comprehending the global carbon cycle.However,the impact of soil geochemical and climatic conditions on SOC remains limited,particularly in dryland farming areas.In this study,we aimed to enhance the understanding of the factors influencing the distribution of SOC in the drylands of the Songliao Plain,Northeast China.A dataset comprising 35,188 measured soil samples was used to map the SOC distribution in the region.Multiple linear regression(MLR)and random forest models(RFM)were employed to assess the importance of driving indicators for SOC.We also carried out partial correlation and path analyses to further investigate the relationship between climate and geochemistry.The SOC content in dryland soils of the Songliao Plain ranged from 0.05%to 11.63%,with a mean value of 1.47%±0.90%.There was a notable increasing trend in SOC content from the southwest to the northeast regions.The results of MLR and RFM revealed that temperature was the most critical factor,demonstrating a significant negative correlation with SOC content.Additionally,iron oxide was the most important soil geochemical indicator affecting SOC variability.Our research further suggested that climate may exert an indirect influence on SOC concentrations through its effect on geochemical properties of soil.These insights highlight the importance of considering both the direct and indirect impact of climate in predicting the SOC under future climate change.展开更多
The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization ...The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization related to various hydrothermal fluid circulations. Petromineralogical studies indicate a rich mineral paragenesis with a minimum of seven mineralization phases and, at least, six pyrite generations. As is also the case for galena and native silver, native gold is observed for the first time as inclusion in quartz which opens up, thus, new perspectives for prospecting and evaluating the potential for noble metals associated with the mineralization. Scanning Electron Microscope--Energy Dispersive Spectroscopy and Transmission electron microscopy analyses show, in addition, a large incorporation of trace elements, including Ag and Au, in mineral structures such as fahlores(tetrahedrite-tennantite) and chalcopyrite ones. The mineral/mineral associations, used as geothermometers, gave estimated temperatures for the mineralizing fluids varying from 254 to 330 ℃ for phase Ⅲ, from 254 to 350 ℃ for phase Ⅳ, and from 200 to 300 ℃ for phases Ⅴ and Ⅵ. The seventh and last identified mineralization phase, marked by a deposit of native gold, reflects a drop in the mineralizing fluid’s temperature(< 200 ℃) compatible with boiling conditions. Such results open up perspectives for the development of precious metal research and the revaluation of the Cu–Fe ore deposit at the Ain El Bey abandoned mine, as well as at the surrounding areas fitting in the geodynamic framework of the Africa-Europe plate boundary.展开更多
Research on the origin of carbonates in Changdu Basin holds significant importance for understanding the regional potash formation model.Based on a comprehensive review of previous studies,field geological surveys,and...Research on the origin of carbonates in Changdu Basin holds significant importance for understanding the regional potash formation model.Based on a comprehensive review of previous studies,field geological surveys,and laboratory investigations,this study analyzes the origin and properties of carbonates within the context of regional potash formation.Petrographic studies show that magnesite deposits,with the characteristics of sedimentary origin.The results of elemental geochemical analysis show that the carbonates in this area were formed in the sedimentary environment via evaporation followed by concentration,and the formation of magnesite was possibly caused by the substitution of calcium in the dolomite with magnesium-rich brine.Theδ^(13)C values of carbonats in the study area are between5.9‰and 9.1‰.Theδ^(18)O values of magnesite samples range from-7.3‰to-1.3‰,and theδ^(18)O values of dolomites range from-10.3‰to-8.4‰.All the calculated Z values of oxygen isotopes of carbonates greater than 120.A comprehensive analysis of carbon and oxygen isotopes indicates that the magnesite was formed in a highly concentrated Marine sedimentary environment and does not show any relation with the metasomatism of hydrothermal fluids.The results on the correlation of magnesite with seawater and its sedimentary origin provide key information for explaining the migration direction of brine between the Changdu and Lanping-Simao Basins.The residual metamorphic seawater in the Changdu Basin migrated to the Lanping-Simao Basin,where potash underwent deposition.Whereas,magnesite and dolomite in the early stage of potash formation were left in the Changdu Basin.展开更多
Based on the achievement of local ecological geochemical survey,the selenium in surface layer soil of Zhangqiu green Chinese onion within production area is systematically studied in this study.And the ecological geoc...Based on the achievement of local ecological geochemical survey,the selenium in surface layer soil of Zhangqiu green Chinese onion within production area is systematically studied in this study.And the ecological geochemical characters of selenium both in surface layer soil and in green Chinese onions are analyzed,and the relationship between the selenium in plant and soil is discussed.The results show that soil in Zhangqiu is rich in selenium,and it is suitable to develop the selenium-rich green Chinese onion products.展开更多
The major element, trace element and rare earth element(REE) of the intrusion rock from the Dachang ore field in Guangxi, China, were analyzed. The results show that the phenocryst(about 15%) and matrix(about 85%...The major element, trace element and rare earth element(REE) of the intrusion rock from the Dachang ore field in Guangxi, China, were analyzed. The results show that the phenocryst(about 15%) and matrix(about 85%) mainly consist of quartz, K-feldspar and plagioclase. The rock is composed of low content of Si and high content of Al2O3, low contents of Ca, Fe2O3, Na, TiO2, etc. The intrusion rock has the medium alkali content, attributing to K-rich type rock; and contains medium to low REE contents, of which light rare earth elements(LREEs) and heavy rare earth elements(HREEs) are highly fractionated, showing a weak negative Ce anomaly and a negative Eu anomaly. These rocks are enriched in LREE, and the large ion lithophytes elements(LILE) are rich in Rb, Sr, and U; the high-field-strength elements(Nb, Th, etc) are relatively depleted. The REE chondrite-normalized patterns are consistent with the overall, roughly indicating their similar characteristics, sources and evolution. The intrusion rock mainly formed during the collisional and within-plate periods.展开更多
