With the rapid development of Internet technology,the type of information in the Internet is extremely complex,and a large number of riot contents containing bloody,violent and riotous components have appeared.These c...With the rapid development of Internet technology,the type of information in the Internet is extremely complex,and a large number of riot contents containing bloody,violent and riotous components have appeared.These contents pose a great threat to the network ecology and national security.As a result,the importance of monitoring riotous Internet activity cannot be overstated.Convolutional Neural Network(CNN-based)target detection algorithm has great potential in identifying rioters,so this paper focused on the use of improved backbone and optimization function of You Only Look Once v5(YOLOv5),and further optimization of hyperparameters using genetic algorithm to achieve fine-grained recognition of riot image content.First,the fine-grained features of riot-related images were identified,and then the dataset was constructed by manual annotation.Second,the training and testing work was carried out on the constructed dedicated dataset by supervised deep learning training.The research results have shown that the improved YOLOv5 network significantly improved the fine-grained feature extraction capability of riot-related images compared with the original YOLOv5 network structure,and the mean average precision(mAP)value was improved to 0.6128.Thus,it provided strong support for combating riot-related organizations and maintaining the online ecological environment.展开更多
Fine-grained ZK60 magnesium alloy sheets of 2.0 mm in thickness were successfully joined by laser beam welding (LBW). The effects of welding parameters including laser power and welding speed on the microstructures ...Fine-grained ZK60 magnesium alloy sheets of 2.0 mm in thickness were successfully joined by laser beam welding (LBW). The effects of welding parameters including laser power and welding speed on the microstructures and mechanical properties of the joints were investigated. A sound bead, with the ultimate tensile strength (UTS) of 300 MPa and elongation of 12.0%, up to 92.5% and 65% of those of the base metal, respectively, is obtained with the optimized welding parameters. No liquation cracking is visible in the partially melted zone (PMZ) owing to the inhibitory action of the fine dispersed precipitates and the fine-grained microstructure in the as-rolled magnesium alloy sheets. The fusion zone (FZ) is featured with the equiaxed dendritic grains of the average grain size about 8 μm, which are similar to those in the heat affected zone (HAZ), and this contributes to the relatively high joint efficiency.展开更多
Yangfujing 7A, derived from the cross between Xu 9201A and Yangfujing 7 and its successive backcrosses, is a BT-type japonica CMS line developed by the Agricultural Institute of Riparian Region of Jiangsu Province. It...Yangfujing 7A, derived from the cross between Xu 9201A and Yangfujing 7 and its successive backcrosses, is a BT-type japonica CMS line developed by the Agricultural Institute of Riparian Region of Jiangsu Province. It shows good integrat- ed characteristics, stable male sterility, good flowering habits, high out crossing rate, strong disease resistance, fine grain quality (reaching the 1st class of national standards for fine quality rice) and high combining ability. In 2012, it was technically identified in Jiangsu Province. Its F1 hybrid combination Tongyoujingl (Yangfujing 7 A/R98), showing high yield and good grain quality, was registered and released to commercial production by Jiangsu Crop Variety Appraisal Committee in 2013.展开更多
The aerospace and military sectors have widely used AA7075, a type of 7075 aluminum alloy, due to its exceptional mechanical performance. Selective laser melting (SLM) is a highly effective method for producing intric...The aerospace and military sectors have widely used AA7075, a type of 7075 aluminum alloy, due to its exceptional mechanical performance. Selective laser melting (SLM) is a highly effective method for producing intricate metallic components, particularly in the case of aluminum alloys like Al-Si-Mg. Nevertheless, the production of high-strength AA7075 by SLM is challenging because of its susceptibility to heat cracking and elemental vaporization. In this study, AA7075 powders were mechanically mixed with SiC and TiC particles. Subsequently, this new type of AA7075 powder was effectively utilized in green laser printing to create solid components with fine-grain strengthening microstructures consisting of equiaxial grains. These as-printed parts exhibit a tensile strength of up to 350 MPa and a ductility exceeding 2.1%. Hardness also increases with the increasing content of mixed powder, highlighting the essential role of SiC and TiC in SLM for improved hardness and tensile strength performance. .展开更多
Channel die compression and initial textures are used to activate different deformation mechanisms in a fine-grained magnesium alloy AZ31. The σ-ε curves, microstructures and, particularly, textures are analyzed to ...Channel die compression and initial textures are used to activate different deformation mechanisms in a fine-grained magnesium alloy AZ31. The σ-ε curves, microstructures and, particularly, textures are analyzed to reveal different deformation mechanisms and to compare with those of coarse grained samples. Dominant double-prismatic slip, {1012} twinning and basal slip are detected in three types of samples, respectively, which is similar to those of coarse grained samples. The detrimental effect of shear band formation or {1011} twinning is limited in fine grained microstructure. In addition to the higher flow stress at low temperature an early decrease in flow stress at higher temperature is also found in fine-grained samples in comparison with their coarse-grained counterparts. This softening is ascribed to the early dynamic recrystallization or grain boundary glide.展开更多
Considering the specialities of the steel plate production, the TMCP study has been carried out with Gleeble 2000 tester to explore the possibility of fine grained ferrite in the low carbon steel plates with the chemi...Considering the specialities of the steel plate production, the TMCP study has been carried out with Gleeble 2000 tester to explore the possibility of fine grained ferrite in the low carbon steel plates with the chemical composition of C 0.13--0.18, Si 0.12-0.18, Mn 0.50-0. 65, P 0. 010-0. 025, and S 0. 005-0. 028. The plates with thickness of 8. 7 mm in which the ferrite grain size is smaller than 8μm have been produced by special de- formation process in the laboratory. Furthermore, the trial production of special plain carbon steel plates of 16-25 mm in thickness and 2 000- 2 800 mm in width with fine grained ferrite has been successfully carried out in the Shougang Steel Plate Rolling Plant. The ferrite grain size is 5.5-7μm in the surface layers and 9.5-15μm in the central layer respectively. The yield strength is 320- 360 MPa, tensile strength is 440-520 MPa and the elongation is 25%- 34 %. It is very important for the rolling plants to improve the low carbon steel plates' mechanical properties. The results show that the ferrite grains in the surface layer can be refined effectively by the appropriate rolling process, and the strength can be also increased.展开更多
Mg−1Mn−0.5Al−0.5Ca−0.5Zn(wt.%)alloy was fabricated by conventional extrusion at 673 K with an extrusion ratio of 25:1,followed by aging at 473 K.The microstructure was characterized by scanning electron microscopy,ele...Mg−1Mn−0.5Al−0.5Ca−0.5Zn(wt.%)alloy was fabricated by conventional extrusion at 673 K with an extrusion ratio of 25:1,followed by aging at 473 K.The microstructure was characterized by scanning electron microscopy,electron back-scattered diffraction,and transmission electron microscopy.The mechanical properties were determined by the tensile test.The peak-aged sample shows fine recrystallized grains with an average grain size of 1.7μm.Area fraction of Al−Ca particles in the alloy increases significantly after peak aging.Meanwhile,botháañandác+añdislocations were observed to remain in the alloy after hot extrusion.Thus,the peak-aged sample exhibits simultaneously high strength and good ductility with the ultimate tensile stress,tensile yield stress,and tension fracture elongation of 320 MPa,314 MPa,and 19.0%,respectively.展开更多
The wear performance of fine grain alumina ball adding diopside as fluxing agent are reported for the first time in this paper. The ball (average grain size 3 mum) exhibits excellent toughness and low wear rates. Plou...The wear performance of fine grain alumina ball adding diopside as fluxing agent are reported for the first time in this paper. The ball (average grain size 3 mum) exhibits excellent toughness and low wear rates. Ploughing grooves and traces of micro-cutting occur at the place with no pore. And the wear process is mainly caused by plastic deformation mechanism. Yet, the ordinary alumina balls (average grain size 6 and 15 mum) are brittle and the wear rates are high. The intergranular and transgranular dropping pits occur, and the wear process in mainly caused by brittle fracture mechanism.展开更多
The advanced hot-rolled transformation induced plasticity (TRIP) steel with high tensile strength of 775 MPa, high elongation of 29% and low ductile-brittle transmission temperature less than -80℃ has been develope...The advanced hot-rolled transformation induced plasticity (TRIP) steel with high tensile strength of 775 MPa, high elongation of 29% and low ductile-brittle transmission temperature less than -80℃ has been developed in laboratory based on the common silicon and manganese chemical composition. The experimental results showed that the microstructures were featured with ultra fine grain size less than 5μm, appropriate retained austenite volume fraction around 11.8% and purified ferrite grain, which may result in well balanced mechanical properties for the steel.展开更多
The fracture behavior for welded joint of new generation fine grained steel SS400 was investigated and assessed on the basis of fitness for purpose philosophy. The actual critical defect sizes for the SS400 base metal...The fracture behavior for welded joint of new generation fine grained steel SS400 was investigated and assessed on the basis of fitness for purpose philosophy. The actual critical defect sizes for the SS400 base metal and its weld HAZ (heat affected zone) defined by the gross yielding criterium have been determined directly by means of wide plate tests. It has been shown that although the HAZ grain growth occurs due to the welding heat, the resistance to fracture is not deteriorated. The deformation behavior of wide plate specimen was also studied by finite, element (FE) analysis. The deformation of weld HAZ is protected by the high strength weld metal, so it is easier to get the general yielding for the welded joint specimen.展开更多