Skarn is the main altered rock type and is of great importance to mineralization and ore-prospecting in the Shizhuyuan area of Hunan province, China. Its features of petrography, mineralogy and geochemistry were st...Skarn is the main altered rock type and is of great importance to mineralization and ore-prospecting in the Shizhuyuan area of Hunan province, China. Its features of petrography, mineralogy and geochemistry were studied systematically. The results show that the skarn mainly consists of garnet skarn, secondary wollastonite-garnet skarn, tremolite-clinozoisite skarn, and few wolframine garnet skarn, idocrase-garnet skarn and wollastonite skarn with granoblastic texture, granular sheet crystalloblastic texture, and massive structure, disseminated structure, mesh-vein structure, comb structure, and banded structure. And, it is mainly composed of garnet, fluorite, chlorite, hornblende, epidote, tremolite, plagioclase, biotite, muscovite, plagioclase, quartz, idocrase, and calcite and so on. The chemical components mainly include SiO2, Al2O3, Fe2O3, MgO and CaO, and the trace elements and REEs consist of Li, Be, V, Co, Zn, Ga, Rb, Sr, Y, Ce, Nd, Pb and Bi, etc. And, the obvious fractionation exists between LREE and HREE, and it shows typical features of Nanling ore-forming granite for W?Sn polymetallic deposit. Skarn is derived from the sedimentary rock, such as limestone, mudstone, argillaceous rock, and few pelitic strips. It is affected by both Shetianqiao formation strata and Qianlishan granite during the diagenesis, indicating a strong reduction environment. The occurrence of skarn, whose mutation site is favorable to the mineralization enrichment, is closely related to the mineralization and prospecting.展开更多
Crustal recycling at convergent plate boundaries is essential to mantle heterogeneity.However,crustal signatures in the mantle source of basaltic rocks above subduction zones were primarily incorporated in the form of...Crustal recycling at convergent plate boundaries is essential to mantle heterogeneity.However,crustal signatures in the mantle source of basaltic rocks above subduction zones were primarily incorporated in the form of liquid rather than solid phases.The physicochemical property of liquid phases is determined by the dehydration behavior of crustal rocks at the slab-mantle interface in subduction channels.Because of the significant fractionation in incompatible trace elements but the full inheritance in radiogenic isotopes relative to their crustal sources,the production of liquid phases is crucial to the geochemical transfer from the subducting crust into the mantle.In this process,the stability of specific minerals in subducting crustal rocks exerts a primary control on the enrichment of given trace elements in the liquid phases.For this reason,geochemically enriched oceanic basalts can be categorized into two types in terms of their trace element distribution patterns in the primitive mantle-normalized diagram.One is island arc basalts(IAB),showing enrichment in LILE,Pb and LREE but depletion in HFSE such as Nb and Ta relative to HREE,The other is ocean island basalts(OIB),exhibiting enrichment in LILE and LREE,enrichment or non-depletion in HFSE but depletion in Pb relative to HREE.In either types,these basalts show the enhanced enrichment of LILE and LREE with increasing their incompatibility relative to normal mid-ocean ridge basalts(MORB).The thermal regime of subduction zones can be categorized into two stages in both time and space,The first stage is characterized by compressional tectonism at low thermal gradients.As a consequence,metamorphic dehydration of the subducting crust prevails at forearc to subarc depths due to the breakdown of hydrous minerals such as mica and amphibole in the stability field of garnet and rutile,resulting in the liberation of aqueous solutions with the trace element composition that is considerably enriched in LILE,Pb and LREE but depleted in HFSE and HREE relative to normal MORB.This provides the crustal signature for the mantle sources of IAB.The second stage is indicated by extensional tectonism at high thermal gradients,leading to the partial melting of metamorphically dehydrated crustal rocks at subarc to postarc depths.This involves not only the breakdown of hydrous minerals such as amphibole,phengite and allanite in the stability field of garnet but also the dissolution of rutile into hydrous melts.As such,the hydrous melts can acquire the trace element composition that is significantly enriched in LILE,HFSE and LREE but depleted in Pb and HREE relative to normal MORB,providing the crustal signature for the mantle sources of OIB.In either case,these liquid phases would metasomatize the overlying mantle wedge peridotite at different depths,generating ultramafic metasomatites such as serpentinized and chloritized peridotites,and olivine-poor pyroxenites and hornblendites.As a consequence,the crustal signatures are transferred by the liquid phases from the subducting slab into the mantle.展开更多
The Bikou volcanic terrane is predominated by subalkaline tholeiitic lavas. Rock samples display lower initial ratios of Sr and Nd, 0.701248-0.704413 and 0.511080-0.512341 respectively. 207Pb and 208Pb are significant...The Bikou volcanic terrane is predominated by subalkaline tholeiitic lavas. Rock samples display lower initial ratios of Sr and Nd, 0.701248-0.704413 and 0.511080-0.512341 respectively. 207Pb and 208Pb are significantly enriched in the lavas. Most samples have positive εNd, which indicates that the magma was derived from EM-type mantle source, while a few samples with negative εNd indicate that there was contamination in the magma evolution. Magma differentiation is demonstrated by variations of LREE and LILE from depletion to enrichment. Additionally, normalized REE patterns and trace elements showed that lavas from the Bikou volcanic terrane have similar characteristics to those of basalts in arc settings caused by subduction and collision. Analyses showed that the Bikou volcanic terrane is a volcanic arc. New evidence proved that the Hengdan Group, north of the Bikou arc, is a turbidite terrane filling a forearc basin. Consequently, the Bikou volcanic terrane and the Hengdan turbidite terrane construct an arc-basin system. New SHRIMP ages showed that this arc-basin system developed on the northern margin of the Yangtze craton in the Neoproterozoic (846-776 Ma), and this arc-basin system is in agreement with the tectonic processes of Rodinia in the Neoproterzoic.展开更多
The world-class Huize Pb-Zn deposits of Yunnan province,in southwestern China,located in the center of the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic province,has Pb+Zn reserves of more than 5 million ton...The world-class Huize Pb-Zn deposits of Yunnan province,in southwestern China,located in the center of the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic province,has Pb+Zn reserves of more than 5 million tons at Pb+Zn grade of higher than 25%and contains abundant associated metals,such as Ag,Ge,Cd,and Ga.The deposits are hosted in the Lower Carboniferous carbonate strata and the Permian Emeishan basalts which distributed in the northern and southwestern parts of the orefield.Calcite is the only gangue mineral in the primary ores of the deposits and can be classified into three types,namely lumpy,patch and vein calcites in accordance with their occurrence.There is not intercalated contact between calcite and ore minerals and among the three types of calcite,indicating that they are the same ore-forming age with different stages and its forming sequence is from lumpy to patch to vein calcites. This paper presents the rare earth element(REE) and C-O isotopic compositions of calcites in the Huize Pb-Zn deposits.From lumpy to patch to vein calcites,REE contents decrease as LREE/ HREE ratios increase.The chondrite-normalized REE patterns of the three types of calcites are characterized by LREE-rich shaped,in which the lumpy calcite shows(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〈1,the patch calcite has(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〉1,and the vein calcite displays(La)_N〉(Ce)_N〉(Pr)_N〉(Nd)_N with Eu/Eu~*〉1.The REE geochemistry of the three types of calcite is different from those of the strata of various age and Permian Emeishan basalt exposed in the orefield.Theδ^(13) C_(PDb) andδ^(18)O_(Smow) values of the three types of calcites vary from-3.5‰to-2.1‰and 16.7‰to 18.6‰,respectively,falling within a small field between primary mantle and marine carbonate in theδ^(13)C_(PDb) vsδ^(18)O_(Smow) diagram. Various lines of evidence demonstrate that the three types of calcites in the deposits are produced from the same source with different stages.The ore-forming fluids of the deposits resulted from crustal -mantle mixing processes,in which the mantle-derived fluid components might be formed from degassing of mantle or/and magmatism of the Permian Emeishan basalts,and the crustal fluid was mainly provided by carbonate strata in the orefield.The ore-forming fluids in the deposits were homogenized before mineralization,and the ore-forming environment varied from relatively reducing to oxidizing.展开更多
Zircon U-Pb ages and geochemical analytical results are presented for the volcanic rocks of the Naozhigou, Ergulazi, and Sidaogou Formations in the Linjiang area, southeastern Jilin Province to constrain the nature of...Zircon U-Pb ages and geochemical analytical results are presented for the volcanic rocks of the Naozhigou, Ergulazi, and Sidaogou Formations in the Linjiang area, southeastern Jilin Province to constrain the nature of magma source and their tectonic settings. The Naozhigou Formation is composed mainly of andesite and rhyolite and its weighted mean ^206pb/^238U age for 13 zircon grains is 222±1 Ma. The Ergulazi Formation consists of basaltic andesite, basaltic trachyandesite, and andesite, and six grains give a weighted mean ^206pb/^238U age of 131±4 Ma. The Sidaogou Formation consists mainly of trachyandesite and rhyolite, and six zircon grains yield a weighted mean ^206pb/^238U age of 113±4 Ma. The volcanic rocks have SIO2=60.24%-77.46%, MGO=0.36%-1.29% (Mg#=0.32-0.40) for the Naozhigou Formation, SIO2=51.60%-59.32%, MGO=3.70%-5.54% (Mg#=0.50-0.60) for the Ergulazi Formation, and SIO2=58.28%-76.32%, MGO=0.07%-1.20% (Mg#=0.14-0.46) for the Sidaogou Formation. The trace element analytical results indicate that these volcanic rocks are characterized by enrichment in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), relative depletion in heavy rare earth elements (HREEs) and high field strength elements (HFSEs, Nb, Ta, and Ti), and negative Eu anomalies. Compared with the primitive mantle, the Mesozoic volcanic rocks in the Linjiang area have relatively high initial ^87Sr/^86Sr ratios (0.7053-0.7083) and low εNd(t) values (-8.38 to -2.43), and display an EMⅡ trend. The late Triassic magma for the Naozhigou Formation could be derived from partial melting of a newly accretional crust with the minor involvement of the North China Craton basement and formed under an extensional environment after the collision of the Yangtze Craton and the North China Craton. The Early Cretaceous volcanic rocks for the Ergulazi and Sidaogou Formations could be formed under the tectonic setting of an active continental margin related to the westward subduction of the Izanagi plate.展开更多
基金This article is the research result of the Education and Teaching Reform Research Project(No.2022JGB038)of Central South University and supported by the Scientific Research Fund of Hunan Provincial Education Department(No.23B0953).
文摘The construction of geochemical disciplines has brought new vitality to the development of traditional geology.In the new round of“Double First-Class”discipline construction at Central South University,the course of Advanced Geochemistry has effectively stimulated students’interest in learning and further improved their scientific thinking and research innovation skills through the implementation of“Guiding Interactive”teaching reform measures,which has important theoretical significance and practical value.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC2905001)the National Natural Science Foundation of China(Grant Nos.42272093,42230813)+1 种基金the Basic Research Fund of the Chinese Academy of Geological Sciences(Grant Nos.JKYZD202316,KK2116)the China Scholarship Council project and the Geological Survey project(Grant No.DD20230054).
文摘Rubidium(Rb)deposits mostly occur in the South China and Central Asia orogenic belts and are often closely associated with highly differentiated granites.This study investigates a newly-discovered giant Rb deposit at Gariatong in the Central Lhasa terrane in Tibet.Detailed field studies and logging data revealed that the Rb mineralization mainly occurs in monzogranite and is related to greisenization.LA-ICP-MS U-Pb dating of zircon yielded ages of 19.1±0.2 Ma and 19.0±0.2 Ma for greisenized monzogranite and fresh monzogranite,respectively.The monzogranites are characterized as strongly peraluminous,with high contents of SiO2,Al2O3,K2O and Na2O as well as a high differentiation index.They are enriched in light rare earth and large ion lithophile elements with significant negative Eu anomalies and depleted high fieldstrength elements.Petrological and geochemical features of these ore-related monzogranites suggest that they are highly fractionated S-type granites,derived from remelting of crustal materials in a post-collisional setting.The geochemistry of zircon and apatite points to a low oxygen fugacity of the ore-related monzogranite during the magma’s evolution.The discovery of the Gariatong Rb deposit suggests that the Central Lhasa terrane may be an important region for rare metal mineralization.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC2905001)the National Natural Science Foundation of China(Grant Nos.42272093,42230813)a geological survey project(Grant No.DD20230054).