The welded joints of 400 MPa ultra fine grained steel in manual arc welding were treated by mechanical surface hardening. Microstructure and mechanical properties of the treated joints were compared with those of the ...The welded joints of 400 MPa ultra fine grained steel in manual arc welding were treated by mechanical surface hardening. Microstructure and mechanical properties of the treated joints were compared with those of the untreated joints, based on which, primary study on the process and principle of mechanical surface hardening was carried out. The results shows that: Grain size of HAZ increases greatly and mechanical properties of welded joint decrease obviously compared with those of base martial, but grain size in the surface layer of HAZ can be refined (the grain size is about 100 nm or so) and mechanical properties of welded joints can be improved greatly by mechanical surface hardening.展开更多
The temperature field and thermal cycling curve in the heat-affected zone during welding 400 MPa ultra fine grained steel by plasma arc were simulated using finite element method. The principle of grain growth kinetic...The temperature field and thermal cycling curve in the heat-affected zone during welding 400 MPa ultra fine grained steel by plasma arc were simulated using finite element method. The principle of grain growth kinetics was used to predict the grain size in the heat-affected zone under different welding parameters. The simulation results show that the growing tendency of HAZ grain could be controlled by adjusting the welding parameters, but the growth of HAZ grain could not be eliminated at all. The HAZ grain size became small with increasing of the cooling rate and added with increasing of welding current, arc voltage and welding speed.展开更多
Fine grain cast IN718 compressor blade form abroad has been analyzed. There is no columnar grain, uniform equiaxed grain, less segregation and no porosity cast defect in essence in the section of blade body with fine ...Fine grain cast IN718 compressor blade form abroad has been analyzed. There is no columnar grain, uniform equiaxed grain, less segregation and no porosity cast defect in essence in the section of blade body with fine grain, in which grain size is about ASTM 2 ~4. Its microstructure is approachable to that of forging. It is hopeful to achieve the goal of replacing forging by casting.展开更多
The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rat...The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rates ranging from 0.001 to 1 s^(-1).Results showed that an increase in the strain rate or a decrease in deformation temperature led to an increase in true stress.The constitutive equation and processing maps of the alloy were obtained and analyzed.The influence of deformation temperatures and strain rates on microstructural evolution and texture was studied with the assistance of electron backscatter diffraction(EBSD).The as-extruded alloy exhibited a bimodal structure that consisted of deformed coarse grains and fine equiaxed recrystallized structures(approximately 1.57μm).The EBSD results of deformed alloy samples revealed that the recrystallization degree and average grain size increased as the deformation temperature increased.By contrast,dislocation density and texture intensity decreased.Compressive texture weakened with the increase in the deformation temperature at the strain rate of 0.01 s-1.Most grains with{0001}planes tilted away from the compression direction(CD)gradually.In addition,when the strain rate decreased,the recrystallization degree and average grain size increased.Meanwhile,the dislocation density decreased.Texture appeared to be insensitive to the strain rate.These findings provide valuable insights into the hot compression behavior,microstructural evolution,and texture changes in the Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy,contributing to the understanding of its processing-microstructure-property relationships.展开更多
The influence of Pr6O11 on the microstructure of ZnO varistors was researched. The results of experiment indicate that addition of Pr6O11 leads to the change of the formation process of the spinel phase. A lot of pyro...The influence of Pr6O11 on the microstructure of ZnO varistors was researched. The results of experiment indicate that addition of Pr6O11 leads to the change of the formation process of the spinel phase. A lot of pyrochlore phases ( Bi3Zn2Sb3O14 ) produce at about 700℃, and decompose to fine spinel phase (Zn7Sb2O12) when the temperature reaches to 900℃.This type of spinel phase makes ZnO crystal size minor. Also, the phase contained the Pr and different Pr oxides, which makes the whole material crystal size more uniform and compact. The fine structure improves the threshold voltage by about 60%, and modifies nonlinear coefficient of the ZnO material.展开更多
The strength of the mould cavity in sand casting is very much significant to attain high-quality castings. Optimization of green sand process parameters plays a vital role in minimizing casting defects. In the present...The strength of the mould cavity in sand casting is very much significant to attain high-quality castings. Optimization of green sand process parameters plays a vital role in minimizing casting defects. In the present research work, the effect of process parameters such as AFS grain fineness number, water, molasses, bentonite, fly ash, and ramming, and their levels on the resultant mould properties were investigated and optimized using Taguchi based grey relational analysis. The Taguchi L18 orthogonal array and analysis of variance(ANOVA) were used. The quality characteristics viz., green compression strength, permeability, bulk density, mould hardness and shatter index of green sand mould were optimized using grey relational grade, based on the experiments designed using Taguchi's Design of Experiments. ANOVA analysis indicated that water content is the most influential parameter followed by bentonite, and degree of ramming that contributes to the quality characteristics. The results are confirmed by calculating confidence intervals, which lies within the interval limits. Finally, microstructure observations and X-ray diffraction analysis have been performed for the optimal sand parametric combination. Results show that presence of maximum amount of SiO_2, which might be the reason for enhancement of the physical properties of the sand.展开更多