文摘The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemistry of its accessory minerals remains under-examined,posing challenges for resource assessment and ore prospecting.Utilizing electron microprobe analysis and LA-ICP-MS analysis,this study investigated the geochemical characteristics of apatite in ore-bearing granite and monzogranite porphyries,as well as granodiorite,quartz diorite,and dark diorite porphyries in the deposit.It also delved into the diagenetic and metallogenic information from these geochemical signatures.Key findings include:(1)The SiO_(2) content,rare earth element(REE)contents,and REE partition coefficients of apatite indicate that the dark diorite porphyry possibly does not share a cogenetic magma source with the other four types of porphyries;(2)the volatile F and Cl contents in apatite,along with their ratio,indicate the Jiama deposit,formed in a collisional setting,demonstrates lower Cl/F ratios in apatite than the same type of deposits formed in a subduction environment;(3)compared to non-ore-bearing rock bodies in other deposits formed in a collisional setting,apatite in the Jiama deposit exhibits lower Ce and Ga contents.This might indicate that rock bodies in the Jiama deposit have higher oxygen fugacity.Nevertheless,the marginal variation in oxygen fugacity between ore-bearing and non-ore-bearing rock bodies within the deposit suggests oxygen fugacity may not serve as the decisive factor in the ore-hosting potential of rock bodies in the Jiama deposit.
基金funded by the National Natural Science Foundation of China (2019M653840XB)the National Natural Science Foundation of China (41972043 and 42062006)。
文摘Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed in ca. 480 Ma. The Nansa granites have εHf(t) values ranging from-16.04 to 4.36 with corresponding TC DMages of 2.10–0.81 Ga, which suggests the magmas derived from the partial melting of ancient metasedimentary with minor involvement of mantle-derived components. A synthesis of data for the Early Paleozoic igneous rocks in the Baoshan block and adjacent(Tengchong,Qiangtang, Sibumasu, Himalaya, etc.) blocks indicates that these blocks were all aligned along the proto-Tethyan margin of East Gondwana in the Early Paleozoic. The Early Paleozoic S-type granites from Nansa were generated in a high-temperature and low-pressure(HTLP) extensional tectonic setting, which resulted from Andean-type orogeny instead of the final assembly of Gondwana or crustal extension in a non-arc environment. In certain places, an expanding environment may exist in opposition to the tectonic backdrop of the lithosphere’s thickening and shortening, leading the crust to melt and decompress,mantle-derived materials to mix, and a small quantity of peraluminous granite to emerge.
基金funded by the Faculty of Geography under the scheme of“Dana Hibah Penelitian Mandiri Dosen Tahun 2023 Tahap 1”。
文摘Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The stratigraphy is arranged as LF1,PDC1,LF2,LF3,LF4,LF5,LF6,LF7,LD1,and LD2;furthermore,these rocks were divided into two types.TypeⅠ,observed in the oldest(LF1)sample,has poor MgO and high Ba/Nb,Th/Yb and Sr.The remaining samples(PDC1–LD2)represent typeⅡ,characterized by high MgO and low Ba/Nb,Th/Yb and Sr values.We suggest that type I is derived from AOC(altered oceanic crust)-rich melts that underwent significant crustal assimilation,while typeⅡoriginates from mantle-rich melts with less significant crustal assimilation.The early stage of typeⅡmagma(PDC1–LF3)was considered a closed system,evolving basaltic andesite into andesite(55.0–60.2 wt%SiO_(2))with a progressively increasing phenocryst(0.30–0.48φ_(PC))and decreasing crystal size distribution(CSD)slope(from-3.9 to-2.9).The evidence of fluctuating silica and phenocryst contents(between 55.9–59.7 wt%and 0.25–0.41φ_(PC),respectively),coupled with the kinked and steep(from-5.0 to-3.3)CSD curves imply the interchanging condition between open(i.e.,magma mixing)and closed magmatic systems during the middle stage(LF4–LF6).Finally,it underwent to closed system again during the final stage(LF7–LD2)because the magma reached dacitic composition(at most 68.9 wt%SiO_(2))with abundant phenocryst(0.38–0.45φ_(PC))and gentle CSD slope(from-4.1 to-1.2).
基金Financial Support to conduct the Geochemical Analysis in NGRIHyderabad under the Project Contract No.6111264。
文摘The petrographic and geochemical attributes of the Oligocene Barail Group of rocks are used to decipher the likely source area(s)or tectonic domains,as this sequence of rocks was deposited in a foreland basin governed by orogenic domain,namely the North-east Arunachal Himalayas.The river system that gave rise to the Brahmaputra River(Yarlung-Tsangpo),which flowed through several tectonic domains of the Himalayan ranges,primarily from BomiChayu,Gangadese Granitoid,Higher Himalayan Leucogranites,and Namche Barwa into the proto Bengal Basin now a part of Assam Arakan Basin and Naga Schuppen Belt,was the main source of the sandstone formation of the Barail Group.The purpose of sandstone petrography,which combines modal analysis with XRF(Major Oxides)and HR-ICPMS(Trace&Rare Earth Elements)research,is to identify the type of source rock(s),their weathering pattern,and its paleo-environmental circumstances.These sandstones were formed from recycled orogen and include lithic and sublithic arenite variants with advanced texture and chemical maturity.The sediments were felsic(Th/Co:1.38,Cr/Th:9.78,La/Lu:11.58,Th/Sc:0.99,Eu/Eu*:0.66,La/Sc:3.05,La/Co:4.18),with contributions from intermediate source rocks and low-rank metamorphics deposited in an active continental margin to a continental island arc setting.Climatic conditions impacted the sediments of Barails,characterised by being warm and semi-humid to humid which resulted in moderate to a high degree of chemical weathering,as shown by weathering indices like CIA(79.14),PIA(85.47),CIW(86.9),WIP(32.50),ICV(0.71),and Th/U(6.03),which were further additionally supported by C-Value(1.01),PF(1.20),Sr/Cu(2.04),and Rb/Sr(0.97).
文摘Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFC2905001)the Basic Research Fund of the Chinese Academy of Geological Sciences(Grant No.JKYZD202316)+2 种基金the National Natural Science Foundation of China(Grant Nos.42272093,42230813,42002097)the Research Project of the Shengyuan Mining Co.,Ltd.,Tibet(Grant No.XZSYKYJT-JSFW2019-001)the China Scholarship Council project and the Geological Survey project(Grant Nos.DD20230054,DD20221684,DD20221690,DD20230031,DD20230049,DD20230338)。
文摘Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace element and Sr isotope analyses of Mamupu scheelite samples,undertaken in order to better constrain the mechanism of W mineralization and the sources of the ore-forming fluids.Three different types of scheelite are identified in the Mamupu deposit:scheelite A(Sch A)mainly occurs in breccias during the prograde stage,scheelite B(Sch B)forms in the chlorite-epidote alteration zone in the retrograde stage,while scheelite C(Sch C)occurs in distal quartz sulfide veins.The extremely high Mo content and negative Eu anomaly in Sch A represent high oxygen fugacity in the prograde stage.Compared with ore-related porphyries,Sch A has a similar REE pattern,but with higher ΣREE,more depleted HREE and slightly lower(^(87)Sr/^(86)Sr)i ratios.These features suggest that Sch A is genetically related to ore-related porphyries,but extensive interaction with carbonate surrounding rocks affects the final REE and Sr isotopic composition.Sch B shows dark(Sch B-I)and light(Sch B-II)domains under CL imaging.From Sch B-I to Sch B-II,LREEs are gradually depleted,with MREEs being gradually enriched.Sch C has the highest LREE/HREE ratio,which indicates that it inherited the geochemical characteristics of fluids after the precipitation of HREE-rich minerals,such as diopside and garnet,in the early prograde stage.The Mo content in Sch B and Sch C gradually decreased,indicating that the oxygen fugacity of the fluids changed from oxidative in the early stages to reductive in the later,the turbulent Eu anomaly in Sch B and Sch C indicating that the Eu anomaly in the Mamupu scheelite is not solely controlled by oxygen fugacity.The extensive interaction of magmatic-hydrothermal fluids and carbonate provides the necessary Ca^(2+)for the precipitation of scheelite in the Mamupu deposit.
基金financially supported by the National Natural Science Foundation of China(92062215,41720104009,42172069)the China Geological Survey(DD20221886,DD20221817,DD20221657,DD20230340,DD20221630)+1 种基金the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0201)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0801)。
文摘The ultramafic massif of Feragen,which belongs to the eastern ophiolitic belt of Norway,has abundant amounts of chromite ores.Recent studies have revealed a complex melt evolution in a supra-subduction zone(SSZ)environment.This study presents new whole-rock major element,trace element,and platinum-group element chemistry to evaluate their petrogenesis and tectonic evolution.Harzburgites have high CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to abyssal peridotites,whereas dunites have low CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to SSZ peridotites.The Cr^(#)and TiO_(2) of chromian spinels in the harzburgites suggest as much as about 15%–20%melting and the dunites are more depleted with>40%melting.The harzburgites and the dunites and high-Cr chromitites represent,respectively,the products of low-degree partial melting in a back-arc setting,and the products of melt-rock interaction in a SSZ environment.The calculated fO_(2) values for dunites and high-Cr chromitites(-0.17–+0.23 and+2.78–+5.65,respectively and generally above the FMQ buffer)are also consistent with the interaction between back-arc ophiolites with oxidized boninitic melts in a SSZ setting.
基金the 2023 Shanxi Province Higher Education Science and Technology Innovation Project(award number 2023L161)the Science and Technology Department of Shanxi Province(award number 202303021212158)+6 种基金the open fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural ResourcesInstitute of GeologyChinese Academy of Geological Sciences(award number J1901-16)the teaching reform project“Geographic Modeling,Simulation and Visualization”established by Shanxi Normal University(award number 2019JGXM-39)“The Research Start-up Fund of Shanxi Normal University for Dr.Peng Chong in 2016”(award number 0505/02070438)“The Research Start-up Fund of Shanxi Normal University for Dr.Liu Haiyan in 2017”(award numberumber 0505/02070458)“The Research Fund for Outstanding Doctor in 2017”(award number 0503/02010168),established by the Education Department of Shanxi Province for Dr.Liu Haiyan。
文摘The Huozhou complex in the Trans-North China Orogen exhibits two events of mafic magmatism(separated by ca.700 Ma):Neoproterozoic(920±15 Ma)Shimenyu diabase and Late Triassic(217±2.5 Ma)Xingtangsi diabase.Investigations have focused on systematic petrology,zircon U-Pb dating,Lu-Hf isotopes,and lithogeochemistry.The research findings indicate that the Late Triassic Xingtangsi diabase of the Huozhou complex can be classified as a transitional type between intermediate and mafic rocks based on their SiO_(2)content.This classification is supported by an average SiO_(2)content of 53.94%,ranging from 53.33%to 54.28%.In the Zr/TiO_(2)vs.Ce diagram,all samples lie within the range of basalt.The zircons from the Late Triassic Xingtangsi diabase have lowε_(Hf)(t)values ranging from-12.7 to-8.7,with an average of-11.1.Additionally,the single-stage model age T_(DM1)is estimated to be between 1207 and 1701 Ma.These findings suggest that the magma responsible for the dyke originated from either partial melting or an enriched mantle source inside the Meso-Proterozoic lithospheric mantle.The elevated concentrations of Th(thorium)and LREEs(light rare earth elements),as well as the Th/Yb and Th/Nb ratios,suggest the potential incorporation of subducted sediments within the magma source region.The rock displays negative Nb,Ta,Zr,Hf,and Ti anomalies.These geochemical attributes align with the distinctive traits observed in volcanic rocks found within island arcs.The formation of the Late Triassic Xingtangsi diabase is likely associated with the geological context of an arc setting,which arises from the collision between the Yangtze plate and the North China Craton.