A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed an...A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed and analyzed.The results show that the forming part includes four regions.The solidification zone solidifies as typical columnar crystals from a molten pool.The complete austenitizing zone forms from the solidification zone heated to a temperature greater than 1100℃,and the typical columnar crystals in this zone are difficult to observe.The partial austenitizing zone forms from the completely austenite zone heated between Ac1(austenite transition temperature)and1100℃,which is mainly equiaxed grains.After several thermal cycles,the partial austenitizing zone transforms to the tempering zone,which consistes of fully equiaxed grains.From the solidification zone to the tempering zone,the average grain size decreases from 75 to20μm.The mechanical properties of HBMDPJ satisfies the requirement for the intended application.展开更多
Copper sheet with grain size of 30-60μm was processed by plastic deformation of asymmetrical accumulative rolling-bonding(AARB)with the strain of 3.2.The effects of annealing temperature and time on microstructural e...Copper sheet with grain size of 30-60μm was processed by plastic deformation of asymmetrical accumulative rolling-bonding(AARB)with the strain of 3.2.The effects of annealing temperature and time on microstructural evolution were studied by means of electron backscattered diffraction(EBSD).EBSD grain mapping,recrystallization pole figure and grain boundary misorientation angle distribution graph were constructed,and the characteristics were assessed by microstructure,grain size,grain boundary misorientation and texture.The results show that ultra fine grains(UFG)are obtained after annealing at 250℃ for 30?40 min.When the annealing is controlled at 250℃for 40 min,the recrystallization is finished,a large number of small grains appear and most grain boundaries consist of low-angle boundaries.The character of texture is rolling texture after the recrystallization treatment,but the strength of the texture is faint.While second recrystallization happens,{110}<1ī2>+{112}<11ī> texture component disappears and turns into{122}<212>cube twin texture component.展开更多
The AZ31 alloy ingot with diameter of 110 mm and length of 3500 mm was fabricated successfully. The compositions and microstructure morphologies of the ingot at different locations were performed, which indicated that...The AZ31 alloy ingot with diameter of 110 mm and length of 3500 mm was fabricated successfully. The compositions and microstructure morphologies of the ingot at different locations were performed, which indicated that the chemical composition distributed homogeneously through the whole alloy ingot and the average grain size increased from the surface to the center. The results of the EDS and element face-scanning illustrated that the eutectic compounds mainly consisted of fl-Mg17Al12 and a small amount of fl-Mgl7(AlZn)12. Furthermore, slight improvements of the strength and ductility were observed from the center to the surface along the axial direction of the alloy ingot, while both the strength and elongation to failure of the samples along the radial direction are higher than that along the axial direction. The fine grain strengthening was the main contributors to the strength of the as-casted AZ31 alloy.展开更多
TiC/ZA43 composites were fabricated by XD TM and stirring casting techniques. The tribology properties of the unreinforced ZA43 alloy and the composites were studied by using a block on ring apparatus. Experimental re...TiC/ZA43 composites were fabricated by XD TM and stirring casting techniques. The tribology properties of the unreinforced ZA43 alloy and the composites were studied by using a block on ring apparatus. Experimental results show that the incorporation of TiC particles improves the microstructure of ZA43 matrix alloy. The coefficient of friction μ and the width of worn groove decrease with the increase of TiC volume fraction φ (TiC). The width of worn groove and μ of the composite during wear testing increase with increasing the applied load. Metallographic examinations reveal that unreinforced ZA43 alloy has deep ploughing grooves with obvious adhesion phenomenon, whereas TiC/ZA43 composites have smooth worn surface. Delamination formation is related to the fatigue cracks and the shear cracks on the surface. [展开更多
基金This work was supported by Fundamental Research Funds for the Central Universities,People’s Public Security University of China(2021JKF215)Key Projects of the Technology Research Program of the Ministry of Public Security(2021JSZ09)the Fund for the training of top innovative talents to support master’s degree program,People’s Public Security University of china(2021yjsky018).