基金funded by the National Key Research and Development Program of China(Grant No.2023YFD1500801)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28020302)+1 种基金the Basic Geological Survey Project of China Geological Survey(Grant No.DD20230089)the project of Northeast Geological S&T Innovation Center of China Geological Survey(Grant Nos.QCJJ2023-53,QCJJ2023-54,QCJJ2022-41)。
文摘The understanding of the spatial distribution of soil organic carbon(SOC)and its influencing factors is crucial for comprehending the global carbon cycle.However,the impact of soil geochemical and climatic conditions on SOC remains limited,particularly in dryland farming areas.In this study,we aimed to enhance the understanding of the factors influencing the distribution of SOC in the drylands of the Songliao Plain,Northeast China.A dataset comprising 35,188 measured soil samples was used to map the SOC distribution in the region.Multiple linear regression(MLR)and random forest models(RFM)were employed to assess the importance of driving indicators for SOC.We also carried out partial correlation and path analyses to further investigate the relationship between climate and geochemistry.The SOC content in dryland soils of the Songliao Plain ranged from 0.05%to 11.63%,with a mean value of 1.47%±0.90%.There was a notable increasing trend in SOC content from the southwest to the northeast regions.The results of MLR and RFM revealed that temperature was the most critical factor,demonstrating a significant negative correlation with SOC content.Additionally,iron oxide was the most important soil geochemical indicator affecting SOC variability.Our research further suggested that climate may exert an indirect influence on SOC concentrations through its effect on geochemical properties of soil.These insights highlight the importance of considering both the direct and indirect impact of climate in predicting the SOC under future climate change.
基金funded by the “Laboratoire de Recherche Ressources, Matériaux et Ecosystémes”, University of Carthage 7021 Zarzouna, Bizerte, Tunisia
文摘The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization related to various hydrothermal fluid circulations. Petromineralogical studies indicate a rich mineral paragenesis with a minimum of seven mineralization phases and, at least, six pyrite generations. As is also the case for galena and native silver, native gold is observed for the first time as inclusion in quartz which opens up, thus, new perspectives for prospecting and evaluating the potential for noble metals associated with the mineralization. Scanning Electron Microscope--Energy Dispersive Spectroscopy and Transmission electron microscopy analyses show, in addition, a large incorporation of trace elements, including Ag and Au, in mineral structures such as fahlores(tetrahedrite-tennantite) and chalcopyrite ones. The mineral/mineral associations, used as geothermometers, gave estimated temperatures for the mineralizing fluids varying from 254 to 330 ℃ for phase Ⅲ, from 254 to 350 ℃ for phase Ⅳ, and from 200 to 300 ℃ for phases Ⅴ and Ⅵ. The seventh and last identified mineralization phase, marked by a deposit of native gold, reflects a drop in the mineralizing fluid’s temperature(< 200 ℃) compatible with boiling conditions. Such results open up perspectives for the development of precious metal research and the revaluation of the Cu–Fe ore deposit at the Ain El Bey abandoned mine, as well as at the surrounding areas fitting in the geodynamic framework of the Africa-Europe plate boundary.
基金the financial support from the Second Tibetan Plateau Scientific Expedition and Research(Grant No.2019QZKK0805)the postdoctoral project of Qinghai Institute of Salt Lakes(Grant No.E260DZ0401)+1 种基金the Kunlun Talent Project in Qinghai Province(Grant No.E340DZ0801)the Qinghai Provincial Department of Science and Technology Project(Grant No.2024-ZJ-722)。
文摘Research on the origin of carbonates in Changdu Basin holds significant importance for understanding the regional potash formation model.Based on a comprehensive review of previous studies,field geological surveys,and laboratory investigations,this study analyzes the origin and properties of carbonates within the context of regional potash formation.Petrographic studies show that magnesite deposits,with the characteristics of sedimentary origin.The results of elemental geochemical analysis show that the carbonates in this area were formed in the sedimentary environment via evaporation followed by concentration,and the formation of magnesite was possibly caused by the substitution of calcium in the dolomite with magnesium-rich brine.Theδ^(13)C values of carbonats in the study area are between5.9‰and 9.1‰.Theδ^(18)O values of magnesite samples range from-7.3‰to-1.3‰,and theδ^(18)O values of dolomites range from-10.3‰to-8.4‰.All the calculated Z values of oxygen isotopes of carbonates greater than 120.A comprehensive analysis of carbon and oxygen isotopes indicates that the magnesite was formed in a highly concentrated Marine sedimentary environment and does not show any relation with the metasomatism of hydrothermal fluids.The results on the correlation of magnesite with seawater and its sedimentary origin provide key information for explaining the migration direction of brine between the Changdu and Lanping-Simao Basins.The residual metamorphic seawater in the Changdu Basin migrated to the Lanping-Simao Basin,where potash underwent deposition.Whereas,magnesite and dolomite in the early stage of potash formation were left in the Changdu Basin.
基金Supported by China Geological Survey Bureau Project(1212010310306)~~
文摘Based on the achievement of local ecological geochemical survey,the selenium in surface layer soil of Zhangqiu green Chinese onion within production area is systematically studied in this study.And the ecological geochemical characters of selenium both in surface layer soil and in green Chinese onions are analyzed,and the relationship between the selenium in plant and soil is discussed.The results show that soil in Zhangqiu is rich in selenium,and it is suitable to develop the selenium-rich green Chinese onion products.
基金Project(41202051)supported by the National Natural Science Foundation of ChinaProject([2014]76)supported by the Platform of Scientific and Technological Innovation for Hunan Youth,China+1 种基金Project(2014T70886)supported by the Special Program of the Postdoctoral Science Foundation of ChinaProject(2012M521721)supported by China Postdoctoral Science Foundation
文摘The major element, trace element and rare earth element(REE) of the intrusion rock from the Dachang ore field in Guangxi, China, were analyzed. The results show that the phenocryst(about 15%) and matrix(about 85%) mainly consist of quartz, K-feldspar and plagioclase. The rock is composed of low content of Si and high content of Al2O3, low contents of Ca, Fe2O3, Na, TiO2, etc. The intrusion rock has the medium alkali content, attributing to K-rich type rock; and contains medium to low REE contents, of which light rare earth elements(LREEs) and heavy rare earth elements(HREEs) are highly fractionated, showing a weak negative Ce anomaly and a negative Eu anomaly. These rocks are enriched in LREE, and the large ion lithophytes elements(LILE) are rich in Rb, Sr, and U; the high-field-strength elements(Nb, Th, etc) are relatively depleted. The REE chondrite-normalized patterns are consistent with the overall, roughly indicating their similar characteristics, sources and evolution. The intrusion rock mainly formed during the collisional and within-plate periods.
基金Project(41202051)supported by the National Natural Science Foundation of ChinaProject(2015CX008)supported by the Innovation-driven Plan in Central South University,China+4 种基金Project(2016JJ1022)supported by Hunan Provincial Natural Science Outstanding Youth Foundation of ChinaProject(CSUZC201601)supported by the Open-end Fund for the Valuable and Precision Instruments of Central South University,ChinaProject(2014T70886)supported by the Special Program of the Postdoctoral Science Foundation of ChinaProject(2012M521721)supported by China Postdoctoral Science FoundationProject(XKRZ[2014]76)supported by the Platform of Scientific and Technological Innovation for Hunan Youth,China
文摘Skarn is the main altered rock type and is of great importance to mineralization and ore-prospecting in the Shizhuyuan area of Hunan province, China. Its features of petrography, mineralogy and geochemistry were studied systematically. The results show that the skarn mainly consists of garnet skarn, secondary wollastonite-garnet skarn, tremolite-clinozoisite skarn, and few wolframine garnet skarn, idocrase-garnet skarn and wollastonite skarn with granoblastic texture, granular sheet crystalloblastic texture, and massive structure, disseminated structure, mesh-vein structure, comb structure, and banded structure. And, it is mainly composed of garnet, fluorite, chlorite, hornblende, epidote, tremolite, plagioclase, biotite, muscovite, plagioclase, quartz, idocrase, and calcite and so on. The chemical components mainly include SiO2, Al2O3, Fe2O3, MgO and CaO, and the trace elements and REEs consist of Li, Be, V, Co, Zn, Ga, Rb, Sr, Y, Ce, Nd, Pb and Bi, etc. And, the obvious fractionation exists between LREE and HREE, and it shows typical features of Nanling ore-forming granite for W?Sn polymetallic deposit. Skarn is derived from the sedimentary rock, such as limestone, mudstone, argillaceous rock, and few pelitic strips. It is affected by both Shetianqiao formation strata and Qianlishan granite during the diagenesis, indicating a strong reduction environment. The occurrence of skarn, whose mutation site is favorable to the mineralization enrichment, is closely related to the mineralization and prospecting.
基金supported by funds from the Chinese Academy of Sciences(XDB18020303)the Chinese Ministry of Science and Technology(2015CB856100)the National Natural ScienceFoundation of China(41590620)
文摘Crustal recycling at convergent plate boundaries is essential to mantle heterogeneity.However,crustal signatures in the mantle source of basaltic rocks above subduction zones were primarily incorporated in the form of liquid rather than solid phases.The physicochemical property of liquid phases is determined by the dehydration behavior of crustal rocks at the slab-mantle interface in subduction channels.Because of the significant fractionation in incompatible trace elements but the full inheritance in radiogenic isotopes relative to their crustal sources,the production of liquid phases is crucial to the geochemical transfer from the subducting crust into the mantle.In this process,the stability of specific minerals in subducting crustal rocks exerts a primary control on the enrichment of given trace elements in the liquid phases.For this reason,geochemically enriched oceanic basalts can be categorized into two types in terms of their trace element distribution patterns in the primitive mantle-normalized diagram.One is island arc basalts(IAB),showing enrichment in LILE,Pb and LREE but depletion in HFSE such as Nb and Ta relative to HREE,The other is ocean island basalts(OIB),exhibiting enrichment in LILE and LREE,enrichment or non-depletion in HFSE but depletion in Pb relative to HREE.In either types,these basalts show the enhanced enrichment of LILE and LREE with increasing their incompatibility relative to normal mid-ocean ridge basalts(MORB).The thermal regime of subduction zones can be categorized into two stages in both time and space,The first stage is characterized by compressional tectonism at low thermal gradients.As a consequence,metamorphic dehydration of the subducting crust prevails at forearc to subarc depths due to the breakdown of hydrous minerals such as mica and amphibole in the stability field of garnet and rutile,resulting in the liberation of aqueous solutions with the trace element composition that is considerably enriched in LILE,Pb and LREE but depleted in HFSE and HREE relative to normal MORB.This provides the crustal signature for the mantle sources of IAB.The second stage is indicated by extensional tectonism at high thermal gradients,leading to the partial melting of metamorphically dehydrated crustal rocks at subarc to postarc depths.This involves not only the breakdown of hydrous minerals such as amphibole,phengite and allanite in the stability field of garnet but also the dissolution of rutile into hydrous melts.As such,the hydrous melts can acquire the trace element composition that is significantly enriched in LILE,HFSE and LREE but depleted in Pb and HREE relative to normal MORB,providing the crustal signature for the mantle sources of OIB.In either case,these liquid phases would metasomatize the overlying mantle wedge peridotite at different depths,generating ultramafic metasomatites such as serpentinized and chloritized peridotites,and olivine-poor pyroxenites and hornblendites.As a consequence,the crustal signatures are transferred by the liquid phases from the subducting slab into the mantle.