文摘With the rapid development of Internet technology,the type of information in the Internet is extremely complex,and a large number of riot contents containing bloody,violent and riotous components have appeared.These contents pose a great threat to the network ecology and national security.As a result,the importance of monitoring riotous Internet activity cannot be overstated.Convolutional Neural Network(CNN-based)target detection algorithm has great potential in identifying rioters,so this paper focused on the use of improved backbone and optimization function of You Only Look Once v5(YOLOv5),and further optimization of hyperparameters using genetic algorithm to achieve fine-grained recognition of riot image content.First,the fine-grained features of riot-related images were identified,and then the dataset was constructed by manual annotation.Second,the training and testing work was carried out on the constructed dedicated dataset by supervised deep learning training.The research results have shown that the improved YOLOv5 network significantly improved the fine-grained feature extraction capability of riot-related images compared with the original YOLOv5 network structure,and the mean average precision(mAP)value was improved to 0.6128.Thus,it provided strong support for combating riot-related organizations and maintaining the online ecological environment.
基金Project(51274092)supported by the National Natural Science Foundation of ChinaProject(20120161110040)supported by the Doctoral Program of Higher Education of China
文摘Fine-grained ZK60 magnesium alloy sheets of 2.0 mm in thickness were successfully joined by laser beam welding (LBW). The effects of welding parameters including laser power and welding speed on the microstructures and mechanical properties of the joints were investigated. A sound bead, with the ultimate tensile strength (UTS) of 300 MPa and elongation of 12.0%, up to 92.5% and 65% of those of the base metal, respectively, is obtained with the optimized welding parameters. No liquation cracking is visible in the partially melted zone (PMZ) owing to the inhibitory action of the fine dispersed precipitates and the fine-grained microstructure in the as-rolled magnesium alloy sheets. The fusion zone (FZ) is featured with the equiaxed dendritic grains of the average grain size about 8 μm, which are similar to those in the heat affected zone (HAZ), and this contributes to the relatively high joint efficiency.
基金Supported by the Science and Technology Innovation Program of Nantong City,Jiangsu Province(HL2012019)~~
文摘Yangfujing 7A, derived from the cross between Xu 9201A and Yangfujing 7 and its successive backcrosses, is a BT-type japonica CMS line developed by the Agricultural Institute of Riparian Region of Jiangsu Province. It shows good integrat- ed characteristics, stable male sterility, good flowering habits, high out crossing rate, strong disease resistance, fine grain quality (reaching the 1st class of national standards for fine quality rice) and high combining ability. In 2012, it was technically identified in Jiangsu Province. Its F1 hybrid combination Tongyoujingl (Yangfujing 7 A/R98), showing high yield and good grain quality, was registered and released to commercial production by Jiangsu Crop Variety Appraisal Committee in 2013.
文摘The aerospace and military sectors have widely used AA7075, a type of 7075 aluminum alloy, due to its exceptional mechanical performance. Selective laser melting (SLM) is a highly effective method for producing intricate metallic components, particularly in the case of aluminum alloys like Al-Si-Mg. Nevertheless, the production of high-strength AA7075 by SLM is challenging because of its susceptibility to heat cracking and elemental vaporization. In this study, AA7075 powders were mechanically mixed with SiC and TiC particles. Subsequently, this new type of AA7075 powder was effectively utilized in green laser printing to create solid components with fine-grain strengthening microstructures consisting of equiaxial grains. These as-printed parts exhibit a tensile strength of up to 350 MPa and a ductility exceeding 2.1%. Hardness also increases with the increasing content of mixed powder, highlighting the essential role of SiC and TiC in SLM for improved hardness and tensile strength performance. .
基金This work was supported by the National Natural Sci-ence Foundation of China under grant No.50171009the National 863 Program of China(No.2002A A305501)Part work was performed at IMM RWTH A achen,Germany.
文摘Channel die compression and initial textures are used to activate different deformation mechanisms in a fine-grained magnesium alloy AZ31. The σ-ε curves, microstructures and, particularly, textures are analyzed to reveal different deformation mechanisms and to compare with those of coarse grained samples. Dominant double-prismatic slip, {1012} twinning and basal slip are detected in three types of samples, respectively, which is similar to those of coarse grained samples. The detrimental effect of shear band formation or {1011} twinning is limited in fine grained microstructure. In addition to the higher flow stress at low temperature an early decrease in flow stress at higher temperature is also found in fine-grained samples in comparison with their coarse-grained counterparts. This softening is ascribed to the early dynamic recrystallization or grain boundary glide.
文摘Considering the specialities of the steel plate production, the TMCP study has been carried out with Gleeble 2000 tester to explore the possibility of fine grained ferrite in the low carbon steel plates with the chemical composition of C 0.13--0.18, Si 0.12-0.18, Mn 0.50-0. 65, P 0. 010-0. 025, and S 0. 005-0. 028. The plates with thickness of 8. 7 mm in which the ferrite grain size is smaller than 8μm have been produced by special de- formation process in the laboratory. Furthermore, the trial production of special plain carbon steel plates of 16-25 mm in thickness and 2 000- 2 800 mm in width with fine grained ferrite has been successfully carried out in the Shougang Steel Plate Rolling Plant. The ferrite grain size is 5.5-7μm in the surface layers and 9.5-15μm in the central layer respectively. The yield strength is 320- 360 MPa, tensile strength is 440-520 MPa and the elongation is 25%- 34 %. It is very important for the rolling plants to improve the low carbon steel plates' mechanical properties. The results show that the ferrite grains in the surface layer can be refined effectively by the appropriate rolling process, and the strength can be also increased.
基金the financial supports from the Fundamental Research Funds for the Central Universities,China(Nos.2019CDCGCL316,2020CDJDPT001)Chongqing Research Program of Basic Research and Frontier Technology,China(No.cstc2019jcjy-msxmX0539)。
文摘Mg−1Mn−0.5Al−0.5Ca−0.5Zn(wt.%)alloy was fabricated by conventional extrusion at 673 K with an extrusion ratio of 25:1,followed by aging at 473 K.The microstructure was characterized by scanning electron microscopy,electron back-scattered diffraction,and transmission electron microscopy.The mechanical properties were determined by the tensile test.The peak-aged sample shows fine recrystallized grains with an average grain size of 1.7μm.Area fraction of Al−Ca particles in the alloy increases significantly after peak aging.Meanwhile,botháañandác+añdislocations were observed to remain in the alloy after hot extrusion.Thus,the peak-aged sample exhibits simultaneously high strength and good ductility with the ultimate tensile stress,tensile yield stress,and tension fracture elongation of 320 MPa,314 MPa,and 19.0%,respectively.
基金Funded by Hubei Province Key ScientificTechnological Development Foundation (No.951P0301).
文摘The wear performance of fine grain alumina ball adding diopside as fluxing agent are reported for the first time in this paper. The ball (average grain size 3 mum) exhibits excellent toughness and low wear rates. Ploughing grooves and traces of micro-cutting occur at the place with no pore. And the wear process is mainly caused by plastic deformation mechanism. Yet, the ordinary alumina balls (average grain size 6 and 15 mum) are brittle and the wear rates are high. The intergranular and transgranular dropping pits occur, and the wear process in mainly caused by brittle fracture mechanism.
文摘The advanced hot-rolled transformation induced plasticity (TRIP) steel with high tensile strength of 775 MPa, high elongation of 29% and low ductile-brittle transmission temperature less than -80℃ has been developed in laboratory based on the common silicon and manganese chemical composition. The experimental results showed that the microstructures were featured with ultra fine grain size less than 5μm, appropriate retained austenite volume fraction around 11.8% and purified ferrite grain, which may result in well balanced mechanical properties for the steel.
基金Supported by FOK YING TUNG Education Foundation and the National Natural Science Foundation of China (Grant No.50275107).