基金supports from the National Natural Science Foundation of China(grants 40172071 and 40211120151 to Yan Quanren)the Ministry of Science and Technology of the People’s Republic of China(grant 2202CB412608 to Wang Zongqi)+2 种基金the China Geological Survey(grant DKD2001002 to Wang Zongqi)the University of Nevada Las Vegas(to Hanson)and the Geological Society of America(to Druschke)are gratefully appreciated.
文摘The Bikou volcanic terrane is predominated by subalkaline tholeiitic lavas. Rock samples display lower initial ratios of Sr and Nd, 0.701248-0.704413 and 0.511080-0.512341 respectively. 207Pb and 208Pb are significantly enriched in the lavas. Most samples have positive εNd, which indicates that the magma was derived from EM-type mantle source, while a few samples with negative εNd indicate that there was contamination in the magma evolution. Magma differentiation is demonstrated by variations of LREE and LILE from depletion to enrichment. Additionally, normalized REE patterns and trace elements showed that lavas from the Bikou volcanic terrane have similar characteristics to those of basalts in arc settings caused by subduction and collision. Analyses showed that the Bikou volcanic terrane is a volcanic arc. New evidence proved that the Hengdan Group, north of the Bikou arc, is a turbidite terrane filling a forearc basin. Consequently, the Bikou volcanic terrane and the Hengdan turbidite terrane construct an arc-basin system. New SHRIMP ages showed that this arc-basin system developed on the northern margin of the Yangtze craton in the Neoproterozoic (846-776 Ma), and this arc-basin system is in agreement with the tectonic processes of Rodinia in the Neoproterzoic.
基金jointly by National Basic Research Program of China(973 Program) (2007CB411402)the Knowledge innovation project of Chinese Academy of Sciences(KZCX2-YW-Q04-05, KZCX2-YW-111-03)the National Natural Science Foundation of China(No.40573036).
文摘The world-class Huize Pb-Zn deposits of Yunnan province,in southwestern China,located in the center of the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic province,has Pb+Zn reserves of more than 5 million tons at Pb+Zn grade of higher than 25%and contains abundant associated metals,such as Ag,Ge,Cd,and Ga.The deposits are hosted in the Lower Carboniferous carbonate strata and the Permian Emeishan basalts which distributed in the northern and southwestern parts of the orefield.Calcite is the only gangue mineral in the primary ores of the deposits and can be classified into three types,namely lumpy,patch and vein calcites in accordance with their occurrence.There is not intercalated contact between calcite and ore minerals and among the three types of calcite,indicating that they are the same ore-forming age with different stages and its forming sequence is from lumpy to patch to vein calcites. This paper presents the rare earth element(REE) and C-O isotopic compositions of calcites in the Huize Pb-Zn deposits.From lumpy to patch to vein calcites,REE contents decrease as LREE/ HREE ratios increase.The chondrite-normalized REE patterns of the three types of calcites are characterized by LREE-rich shaped,in which the lumpy calcite shows(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〈1,the patch calcite has(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〉1,and the vein calcite displays(La)_N〉(Ce)_N〉(Pr)_N〉(Nd)_N with Eu/Eu~*〉1.The REE geochemistry of the three types of calcite is different from those of the strata of various age and Permian Emeishan basalt exposed in the orefield.Theδ^(13) C_(PDb) andδ^(18)O_(Smow) values of the three types of calcites vary from-3.5‰to-2.1‰and 16.7‰to 18.6‰,respectively,falling within a small field between primary mantle and marine carbonate in theδ^(13)C_(PDb) vsδ^(18)O_(Smow) diagram. Various lines of evidence demonstrate that the three types of calcites in the deposits are produced from the same source with different stages.The ore-forming fluids of the deposits resulted from crustal -mantle mixing processes,in which the mantle-derived fluid components might be formed from degassing of mantle or/and magmatism of the Permian Emeishan basalts,and the crustal fluid was mainly provided by carbonate strata in the orefield.The ore-forming fluids in the deposits were homogenized before mineralization,and the ore-forming environment varied from relatively reducing to oxidizing.
基金supported by the National Natural Science Foundation of China(Grant No.40672038).
文摘Zircon U-Pb ages and geochemical analytical results are presented for the volcanic rocks of the Naozhigou, Ergulazi, and Sidaogou Formations in the Linjiang area, southeastern Jilin Province to constrain the nature of magma source and their tectonic settings. The Naozhigou Formation is composed mainly of andesite and rhyolite and its weighted mean ^206pb/^238U age for 13 zircon grains is 222±1 Ma. The Ergulazi Formation consists of basaltic andesite, basaltic trachyandesite, and andesite, and six grains give a weighted mean ^206pb/^238U age of 131±4 Ma. The Sidaogou Formation consists mainly of trachyandesite and rhyolite, and six zircon grains yield a weighted mean ^206pb/^238U age of 113±4 Ma. The volcanic rocks have SIO2=60.24%-77.46%, MGO=0.36%-1.29% (Mg#=0.32-0.40) for the Naozhigou Formation, SIO2=51.60%-59.32%, MGO=3.70%-5.54% (Mg#=0.50-0.60) for the Ergulazi Formation, and SIO2=58.28%-76.32%, MGO=0.07%-1.20% (Mg#=0.14-0.46) for the Sidaogou Formation. The trace element analytical results indicate that these volcanic rocks are characterized by enrichment in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), relative depletion in heavy rare earth elements (HREEs) and high field strength elements (HFSEs, Nb, Ta, and Ti), and negative Eu anomalies. Compared with the primitive mantle, the Mesozoic volcanic rocks in the Linjiang area have relatively high initial ^87Sr/^86Sr ratios (0.7053-0.7083) and low εNd(t) values (-8.38 to -2.43), and display an EMⅡ trend. The late Triassic magma for the Naozhigou Formation could be derived from partial melting of a newly accretional crust with the minor involvement of the North China Craton basement and formed under an extensional environment after the collision of the Yangtze Craton and the North China Craton. The Early Cretaceous volcanic rocks for the Ergulazi and Sidaogou Formations could be formed under the tectonic setting of an active continental margin related to the westward subduction of the Izanagi plate.