文摘The fracture behavior for welded joint of new generation fine grained steel SS400 was investigated and assessed on the basis of fitness for purpose philosophy. The actual critical defect sizes for the SS400 base metal and its weld HAZ (heat affected zone) defined by the gross yielding criterium have been determined directly by means of wide plate tests. It has been shown that although the HAZ grain growth occurs due to the welding heat, the resistance to fracture is not deteriorated. The deformation behavior of wide plate specimen was also studied by finite, element (FE) analysis. The deformation of weld HAZ is protected by the high strength weld metal, so it is easier to get the general yielding for the welded joint specimen.
文摘The welded joints of 400 MPa ultra fine grained steel in manual arc welding were treated by mechanical surface hardening. Microstructure and mechanical properties of the treated joints were compared with those of the untreated joints, based on which, primary study on the process and principle of mechanical surface hardening was carried out. The results shows that: Grain size of HAZ increases greatly and mechanical properties of welded joint decrease obviously compared with those of base martial, but grain size in the surface layer of HAZ can be refined (the grain size is about 100 nm or so) and mechanical properties of welded joints can be improved greatly by mechanical surface hardening.
文摘The temperature field and thermal cycling curve in the heat-affected zone during welding 400 MPa ultra fine grained steel by plasma arc were simulated using finite element method. The principle of grain growth kinetics was used to predict the grain size in the heat-affected zone under different welding parameters. The simulation results show that the growing tendency of HAZ grain could be controlled by adjusting the welding parameters, but the growth of HAZ grain could not be eliminated at all. The HAZ grain size became small with increasing of the cooling rate and added with increasing of welding current, arc voltage and welding speed.
文摘Fine grain cast IN718 compressor blade form abroad has been analyzed. There is no columnar grain, uniform equiaxed grain, less segregation and no porosity cast defect in essence in the section of blade body with fine grain, in which grain size is about ASTM 2 ~4. Its microstructure is approachable to that of forging. It is hopeful to achieve the goal of replacing forging by casting.
基金supported by the National Key R&D Program of China(No.2021YFB3701100)the National Natural Science Foundation of China(No.52271091)the China Scholarship Council(No.202206050135)。
文摘The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rates ranging from 0.001 to 1 s^(-1).Results showed that an increase in the strain rate or a decrease in deformation temperature led to an increase in true stress.The constitutive equation and processing maps of the alloy were obtained and analyzed.The influence of deformation temperatures and strain rates on microstructural evolution and texture was studied with the assistance of electron backscatter diffraction(EBSD).The as-extruded alloy exhibited a bimodal structure that consisted of deformed coarse grains and fine equiaxed recrystallized structures(approximately 1.57μm).The EBSD results of deformed alloy samples revealed that the recrystallization degree and average grain size increased as the deformation temperature increased.By contrast,dislocation density and texture intensity decreased.Compressive texture weakened with the increase in the deformation temperature at the strain rate of 0.01 s-1.Most grains with{0001}planes tilted away from the compression direction(CD)gradually.In addition,when the strain rate decreased,the recrystallization degree and average grain size increased.Meanwhile,the dislocation density decreased.Texture appeared to be insensitive to the strain rate.These findings provide valuable insights into the hot compression behavior,microstructural evolution,and texture changes in the Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy,contributing to the understanding of its processing-microstructure-property relationships.
文摘The influence of Pr6O11 on the microstructure of ZnO varistors was researched. The results of experiment indicate that addition of Pr6O11 leads to the change of the formation process of the spinel phase. A lot of pyrochlore phases ( Bi3Zn2Sb3O14 ) produce at about 700℃, and decompose to fine spinel phase (Zn7Sb2O12) when the temperature reaches to 900℃.This type of spinel phase makes ZnO crystal size minor. Also, the phase contained the Pr and different Pr oxides, which makes the whole material crystal size more uniform and compact. The fine structure improves the threshold voltage by about 60%, and modifies nonlinear coefficient of the ZnO material.
基金financially supported by the National Institute of Technology,Manipur,India
文摘The strength of the mould cavity in sand casting is very much significant to attain high-quality castings. Optimization of green sand process parameters plays a vital role in minimizing casting defects. In the present research work, the effect of process parameters such as AFS grain fineness number, water, molasses, bentonite, fly ash, and ramming, and their levels on the resultant mould properties were investigated and optimized using Taguchi based grey relational analysis. The Taguchi L18 orthogonal array and analysis of variance(ANOVA) were used. The quality characteristics viz., green compression strength, permeability, bulk density, mould hardness and shatter index of green sand mould were optimized using grey relational grade, based on the experiments designed using Taguchi's Design of Experiments. ANOVA analysis indicated that water content is the most influential parameter followed by bentonite, and degree of ramming that contributes to the quality characteristics. The results are confirmed by calculating confidence intervals, which lies within the interval limits. Finally, microstructure observations and X-ray diffraction analysis have been performed for the optimal sand parametric combination. Results show that presence of maximum amount of SiO_2, which might be the reason for enhancement of the physical properties of the sand.
基金financially supported by the National Key R&D Program of China(No.2017YFB1103200)the Independent Innovation Research Fund Project of Huazhong University of Science and Technology(No.2018KFYXMPT002)。
文摘A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed and analyzed.The results show that the forming part includes four regions.The solidification zone solidifies as typical columnar crystals from a molten pool.The complete austenitizing zone forms from the solidification zone heated to a temperature greater than 1100℃,and the typical columnar crystals in this zone are difficult to observe.The partial austenitizing zone forms from the completely austenite zone heated between Ac1(austenite transition temperature)and1100℃,which is mainly equiaxed grains.After several thermal cycles,the partial austenitizing zone transforms to the tempering zone,which consistes of fully equiaxed grains.From the solidification zone to the tempering zone,the average grain size decreases from 75 to20μm.The mechanical properties of HBMDPJ satisfies the requirement for the intended application.
基金Projects(50804018,50564005)supported by the National Natural Science Foundation of ChinaProject(2003E0003Z)supported by the Key Science Foundation of Yunnan Province,China+1 种基金Project(08Y0055)supported by Scientific Research Fund of Yunnan Provincial Education Department,ChinaProject(2008-055)supported by Talents Cultivation Foundation of Kunming University of Science and Technology,China
文摘Copper sheet with grain size of 30-60μm was processed by plastic deformation of asymmetrical accumulative rolling-bonding(AARB)with the strain of 3.2.The effects of annealing temperature and time on microstructural evolution were studied by means of electron backscattered diffraction(EBSD).EBSD grain mapping,recrystallization pole figure and grain boundary misorientation angle distribution graph were constructed,and the characteristics were assessed by microstructure,grain size,grain boundary misorientation and texture.The results show that ultra fine grains(UFG)are obtained after annealing at 250℃ for 30?40 min.When the annealing is controlled at 250℃for 40 min,the recrystallization is finished,a large number of small grains appear and most grain boundaries consist of low-angle boundaries.The character of texture is rolling texture after the recrystallization treatment,but the strength of the texture is faint.While second recrystallization happens,{110}<1ī2>+{112}<11ī> texture component disappears and turns into{122}<212>cube twin texture component.
基金Project(2010A090200078)supported by the Special Foundation Project of Industry,University and Research Institute Collaboration of Guangdong Provincial Government and the Ministry of Education,ChinaProject(2010B090500010)supported by the Special Commissioners’ Workstation Construction Project of Guangdong Provincial Government,China
文摘The AZ31 alloy ingot with diameter of 110 mm and length of 3500 mm was fabricated successfully. The compositions and microstructure morphologies of the ingot at different locations were performed, which indicated that the chemical composition distributed homogeneously through the whole alloy ingot and the average grain size increased from the surface to the center. The results of the EDS and element face-scanning illustrated that the eutectic compounds mainly consisted of fl-Mg17Al12 and a small amount of fl-Mgl7(AlZn)12. Furthermore, slight improvements of the strength and ductility were observed from the center to the surface along the axial direction of the alloy ingot, while both the strength and elongation to failure of the samples along the radial direction are higher than that along the axial direction. The fine grain strengthening was the main contributors to the strength of the as-casted AZ31 alloy.
文摘TiC/ZA43 composites were fabricated by XD TM and stirring casting techniques. The tribology properties of the unreinforced ZA43 alloy and the composites were studied by using a block on ring apparatus. Experimental results show that the incorporation of TiC particles improves the microstructure of ZA43 matrix alloy. The coefficient of friction μ and the width of worn groove decrease with the increase of TiC volume fraction φ (TiC). The width of worn groove and μ of the composite during wear testing increase with increasing the applied load. Metallographic examinations reveal that unreinforced ZA43 alloy has deep ploughing grooves with obvious adhesion phenomenon, whereas TiC/ZA43 composites have smooth worn surface. Delamination formation is related to the fatigue cracks and the shear cracks on the surface. [